000162936 001__ 162936
000162936 005__ 20251017144631.0
000162936 0247_ $$2doi$$a10.3390/insects16090904
000162936 0248_ $$2sideral$$a145365
000162936 037__ $$aART-2025-145365
000162936 041__ $$aeng
000162936 100__ $$aEritja, Roger
000162936 245__ $$aIntegrating Citizen Science and Field Sampling into Next-Generation Early-Warning Systems for Vector Surveillance: Twenty Years of Municipal Detections of Aedes Invasive Mosquito Species in Spain
000162936 260__ $$c2025
000162936 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162936 5203_ $$aThe spread of the invasive mosquitoes Aedes albopictus, Aedes aegypti, and Aedes japonicus in Spain represents an increasing public health risk due to their capacity to transmit arboviruses such as dengue, Zika, and chikungunya, among others. Traditional field entomological surveillance remains essential for tracking their spread, but it faces limitations in terms of cost, scalability, and labor intensity. Since 2014, the Mosquito Alert citizen-science project has enabled public participation in surveillance through the submission of geolocated images via a mobile app, which are identified using AI in combination with expert validation. While field surveillance provides high accuracy, citizen science offers low-cost, large-scale, real-time data collection aligned with open data management principles. It is particularly useful for detecting long-distance dispersal events and has contributed up to one-third of the municipal detections of invasive mosquito species since 2014. This study assesses the value of integrating both surveillance systems to capitalize on their complementary strengths while compensating for their weaknesses in the areas of taxonomic accuracy, scalability, spatial detection patterns, data curation and validation systems, geographic precision, interoperability, and real-time output. We present the listing of municipal detections of these species from 2004 to 2024, integrating data from both sources. Spain’s integrated approach demonstrates a pioneering model for cost-effective, scalable vector surveillance tailored to the dynamics of invasive species and emerging epidemiological threats.
000162936 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162936 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162936 700__ $$aSanpera-Calbet, Isis
000162936 700__ $$0(orcid)0000-0001-7046-2997$$aDelacour-Estrella, Sarah$$uUniversidad de Zaragoza
000162936 700__ $$0(orcid)0000-0001-8198-8118$$aRuiz-Arrondo, Ignacio$$uUniversidad de Zaragoza
000162936 700__ $$aPuig, Maria Àngels
000162936 700__ $$aBengoa-Paulís, Mikel
000162936 700__ $$aAlarcón-Elbal, Pedro María
000162936 700__ $$aBarceló, Carlos
000162936 700__ $$aMariani, Simone
000162936 700__ $$aMartínez-Barciela, Yasmina
000162936 700__ $$aBravo-Barriga, Daniel
000162936 700__ $$aPolina, Alejandro
000162936 700__ $$aPereira-Martínez, José Manuel
000162936 700__ $$aGonzález, Mikel Alexander
000162936 700__ $$aEscartin, Santi
000162936 700__ $$aMelero-Alcíbar, Rosario
000162936 700__ $$aBlanco-Sierra, Laura
000162936 700__ $$aMagallanes, Sergio
000162936 700__ $$aCollantes, Francisco
000162936 700__ $$aFerraguti, Martina
000162936 700__ $$aGonzález-Pérez, María Isabel
000162936 700__ $$aGutiérrez-López, Rafael
000162936 700__ $$aSilva-Torres, María Isabel
000162936 700__ $$aSan Sebastián-Mendoza, Olatz
000162936 700__ $$aCalvo-Reyes, María Cruz
000162936 700__ $$aMendoza-García, Marian
000162936 700__ $$aMacías-Magro, David
000162936 700__ $$aCisneros, Pilar
000162936 700__ $$aCevidanes, Aitor
000162936 700__ $$aFrontera, Eva
000162936 700__ $$aMato, Inés
000162936 700__ $$aFúster-Lorán, Fernando
000162936 700__ $$aDomench-Guembe, Miguel
000162936 700__ $$aRodríguez-Regadera, María Elena
000162936 700__ $$aCasanovas-Urgell, Ricard
000162936 700__ $$aMontalvo, Tomás
000162936 700__ $$aMiranda, Miguel Ángel
000162936 700__ $$aFiguerola, Jordi
000162936 700__ $$0(orcid)0000-0003-0663-8411$$aLucientes-Curdi, Javier$$uUniversidad de Zaragoza
000162936 700__ $$aGarriga, Joan
000162936 700__ $$aPalmer, John Rossman Bertholf
000162936 700__ $$aBartumeus, Frederic
000162936 7102_ $$11009$$2773$$aUniversidad de Zaragoza$$bDpto. Patología Animal$$cÁrea Sanidad Animal
000162936 773__ $$g16, 9 (2025), 904 [27 pp.]$$pInsects$$tInsects$$x2075-4450
000162936 787__ $$tIntegrated surveillance records of invasive mosquito detections in Spanish municipalities, 2004–2024$$whttps://doi.org/10.5281/zenodo.15869762
000162936 8564_ $$s3738168$$uhttps://zaguan.unizar.es/record/162936/files/texto_completo.pdf$$yVersión publicada
000162936 8564_ $$s2946860$$uhttps://zaguan.unizar.es/record/162936/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162936 909CO $$ooai:zaguan.unizar.es:162936$$particulos$$pdriver
000162936 951__ $$a2025-10-17-14:26:28
000162936 980__ $$aARTICLE