000162776 001__ 162776
000162776 005__ 20251017144631.0
000162776 0247_ $$2doi$$a10.3390/ijms26146908
000162776 0248_ $$2sideral$$a145220
000162776 037__ $$aART-2025-145220
000162776 041__ $$aeng
000162776 100__ $$aZiani, Kaoutar
000162776 245__ $$aAdvances in Cryopreservation Strategies for 3D Biofabricated Constructs: From Hydrogels to Bioprinted Tissues
000162776 260__ $$c2025
000162776 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162776 5203_ $$aThe cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal gradients, and ice formation during freezing and thawing. This review examines the current strategies for preserving 3D constructs, focusing on the role of biomaterials as cryoprotective matrices. Natural polymers (e.g., hyaluronic acid, alginate, chitosan), protein-based scaffolds (e.g., silk fibroin, sericin), and synthetic polymers (e.g., polyethylene glycol (PEG), polyvinyl alcohol (PVA)) are evaluated for their ability to support cell viability, structural integrity, and CPA transport. Special attention is given to cryoprotectant systems that are free of dimethyl sulfoxide (DMSO), and to the influence of hydrogel architecture on freezing outcomes. We have compared the efficacy and limitations of slow freezing and vitrification protocols and review innovative approaches such as temperature-controlled cryoprinting, nano-warming, and hybrid scaffolds with improved cryocompatibility. Additionally, we address the regulatory and manufacturing challenges associated with developing Good Manufacturing Practice (GMP)-compliant cryopreservation workflows. Overall, this review provides an integrated perspective on material-based strategies for 3D cryopreservation and identifies future directions to enable the long-term storage and clinical translation of engineered tissues.
000162776 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162776 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162776 700__ $$aSaenz-del-Burgo, Laura
000162776 700__ $$aPedraz, Jose Luis
000162776 700__ $$0(orcid)0000-0002-8666-622X$$aCiriza, Jesús$$uUniversidad de Zaragoza
000162776 7102_ $$11003$$2443$$aUniversidad de Zaragoza$$bDpto. Anatom.Histolog.Humanas$$cArea Histología
000162776 773__ $$g26, 14 (2025), 6908$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000162776 8564_ $$s1288626$$uhttps://zaguan.unizar.es/record/162776/files/texto_completo.pdf$$yVersión publicada
000162776 8564_ $$s2586352$$uhttps://zaguan.unizar.es/record/162776/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162776 909CO $$ooai:zaguan.unizar.es:162776$$particulos$$pdriver
000162776 951__ $$a2025-10-17-14:26:25
000162776 980__ $$aARTICLE