Flexibility assessment in continuous manufacturing processes based on a physics-informed digitalisation strategy: A case study in the rubber industry
Resumen: This study develops a physics-informed digitalisation strategy to assess potential flexibility from different perspectives in continuous manufacturing processes. As a case study, the co-extrusion process of sealing profiles for the automotive industry is chosen. This process operates continuously for 3–5 days to manufacture one sealing profile, consuming considerable energy, which is influenced by the process conditions set during the manufacturing line start-up. Increasing flexibility can contribute to a more sustainable and energy-efficient manufacturing industry. However, since process conditions directly affect the final quality and properties of the manufactured profile, any modifications must be preceded by a thorough analysis of their implications based on the sealing profile geometry, different line velocities and product quality tolerances. Computational Fluid Dynamics (CFD) techniques are used to model the co-extrusion process, while Finite Element Methods (FEM) are applied to model product quality and temperature dependencies. A Reduced Order Model (ROM) is developed for both FEM and CFD models, and the developed model enables the assessment of optimal process parameter adjustments to accommodate line velocity changes at different product quality tolerances. The results prove that the variation of the line velocity can provide process flexibility to the industry (around ± 30 % in total electrical power for ± 20 % variation in the line velocity). Besides, a 20 % increase in line velocity results in a 5.5 % reduction in total CO2 emissions and a 5.2 % decrease in energy costs, suggesting that operating at higher line velocities is more energy efficient. The proposed strategy also analyses the potential flexibility depending on the product quality tolerance and the utility prices. The results show that increasing the allowable quality tolerance reduces the overall power consumption, with the largest potential in thermal power reduction. Beyond the analysis of one manufacturing line in operation, flexibility can be achieved by adequately scheduling several profiles with different electrical-to-thermal power ratios. In addition, a convenient redesign of profiles can also be used, as profiles with thinner walls and less rubber allow more flexibility, although they consume more electricity in the extruder.
Idioma: Inglés
DOI: 10.1016/j.ecmx.2025.101233
Año: 2025
Publicado en: Energy Conversion and Management: X 28 (2025), 101233 [16 pp.]
ISSN: 2590-1745

Financiación: TwinPrebioEnz info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101058657/EU/Twin green and digital transition 2021
Financiación: info:eu-repo/grantAgreement/ES/MCIU/IJC-2020-043717-I
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Mecánica de Fluidos (Dpto. Ciencia Tecnol.Mater.Fl.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-10-17-14:37:10)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Mecánica de Fluidos



 Registro creado el 2025-09-19, última modificación el 2025-10-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)