000163001 001__ 163001
000163001 005__ 20251009133841.0
000163001 0247_ $$2doi$$a10.1016/j.fuel.2025.136698
000163001 0248_ $$2sideral$$a145533
000163001 037__ $$aART-2025-145533
000163001 041__ $$aeng
000163001 100__ $$0(orcid)0000-0003-0395-0143$$aMercader, V.D.$$uUniversidad de Zaragoza
000163001 245__ $$aIntensifying synthetic natural gas production by functionalization of a NiFe/γ-Al2O3 catalyst with alkaline and alkaline-earth materials
000163001 260__ $$c2025
000163001 5060_ $$aAccess copy available to the general public$$fUnrestricted
000163001 5203_ $$aThis study demonstrates the influence of the functionalization method (Mechanical Mixture -MM- and Dual Function Materials -DFM-) of two CO2 adsorbent species (Na and Ca) in a catalytic fixed-bed reactor for CO2 methanation. The experiments consisted of cycles beginning with a CO2 adsorption stage followed by a methanation stage (with H2), interspersed with or without inert purge periods. The greatest enhancement in methane generation was observed in experiments with a mechanical mixture (MM) of NiFe/γ-Al2O3 catalyst and Na2O/γ-Al2O3. The methane production capacity was tested over a temperature range comprised between 200 and 400 °C, with values over 380 μmol/g obtained under moderate conditions (350 °C and pCO2 = 0.12 bar) and selectivity to methane close to 100 %. Since the ultimate goal is the methanation of the CO2 present in a biogas (without removing CH4), the potential effect of the presence of methane during the CO2 adsorption stages was also investigated. To achieve this task, a feed stream representative of a sweetened biogas coming from the anaerobic decomposition of municipal solid waste (MSW) (70 %v CH4 and 30 %v CO2) was used. The results showed no adverse effects along the successive cycles, paving the way to the use of these solids for biogas upgrading. On the other hand, the catalyst did not show a significant loss of activity after several hours of repetitive adsorption-methanation cycles.
000163001 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-136947OB-I00$$9info:eu-repo/grantAgreement/ES/DGA/T43-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PRE2020-095679$$9info:eu-repo/grantAgreement/ES/MICIU/PRTR-C17.I1
000163001 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000163001 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000163001 700__ $$0(orcid)0009-0000-7836-8903$$aSanz-Monreal, P.$$uUniversidad de Zaragoza
000163001 700__ $$0(orcid)0000-0003-2898-1085$$aDurán, P.$$uUniversidad de Zaragoza
000163001 700__ $$0(orcid)0000-0001-6452-4258$$aAragüés-Aldea, P.$$uUniversidad de Zaragoza
000163001 700__ $$0(orcid)0000-0003-3181-195X$$aFrancés, E.$$uUniversidad de Zaragoza
000163001 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000163001 700__ $$0(orcid)0000-0002-8383-4996$$aPeña, J.A.$$uUniversidad de Zaragoza
000163001 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000163001 7102_ $$15005$$2X$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cProy. investigación HKA
000163001 773__ $$g406, Part. A (2025), 136698 [11 pp.]$$pFuel$$tFuel$$x0016-2361
000163001 8564_ $$s7341492$$uhttps://zaguan.unizar.es/record/163001/files/texto_completo.pdf$$yVersión publicada
000163001 8564_ $$s2512375$$uhttps://zaguan.unizar.es/record/163001/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000163001 909CO $$ooai:zaguan.unizar.es:163001$$particulos$$pdriver
000163001 951__ $$a2025-10-09-13:25:56
000163001 980__ $$aARTICLE