000162692 001__ 162692
000162692 005__ 20251017144559.0
000162692 0247_ $$2doi$$a10.1016/j.renene.2025.124179
000162692 0248_ $$2sideral$$a145280
000162692 037__ $$aART-2026-145280
000162692 041__ $$aeng
000162692 100__ $$aRicca, Antonio
000162692 245__ $$aEffective H2 conversion to substitute natural gas on Ni-based catalysts: role of promoters and synthesis method
000162692 260__ $$c2026
000162692 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162692 5203_ $$aThe methanation of CO2 is crucial for Power-to-Gas technologies, enabling synthetic natural gas production from renewable sources. Catalyst formulation is key to tuning activity, selectivity, and reaction mechanisms. This study examines CeO2-ZrO2-supported catalysts with low Ni loading, evaluating Ru as a promoter. A detailed kinetic analysis clarifies the roles of Ni and Ru in CO2 hydrogenation, CO methanation, and the reverse water-gas shift (rWGS) reaction. Ni-based catalysts showed high activity for CO and rWGS reactions, with significantly higher rate constants than Ru-based systems. In contrast, Ru was most active for direct CO2 methanation but had negligible activity for CO methanation, resulting in lower CH4 selectivity when used alone. Mechanistic studies indicate that Ni promotes a stepwise pathway (CO2 → CO → CH4), while Ru facilitates direct CO2 hydrogenation. Co-impregnation of Ni and Ru enhanced both activity and selectivity, highlighting a synergistic effect. Among all formulations, the sequentially impregnated RuNi/CeZr_TSI catalyst outperformed others. Its success stems from combining Ru strong initial CO2 activation with Ni high CO methanation ability, leading to greater CO2 conversion and CH4 selectivity across a wide temperature range. These results confirm the promise of Ni-Ru/CeO2-ZrO2 catalysts for efficient renewable methane production.
000162692 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/JDC2022-048765-I$$9info:eu-repo/grantAgreement/ES/MICIU/JDC2023-052947-I
000162692 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162692 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162692 700__ $$0(orcid)0000-0002-5926-5252$$aRenda, Simona$$uUniversidad de Zaragoza
000162692 700__ $$0(orcid)0000-0001-5266-398X$$aDi Stasi, Christian
000162692 700__ $$aTruda, Livia
000162692 700__ $$aPalma, Vincenzo
000162692 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000162692 773__ $$g256 (2026), 124179 [11 pp.]$$pRenew. energy$$tRenewable Energy$$x0960-1481
000162692 8564_ $$s5739594$$uhttps://zaguan.unizar.es/record/162692/files/texto_completo.pdf$$yVersión publicada
000162692 8564_ $$s2474028$$uhttps://zaguan.unizar.es/record/162692/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162692 909CO $$ooai:zaguan.unizar.es:162692$$particulos$$pdriver
000162692 951__ $$a2025-10-17-14:13:55
000162692 980__ $$aARTICLE