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A B S T R A C T

The separation of carbon dioxide (CO2) is presented as a current challenge in the environment and energy sector. 
The primary reason for this is to control the emissions of this gas into the atmosphere and the upgrading of 
biomethane. In this context, the membrane separation technology seems to be a very sustainable promising tool 
for such tasks. This work presents a machine learning (ML) study, based on a database created from membrane 
preparation conditions and gas separation records from the literature, achieved for the CO2/N2 and CO2/CH4 
mixtures using dense membranes of thermoplastic elastomer Pebax® 1657. A comparative analysis of three 
different ML models was carried out: multiple linear regression, decision tree and random forest. This last al
gorithm demonstrates the best performance in statistics terms of coefficient of determination and root mean 
square error. In addition, the combination of the ML random forest with a method based on the design of ex
periments with response surface methodology (RSM) allowed to identify the favorable conditions for the 
membrane synthesis, with the objective of enhancing the CO2 separation performance. This resulted in prepared 
membranes in the laboratory considering the proposed conditions by RSM with CO2 permeability and CO2/X 
selectivity values of 115 Barrer and 43.5 and 132 Barrer and 16.4 for the CO2/N2 and CO2/CH4 mixtures, 
respectively, at 35 ◦C.

1. Introduction

The carbon dioxide (CO2) molecule, a principal contributor to global 
warming due to its role in greenhouse gas emissions, is a product asso
ciated with various processes, including the combustion of fossil fuels 
[1]. The removal, capture and storage of this acid gas can be conducted 
with the use of conventional technologies such as adsorption, absorption 
or cryogenic distillation. These present certain disadvantages, 
comprising elevated energy consumption and substantial environmental 
impact. Therefore, new improved separation processes are necessary 
with a greater efficiency, simplicity and smaller footprint [2].

The utilization of membranes for the separation of CO2 has been 
proposed as a novel alternative for the capture of CO2 in post- 
combustion processes as well as in other processes related to sustain
ability such as biogas upgrading. This separation proposal offers several 
advantages, including cost savings in processing, energy efficiency, 
simplified mechanics and compact designs [3]. Among the various types 
of membranes (organic, metallic or inorganic), polymeric membranes 

are particularly promising, due to their flexibility, cost-effectiveness and 
ease of preparation [4]. Moreover, the acquisition of membranes that 
exhibit enhanced selectivity for CO2 over gases such as N2 and CH4 is 
possible, based on the differences in solubility and diffusivity of these 
gases within the membrane matrix [5]. In these cases, a variety of 
polymer types are employed, including the PEBA (polyether block 
amide) series, with the Pebax® commercial brand being the most 
prominent, which has demonstrated efficacy in the treatment of these 
gases [6,7]. PEBA is a thermoplastic elastomer that is formed by block 
copolymers: a “hard” block of aliphatic polyamide (PA), that contributes 
to mechanical stability, and a “soft or flexible” block of amorphous 
polyether (PE), that enables high permeation flow and selective CO2 
transport. In fact, PEBA has demonstrated a high degree of affinity for 
CO2, due to its polar ether group. The variation in the proportion of each 
block, as well as their intrinsic composition, causes differences in sep
aration and physical properties [8]. Specifically, the polymer called 
Pebax® 1657, with suitable properties for CO2 separation [9], illustrated 
in Fig. 1 and composed of polyethylene oxide (PEO) and PA in a mass 
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ratio of 60:40, is employed in this study.
In these polymeric membranes, the efficiency of the gas separation 

process is determined by the selectivity and the permeability of the 
membrane material. In addition, according to selectivity and flux den
sity, they can be classified as: porous and non-porous or dense, among 
others. The most common preparation methods for dense membranes 
are melt extrusion and solution casting [10]. In this study, the second 
mentioned method is used, which consists of the preparation of the 
membrane from a polymer solution with a specific solvent. Subse
quently, the deposition or casting of the solution on a surface is carried 
out, in such a way that the membrane will be formed after the complete 
evaporation of the solvent. During membrane fabrication, it is important 
to consider the parameters that influence this process, since they can 
affect the structure of the membrane and its properties. Some of these 
parameters or variables may be the type of polymer, concentration of the 
solution, type of solvent and its volatility, the material of the casting 
surface, operating times (casting and solution) and the casting temper
ature [11].

