000162702 001__ 162702
000162702 005__ 20251017144601.0
000162702 0247_ $$2doi$$a10.1002/adfm.202517475
000162702 0248_ $$2sideral$$a145366
000162702 037__ $$aART-2025-145366
000162702 041__ $$aeng
000162702 100__ $$0(orcid)0009-0003-4545-3644$$aSáenz-Hernández, Amaia
000162702 245__ $$aCryogenic Focused Ion Beam Milling to Investigate the Anisotropic Magnetotransport Properties of Bismuth Microcrystals
000162702 260__ $$c2025
000162702 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162702 5203_ $$aBulk single crystals exhibit the intrinsic properties of a given compound, but studying their anisotropic magnetotransport properties is challenging. Focused Ion Beam (FIB) milling at room temperature has been previously used to guide the electrical current path along a defined crystal direction or to extract microcrystals where the electrical current flows along a known direction. However, some materials, such as bismuth, melt under FIB irradiation. Bismuth, known for its unique properties, including very large magnetoresistance and a highly anisotropic Fermi surface, reacts to room‐temperature Ga+ FIB irradiation, forming droplets on its surface. Therefore, a novel microfabrication approach based on cryogenic FIB milling is developed here. By using a Peltier stage or an integrated cryogenic module, surface melting is mitigated below −30 °C. Microscale slabs are extracted, either parallel or perpendicular to the single crystal surface, then shaped and electrically contacted in a chip for magnetotransport characterization. The large magnetoresistance observed along with Shubnikov–de Haas oscillations with single periodicity when current is applied perpendicular to the c axis, highlights the success of the approach. These results enable FIB microfabrication of single crystals that are sensitive to FIB irradiation and investigation of the anisotropic magnetotransport properties in microcrystals.
000162702 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2023-146451OB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-112914RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2021-001144-S-20–9$$9info:eu-repo/grantAgreement/ES/MICINN PRE2022-103314$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S
000162702 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000162702 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162702 700__ $$0(orcid)0000-0002-4123-487X$$aSangiao, Soraya$$uUniversidad de Zaragoza
000162702 700__ $$aFelser, Claudia
000162702 700__ $$aShekhar, Chandra
000162702 700__ $$0(orcid)0000-0002-0111-8284$$aPardo, José Ángel$$uUniversidad de Zaragoza
000162702 700__ $$0(orcid)0000-0002-4599-3013$$aIbarra, Alfonso
000162702 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, José María
000162702 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000162702 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000162702 773__ $$g(2025), e17475 [10 pp.]$$pAdv. funct. mater.$$tAdvanced Functional Materials$$x1616-301X
000162702 8564_ $$s2449279$$uhttps://zaguan.unizar.es/record/162702/files/texto_completo.pdf$$yVersión publicada
000162702 8564_ $$s2995612$$uhttps://zaguan.unizar.es/record/162702/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162702 909CO $$ooai:zaguan.unizar.es:162702$$particulos$$pdriver
000162702 951__ $$a2025-10-17-14:14:20
000162702 980__ $$aARTICLE