000162720 001__ 162720
000162720 005__ 20251017144603.0
000162720 0247_ $$2doi$$a10.1371/journal.pone.0329087
000162720 0248_ $$2sideral$$a145246
000162720 037__ $$aART-2025-145246
000162720 041__ $$aeng
000162720 100__ $$aJimenez, Rolando Placeres
000162720 245__ $$aDynamic of competitive Lotka-Volterra model for tumor-host systems under constant or periodic perturbation: Implications for the therapy of cancer
000162720 260__ $$c2025
000162720 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162720 5203_ $$aIn this paper, the tumor-host interaction is modeled using a Lotka-Volterra framework. The critical parameters that define the possible dynamical regimes are identified through linear stability analysis. The effects of both constant and periodic perturbations are examined, along with their clinical implications. The treatment dose required to drive the system to a desired state is determined. It is also shown that aggressive tumors evolve toward a limit cycle when the host is under the action of low-frequency periodic treatment. As the frequency increases, a transition to a non-chaotic attractor occurs. This transition narrows as the frequency of the external periodic perturbation increases. No chaotic behavior is observed, even at higher values of both perturbation strength and frequency, as the maximum Lyapunov exponent remains negative. These results suggest that although aggressive tumors may not be completely eradicated by conventional anticancer therapies, they could potentially be controlled through external low-frequency periodic treatments that target directly only the host, such as immunotherapy.
000162720 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-141385NB-I00
000162720 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162720 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162720 700__ $$aBergues Cabrales, Luis E.
000162720 700__ $$0(orcid)0000-0001-6120-4427$$aMontijano, Juan I.$$uUniversidad de Zaragoza
000162720 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000162720 773__ $$g20, 8 (2025), e0329087 [30 pp.]$$pPLoS One$$tPLoS ONE$$x1932-6203
000162720 8564_ $$s3477066$$uhttps://zaguan.unizar.es/record/162720/files/texto_completo.pdf$$yVersión publicada
000162720 8564_ $$s2433710$$uhttps://zaguan.unizar.es/record/162720/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162720 909CO $$ooai:zaguan.unizar.es:162720$$particulos$$pdriver
000162720 951__ $$a2025-10-17-14:14:31
000162720 980__ $$aARTICLE