Achieving the highest possible performance from the use of these 
membranes as well as their optimization requires a detailed study of the 
experimental variables that are part of the synthesis and preparation of 
the membranes, in combination with the gas separation conditions. This 
is a complex task that involves an important investment of resources, 
including high cost and significant effort in terms of time and experi
mental work, usually carried out through a trial-and-error strategy.

Consequently, the use of artificial intelligence (AI), due to its ca
pacity to emulate human learning and reasoning abilities, is growing 
exponentially among society and its application and potency is 
increasing in different fields, such as medicine or materials technology, 
among others. Specifically, within the domain of AI, there are tools 
known as “machine learning (ML)”, which can generate models that, 
upon undergoing training, exhibit the capacity to discern between 
classes or predict a desired property. This capability arises from their 
ability to capture nonlinear relationships between the input variables 
and the output variable, producing the desired result [12,13]. Therefore, 
ML techniques facilitate a rapid examination of the variables and the 
optimization of processes, allowing the evaluation of the object prob
lem. This results in a reduction of required resources and an enhance
ment in efficiency. To achieve this objective, a ML model can be 
integrated with other resources, such as the design of experiments with a 

response surface method [14], molecular design [15] and molecular 
simulation [16]. Moreover, ML has been previously used in the field of 
gas separation membranes [17–19] to gain insight into the prediction of 
the polymer characteristics and discover new ones [20,21], predict the 
separation properties of a given polymer (e.g. polyimide) [22], find a 
rapid assessment of MOF based mixed matrix membranes (MMMs) [16], 
estimate missing values of permeabilities of gases using exiting values 
for certain gases [23], and aid to choose the best ionic liquid@MOF 
composite to produce a MMM for CO2 separation [24], among others. 
Some works try to use the knowledge obtained with ML to prepare 
MOF-based MMMs that separate CO2 [11]. However, most of these ap
proaches lack experimental exploitation and optimization of the 
knowledge gained from the ML.

The main objective of this work is to use ML to identify the key pa
rameters affecting the preparation of dense membranes of polymer 
Pebax® 1657 and then apply the information gathered to improve their 
separation performance. Thus, the work seeks to design a model for the 
selectivity of membranes of Pebax® 1657, based on experimental vari
ables and considering their respective effects on these membranes. This 
implies the configuration of a specific database related to Pebax® 1657 
membranes from the literature including relevant information on their 
synthesis and separation behavior, the development of a model able to 
predict selectivity values based on previous experiments and, therefore, 
the estimation of the selectivity performance of newly synthesized 
membranes. Using the AI-generated model, design of experiments (DOE) 
with the response surface method (RSM) is used to obtain optimal 
membrane preparation conditions to maximize the separation selec
tivity. Membranes were therefore subsequently prepared in the labora
tory under different conditions, including optimal conditions, and tested 
for CO2 separation, validating the methodology. This is the first time 
that AI has been integrated with DOE-RSM in the tangible membrane 
preparation for gas separation. In addition, the database was revamped 
with the additional experiments performed. In short, this approach (see 
Fig. 1) accelerates the identification of the most influential membrane 
preparation conditions by optimizing the parameters that lead to 
optimal selectivity values.

Fig. 1. Workflow integrating ML, optimization and membrane fabrication. Literature data are preprocessed and used to train several predictive models. After model 
validation, a response surface methodology is applied to optimize the preparation conditions at the laboratory, which are experimentally validated.
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2. Materials and methods

2.1. Materials

Pebax® MH 1657 copolymer (60 wt% polyethylene oxide (PEO) and 
40 wt% aliphatic polyamide 6 (PA6)) in pellet shape was kindly supplied 
by Arkema, France. Regarding the solvent, absolute ethanol and 
deionized water were purchased from Gilca, Spain. Additionally, gases 
used for gas permeation measurements (i.e., CO2, N2, CH4, He) were 
supplied by Linde S.A, Spain. These gases were of a purity level greater 
than 99.9 %, a standard that ensures their quality and reliability for 
scientific applications.

