000162828 001__ 162828
000162828 005__ 20251017144653.0
000162828 0247_ $$2doi$$a10.1002/admt.202501236
000162828 0248_ $$2sideral$$a145360
000162828 037__ $$aART-2025-145360
000162828 041__ $$aeng
000162828 100__ $$0(orcid)0000-0002-8677-3316$$aAbad, Miriam$$uUniversidad de Zaragoza
000162828 245__ $$aShaping Liquid Crystal Polymer Networks: From Molecular Design and Processing to Multifunctional Materials
000162828 260__ $$c2025
000162828 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162828 5203_ $$aLiquid crystal polymer networks (LCNs) are soft, anisotropic materials that combine the order and responsiveness of liquid crystals (LCs) with the mechanical stability of polymer matrices. By polymerizing mesogenic monomers within their LC phase, LCNs retain orientational order while gaining robustness and stimuli‐responsiveness. Advances in molecular design, alignment techniques, and crosslinking chemistry have enabled precise control over structure and function across multiple length scales. In addition, emerging approaches such as additive manufacturing, “click” chemistry, and dynamic covalent bonding further expand the design space toward reconfigurable and sustainable materials. These materials exhibit programmable and reversible responses to heat, light, and electric or magnetic fields, enabling applications in soft actuation, adaptive optics, and dynamic surfaces. Cholesteric LCNs offer tunable optical properties via pitch modulation, which are exploited in sensors, smart windows, and mirrorless lasers. Nanoporous LCNs provide well‐defined nanoscale pathways for separation and electrochemical applications. This review highlights how molecular alignment, network formation, and processing strategies converge to define material performance and multifunctionality. Key challenges remain in achieving scalable fabrication, long‐term operational stability, and integration into real‐world devices. Nevertheless, LCNs are positioned as a versatile platform for next‐generation technologies in soft robotics, adaptive optics, and advanced membrane systems.
000162828 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2023-146811NA-I00$$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/MICIU/RYC2021-031154-I
000162828 540__ $$9info:eu-repo/semantics/embargoedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000162828 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/acceptedVersion
000162828 700__ $$0(orcid)0000-0003-1807-2072$$aMartínez-Bueno, Alejandro
000162828 700__ $$0(orcid)0000-0002-8932-9085$$aConcellón, Alberto$$uUniversidad de Zaragoza
000162828 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000162828 773__ $$g(2025), e01236 [33 pp.]$$pAdv. Mater. Technol.$$tAdvanced Materials Technologies$$x2365-709X
000162828 8564_ $$s2945626$$uhttps://zaguan.unizar.es/record/162828/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-09-13
000162828 8564_ $$s657188$$uhttps://zaguan.unizar.es/record/162828/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-09-13
000162828 909CO $$ooai:zaguan.unizar.es:162828$$particulos$$pdriver
000162828 951__ $$a2025-10-17-14:37:10
000162828 980__ $$aARTICLE