000162959 001__ 162959
000162959 005__ 20251017144643.0
000162959 0247_ $$2doi$$a10.1016/j.jco.2025.101993
000162959 0248_ $$2sideral$$a145433
000162959 037__ $$aART-2026-145433
000162959 041__ $$aeng
000162959 100__ $$0(orcid)0000-0003-1256-3671$$aAlonso-Gutiérrez, David$$uUniversidad de Zaragoza
000162959 245__ $$aBorell's inequality and mean width of random polytopes via discrete inequalities
000162959 260__ $$c2026
000162959 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162959 5203_ $$aBorell's inequality states the existence of a positive absolute constant C>0 such that for every 1≤p≤q(E|〈X,en〉|p)1p≤(E|〈X,en〉|q)1q≤Cqp(E|〈X,en〉|p)1p, whenever X is a random vector uniformly distributed on any convex body K⊆Rn and (ei)i=1n is the standard canonical basis in Rn. In this paper, we will prove a discrete version of this inequality, which will hold whenever X is a random vector uniformly distributed on K∩Zn for any convex body K⊆Rn containing the origin in its interior. We will also make use of such discrete version to obtain discrete inequalities from which we can recover the estimate Ew(KN)∼w(Zlog⁡N(K)) for any convex body K containing the origin in its interior, where KN is the centrally symmetric random polytope KN=conv{±X1,…,±XN} generated by independent random vectors uniformly distributed on K, Zp(K) is the Lp-centroid body of K for any p≥1, and w(⋅) denotes the mean width.
000162959 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E48-23R$$9info:eu-repo/grantAgreement/ES/MICIU/PID2021-122126NB-C32$$9info:eu-repo/grantAgreement/ES/MICIU/PID2022-137294NB-I00
000162959 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162959 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162959 700__ $$0(orcid)0000-0001-9211-4475$$aGarcía-Lirola, Luis C.$$uUniversidad de Zaragoza
000162959 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000162959 773__ $$g92 (2026), 101993 [25 pp.]$$pJ. complex.$$tJOURNAL OF COMPLEXITY$$x0885-064X
000162959 8564_ $$s937781$$uhttps://zaguan.unizar.es/record/162959/files/texto_completo.pdf$$yVersión publicada
000162959 8564_ $$s1409972$$uhttps://zaguan.unizar.es/record/162959/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162959 909CO $$ooai:zaguan.unizar.es:162959$$particulos$$pdriver
000162959 951__ $$a2025-10-17-14:33:06
000162959 980__ $$aARTICLE