2.2. Preparation of the membranes

A specific quantity of Pebax® MH 1657 pellets (0.36 g) was dissolved 
in a mixture of ethanol and deionized water (70:30 wt%) by stirring at 
several temperatures in the 70–140 ◦C range for 3 h to obtain solutions 
of this polymer at different polymer concentrations (in 1.8–10 wt% 
range). The amount of polymer added was constant to ensure a similar 
thickness (approximately 60–80 μm) in all membranes under compari
son. However, the amount of solvent varied. After cooling, solutions 
were poured into a Petri dish and dried for one or two days at room 
temperature or a higher temperature (always less than 60 ◦C) and under 
controlled evaporation, until the solvent was almost completely dissi
pated. Subsequently, membranes were placed in a vacuum oven as a 
conditioning step from 30 to 60 ◦C for 4 h–6 h to ensure the complete 
elimination of any residual solvents that may be present in them. The 
membrane thickness is measured using a digital disk micrometer (Dig
imatic Micrometer Quickmike, Mitutoyo Corp.), and five measurements 
are taken at different points on each membrane, with the thickness being 
calculated as the average of those measurements. The synthesized 
membranes are designated as P1657DM_CX, where X denotes specific 
working conditions, as indicated in Table S1 of the Supplementary 
Information.

2.3. Gas permeation measurements

Membranes were cut with an area of 12.6 cm2 and placed in a 
module consisting of two pieces of stainless steel and a porous support 
disk (Mott Co.) with a nominal pore size of 20 μm, being gripped inside 
with Viton o-rings. Gas separation measurements were conducted using 
feed mixtures of CO2/N2 (15:85 cm3 (STP)⋅min− 1) and CO2/CH4 (50:50 
cm3 (STP)⋅min− 1) which were controlled by two Alicat Scientific mass 

flow controllers (MC-100CCM-D for CO2 and MC-200CCM-D for N2 and 
CH4) at a pressure of 3 bar on the feed side and different temperatures 
(25, 35 and 50 ◦C). The temperature of experiments is controlled by a 
UNE 200 Memmert oven in which the module is placed. Moreover, the 
permeate side of the membranes was swept with 10 cm3 (STP)⋅min− 1 of 
He at a pressure of 1 bar, which was also controlled by a mass flow 
controller (MC-200CCM-D, Alicat Scientific). Regarding the concentra
tions of CO2, N2 and CH4 in the output stream, they were measured 
online using an Agilent 990 micro-gas chromatograph. The permeability 
value was calculated in Barrer (10− 10 cm3 (STP)⋅cm⋅cm− 2⋅s− 1⋅cmHg− 1) 
and the selectivity was determined as the ratio of the permeabilities of 
the gases in the mixture.

2.4. Data preparation and machine learning models

2.4.1. Data collection from literature
The aim of this section is to analyze and compile the information 

available in the literature that is related to the study of dense mem
branes for separation of CO2 from other gases (N2 or CH4) with the 
selected Pebax® 1657 polymer. This will allow the constitution of a 
database to be exploited through a machine learning (ML) model. It is 
important to examine the conditions and methodologies during the 
fabrication and measurement processes, as these factors will define the 
behavior of each membrane, and it will allow future research to improve 
the results. For this purpose, academic and scientific collections such as 
Web of Science and Google Scholar were used through keywords such as 
“CO2 separation”, “Pebax® 1657” and “Membrane”. A total of 55 arti
cles [1,5,25–77] were collected, representing 109 samples or entries into 
our database and in Supplementary Information, Fig. S1 and Table S2
present a summary about the distribution of the variables and some data 
related with this dataset collection, respectively. However, it is impor
tant to note that a greater volume of data was collected; nevertheless, 
these data are not directly used to construct the model, as some samples 
contain a high number of incomplete variables and outliers or they do 
not appear to a high degree to be representative, which can harm the 
model by making it difficult to learn. Initially, the total collected data 
consisted of 1846 entries corresponding to 139 samples, of which 30 
samples were eliminated, and 218 entries were presented as missing 
values, representing 22 % of samples and 12 % of data entries, respec
tively. The main variables where gaps existed were the percentage of 
CO2 in the gas mixture, the membrane thickness and temperature and 
time of the conditioning step. From a future perspective, a valuable 
improvement would be to collect additional data to increase the repre
sentativeness of a broader dataset, thereby allowing the study of other 

