000162786 001__ 162786
000162786 005__ 20251017144631.0
000162786 0247_ $$2doi$$a10.1016/j.jwpe.2025.108642
000162786 0248_ $$2sideral$$a145257
000162786 037__ $$aART-2025-145257
000162786 041__ $$aeng
000162786 100__ $$aColás Sebastián, Javier
000162786 245__ $$aEnhanced flux of nanofiltration membranes for low molecular weight solutes using Zr-MOF@MoS2 nanohybrids as both interlayer and filler materials
000162786 260__ $$c2025
000162786 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162786 5203_ $$aThis study investigates the fabrication and performance of polyamide (PA) thin film composite (TFC) membranes for nanofiltration applications, incorporating nanosized (∼10 nm) zirconium-based metal-organic frameworks (MOFs) and MoS2. Three different Zr-MOFs, namely UiO-66, UiO-66-NH2 and MOF-808, were synthesized and anchored onto 2D MoS2 nanosheets forming MOF@MoS2 nanohybrids. These nanohybrids were integrated into PA TFC membranes using two distinct methods: (i) embedding them into the PA layer, resulting in thin film nanocomposite (TFN) membranes, and (ii) creating bilayered membranes with the nanohybrids beneath the PA layer. The membranes were evaluated for the removal of organic dyes, such as Rose Bengal (RB, 1017 Da), Sunset Yellow (SY, 452 Da) and Acridine Orange (AO, 265 Da), from water. The TFN membranes containing UiO-66@MoS2 nanohybrids exhibited the highest performance, with a water permeance of 12 L·m−2·h−1·bar−1 for the SY dye solution, representing a 140 % increase relative to the control PA TFC membrane. All membranes exhibited high rejection values (> 98 %), with performance strongly influenced by the dye size and charge. The characterization revealed that the porosity and sorption capacities of the nanohybrids are crucial to obtain more permeable membranes, but other factors such as negative surface charge, roughness and hydrophilicity play an important role.
000162786 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T68-23R$$9info:eu-repo/grantAgreement/ES/FJC-2021-047822-I$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/MICIU/PID2022-138582OB-I00
000162786 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000162786 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162786 700__ $$0(orcid)0000-0001-5002-7197$$aLuque-Alled, José Miguel$$uUniversidad de Zaragoza
000162786 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez, Carlos$$uUniversidad de Zaragoza
000162786 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000162786 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000162786 773__ $$g78 (2025), 108642 [14 pp.]$$tJournal of Water Process Engineering$$x2214-7144
000162786 8564_ $$s7421003$$uhttps://zaguan.unizar.es/record/162786/files/texto_completo.pdf$$yVersión publicada
000162786 8564_ $$s2590017$$uhttps://zaguan.unizar.es/record/162786/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162786 909CO $$ooai:zaguan.unizar.es:162786$$particulos$$pdriver
000162786 951__ $$a2025-10-17-14:26:27
000162786 980__ $$aARTICLE