000162911 001__ 162911
000162911 005__ 20251009133840.0
000162911 0247_ $$2doi$$a10.1039/d5nr01927c
000162911 0248_ $$2sideral$$a145400
000162911 037__ $$aART-2025-145400
000162911 041__ $$aeng
000162911 100__ $$aEncinas-Gimenez, Miguel
000162911 245__ $$aUnravelling the cell death mechanism triggered by catalytic copper–iron nanoparticles <i>in vitro</i> and <i>in vivo</i>
000162911 260__ $$c2025
000162911 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162911 5203_ $$aNanomedicine has developed an impressive array of anticancer devices, from drug delivery vectors to hyperthermia-enabling nanoparticles. Lately, emphasis has been shifted to the tumour microenvironment (TME) and to active nanomaterials adapted to the prevailing conditions. Among them, catalytic nanomaterials (also called nanocatalysts) represent a highly interesting alternative, especially when they are able to target metabolites that are present to a greater extent in tumoral cells, opening a window for a catalytically selective action. In this context, herein, we present an in-depth study of the working mechanisms of a meso-2,3-dimercaptosuccinic acid-coated, copper- and iron-based nanoparticle (CuFe@DMSA NPs) with high capability of glutathione (GSH) depletion with simultaneous production of reactive oxygen species (ROS). GSH is an important molecule with antioxidant properties, which is overexpressed in a broad range of tumoral cells, and these CuFe@DMSA NPs catalyse its conversion by means of leached copper ions. In this work, the metabolic action of this nanomaterial on tumoral cells has been thoroughly described, demonstrating that cells underwent a ferroptosis-like cell death, together with the arrest of the cell cycle and induction of apoptosis. The obtained in vitro results were further confirmed in vivo, showing that the increase of apoptosis leads to a significant reduction of tumour growth in treated mice.
000162911 536__ $$9info:eu-repo/grantAgreement/EUR/ERC/ERC-AdG-742684$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S
000162911 540__ $$9info:eu-repo/semantics/embargoedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000162911 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000162911 700__ $$aMartín-Pardillos, Ana$$uUniversidad de Zaragoza
000162911 700__ $$0(orcid)0000-0002-1791-0188$$aBonet-Aleta, Javier
000162911 700__ $$aPérez, Estela
000162911 700__ $$0(orcid)0000-0002-2685-1730$$aRodríguez-Largo, Ana
000162911 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.$$uUniversidad de Zaragoza
000162911 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesus$$uUniversidad de Zaragoza
000162911 700__ $$0(orcid)0000-0003-4160-9720$$aMartin-Duque, Pilar$$uUniversidad de Zaragoza
000162911 7102_ $$11013$$2275$$aUniversidad de Zaragoza$$bDpto. Cirugía$$cÁrea Estomatología
000162911 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000162911 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000162911 7102_ $$11002$$2807$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Toxicología
000162911 773__ $$g(2025), [17 pp.]$$pNanoscale$$tNanoscale$$x2040-3364
000162911 8564_ $$s3923468$$uhttps://zaguan.unizar.es/record/162911/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-08-13
000162911 8564_ $$s2901199$$uhttps://zaguan.unizar.es/record/162911/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-08-13
000162911 909CO $$ooai:zaguan.unizar.es:162911$$particulos$$pdriver
000162911 951__ $$a2025-10-09-13:25:53
000162911 980__ $$aARTICLE