Table 1 
Descriptive statistics (range, mean and standard deviation (sd)) of input variables and output variable that participated in the machine learning model.

Variable (units) Range Mean ± sd Description

Input variables
Solvent 0.0–2.0 1.5 ± 0.8 “Butanol”, “DMF” and “Ethanol/water” were normalized to 0, 1 and 2, respectively.
Polymer conc. (wt%) 0.6–10.0 4.0 ± 1.7 –
Thickness (μm) 30.0–110.0 60.2 ± 17.5 –
Solution temp. (◦C) 70.0–140.0 92.3 ± 17.5 –
Solution time (h) 2.0–24.0 8.0 ± 8.3 –
Casting temp. (◦C) 25.0–70.0 33.0 ± 13.0 –
Casting time (h) 10.0–72.0 34.1 ± 14.2 –
Conditioning temp. (◦C) 30.0–100.0 54.7 ± 11.4 –
Conditioning time (h) 0.0–72.0 17.9 ± 13.7 –
Separation temp. (◦C) 25.0–55.0 30.0 ± 6.5 –
Pressure (bar) 1.0–10.0 3.3 ± 2.1 –
CO2 percentage (%) 10.0–100.0 54.0 ± 35.2 –
Gas mixture 0.0–1.0 0.4 ± 0.5 “CO2/CH4” and “CO2/N2” were normalized to 0 and 1.
Output variable
CO2/N2 selectivity 20.0–69.6 46.4 ± 11.2 –
CO2/CH4 selectivity 4.0–36.0 16.5 ± 5.0 –
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conditions. Note that, even if the availability of data was limited, 
Pebax® 1657 was chosen due to the fact that, besides showing a relevant 
performance to separate CO2 containing mixtures, it is one of the most 
studied membrane polymers, so that the study carried out here could be 
focused on an important set of preparation variables excluding the 
polymer type. In any case, data were subjected to several preprocessing 
steps, which included the imputation of missing values using the mean 
of the corresponding variable and the implementation of normalization 
to enhance the interpretation of the data by the model. Consequently, 
Table 1 shows the statistical data of each input (categorical and 
numeric) and output variable for the models used in this study.

2.4.2. Machine learning algorithms and models
Most ML algorithms are classified into supervised and unsupervised 

learning based on the examples provided during training. Supervised 
learning involves providing a set of input variables (x) along with its 
corresponding label or output variable (y), while in unsupervised 
learning only the input variables (x) are provided. Supervised learning 
tasks can be divided into classification tasks, which classify each sample 
into a certain group or category, and regression tasks, in which the al
gorithm establishes relationships between the input variables and the 
output variable [78]. Typically, the dataset is divided into different 
subsets, such as training and testing sets.

These algorithms were applied to various models, through the 
development of a Python code (see the supporting information) using 
the Google Colab tool. In this study, supervised learning algorithms, of 
growing complexity, were used for regression tasks, specifically, with 
certain types of models. Multiple linear regression seeks the connection 
between dependent and independent variables through their respective 
definitions as input and output characteristics since they are potentially 
interrelated, a phenomenon known as multicollinearity. In addition, the 
decision tree combines simple numerical tests. Each node contains a test 
that classifies a feature, and the branches extend from the parent nodes 
to the child nodes. Thus, they will be divided into new nodes in such a 
way that the iterations continue. Finally, random forest is an ensemble of 
decision trees that solves the overfitting problem typically associated 
with decision tree models [79].

In this study, 13 input variables were selected to estimate the CO2 
selectivity (i.e. CO2/N2 and CO2/CH4 separation selectivities, called 
CO2/X throughout the study, X being either N2 or CH4) for dense 
membranes obtained from polymer Pebax® 1657. Selectivity was the 
output variable of the models. Note that, due to the limited amount of 
data available, both CO2/N2 and CO2/CH4 selectivities are integrated in 
the output of the model which can therefore differentiate between the 
two studied mixtures. The input characteristics are listed in Table 1. 
Regarding the types of solvents found in the literature, they are ethanol/ 
water, propanol/water, dimethylformamide (DMF), dimethylacetamide 
(DMAc), propanol/butanol and butanol. Only the first three solvents 
from the above list were selected for the study, because they were 
representative of the dataset. The selected gas mixtures were CO2/N2 
and CO2/CH4 because they are the most studied mixtures in the litera
ture and are suitable for copolymer Pebax® 1657 with proven specific 
interaction with the CO2 molecule given its CO2-philic polar blocks or 
flexible polyether (complimented with the rigid polyamide blocks) [3].

2.4.3. Performance metrics
To evaluate the usefulness and operation of the models as well as to 

compare them, the metrics used to measure the quality were the root 
mean square error (RMSE) and the coefficient of determination (R2) 
[80]. The RMSE is the square root of the mean of the errors, so it has the 
same units as the response or output variable. Its value indicates how far 
the predictions of the model are, on average, from the real value. The R2 

is dimensionless and describes the proportion of variance of the response 
or output variable explained by the model relative to the total variance. 
These metrics can be estimated using Eqs. (1) and (2): 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Pi − yi)
2

n

√

(1) 

R2 =

∑n
i=1(Pi − yi)

2

∑n
i=1(yi − yi)

2 (2) 

where Pi indicates the predicted output by the model, while yi is the real 
value of the output, ӯi represents the sample data mean, and n denotes 
the number of data entries.

2.4.4. Data normalization
Normalization is a data preprocessing technique that adjusts the 

characteristics or attributes of data within a specific range to facilitate 
the results interpretation. Thus, normalization is an essential part of data 
science and ML, increasing consistency and improving the performance, 
efficiency and precision of algorithms and models [81]. It is also possible 
to reduce differences in the scale and magnitude of data features, which 
is relevant because an attribute with larger values will have a dominant 
influence on the machine learning model. Many algorithms, such as 
regression or decision trees, require normalized data for its correct 
function.

There are numerous normalization techniques, but in this case min- 
max scaler normalization for numerical input was employed. This 
technique involves transforming the values of a characteristic into a 
range of specific values between zero and one. This objective is achieved 
by subtracting the minimum value of the data from each value and 
dividing the result by the difference between maximum and minimum 
values, as indicated in Eq. (3): 

Ni =
Xi − Xmin

Xmax − Xmin
(3) 

where Ni is the normalized data, Xi represents the original data and Xmin 
and Xmax denote the lowest and highest values of each attribute. This 
approach enables the comparison of attributes with different units and 
ranges of values within the same dataset, while ensuring a simple 
implementation. In the case of categorical inputs, the transformation of 
the data into numerical values was achieved through the implementa
tion of the label encoding technique. Furthermore, a normalized data 
exhibits an enhanced robustness to potential outliers when compared 
with alternative normalization methods.

2.5. Study of variables that affect synthesis and measurement processes

The use of a ML model allows the prediction of various experiments; 
however, the integration of these models with other tools, such as design 
of experiments (DOE), enables the optimization of variables to achieve 
the best possible process and, consequently, maximizes the selectivity 
value of the membranes. DOE is a statistical technique that is used to 
optimize a process. This technique involves a simultaneous study of 
different factors to obtain optimal values. A specific range of each var
iable studied is defined in such a way that the DOE proposes a set of 
experiments. This optimization is achieved through a multivariate 
analysis using a Box-Behnken design (BDD) with Statgraphics Centurion 
software [82], which was used to investigate the relationship between 
variables that influence the process. The variables of polymer concen
tration (2–6 wt%), thickness (30–90 μm), polymer solution temperature 
(70–140 ◦C), casting temperature (25–75 ◦C) and conditioning tem
perature (30–100 ◦C) were analyzed using the response surface meth
odology (RSM) [83]. The polymer concentration was used as variable for 
the DOE because it affects the membrane processing with direct influ
ence on the thickness and homogeneity of the dense film and also with 
implications in future developments dealing with thin film supported 
membranes. In any event, 46 combinations of experimental conditions 
were obtained, which selectivity values were calculated with the 
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optimum machine learning model.
For the optimization, the remaining variables were maintained 

constant during the optimization study. The numerical variables were 
set to specific values, solution time (3 h), casting time (48 h), condi
tioning time (4 h), gas separation temperature (35 ◦C), pressure (3 bar) 
and CO2 percentage in the feed (15 %). In the case of categorical vari
ables, ethanol/water (70:30 wt%) like polymer solvent and CO2/N2 
mixture of gas separation were selected.

3. Results and discussion

As depicted in Figs. 1 and 2, a specific database was first built related 
to Pebax® 1657 membranes from the literature including relevant in
formation on their synthesis and CO2/X separation performance. Then, a 
Python code was written and executed using Google Colab platform to 
apply the dataset in the development of a ML model able to predict the 
CO2 separation selectivity values based on experiments reported in the 
literature and, therefore, the estimation of the selectivity performance of 
newly synthesized membranes. Next, a methodology of DOE was com
bined with the ML model and the obtained output was applied to carry 
out specific experimental work preparing and testing Pebax® 1657 
dense membranes for the separation of CO2/N2 and CO2/CH4 mixtures.

3.1. Correlations between input variables

It is necessary to know the correlation between each pair of input 
variables that are within the ML model, as a high coefficient between 
these variables can lead to overfitting. The values representing the 
Pearson correlation coefficients between the variables of the model for 
selectivity are presented in Table 2 and illustrated with the corre
sponding matrix of correlation given in Fig. S2. In this case, the co
efficients have low values (less than 0.7), indicating an insufficient 
correlation between the input variables proposed in the models. It is 
notable that there are high values that are close to this limit, such as the 
relationship between the solvent and the solution preparation condi
tions. This is logical, since it is well established that these conditions are 
related to the boiling point of each solvent and its ability to dissolve the 
polymer. Another case is the inverse relationship between the casting 
conditions, since if a higher temperature is used to evaporate the sol
vent, less time will be required to obtain the membrane. Therefore, these 
variables are interconnected and, although they exhibit a certain rela
tionship, it is important that they participate in the model. As a result, 
the 13 variables enumerated in section 2.4.1 have been selected for the 
estimation of the output variable, which is selectivity.

3.2. Comparison of selected algorithms

After the preparation of the database and subsequent analysis of 
variables, three distinct models (multiple linear regression, decision tree 
and random forest) were constructed for the purpose of evaluating their 
efficacy identifying the most suitable model for the given separation 
application. To this end, the dataset containing the input variables and 
the output or response variable was divided into two subsets: one subset 
designated as the “training set”, which serves to train the model, 
comprising 80 % of the data, and another subset as the “test set”, which 
is not known to the model and is, therefore, used for model evaluation, 
comprising 20 % of the data (see Table 3).

The values obtained for the multiple linear regression model are R2 

= 0.833 and RMSE = 7.10, for the training set, and R2 = 0.824 and 
RMSE = 6.89, for the testing set. The decision tree model demonstrates 
R2 and RMSE values of 0.999 and 0.56 and 0.655 and 9.12 for the 
training and test sets, respectively. Finally, the metrics for the random 
forest model are R2 = 0.973 and RMSE = 2.85 and R2 = 0.962 and RMSE 
= 3.20 for the training and test sets, respectively. The ideal result is a 
high R2 value and a low RMSE value, indicating that the model can 
explain the response variable better and that there is a less difference 
between the model predictions and the real values from the database. 
Furthermore, it is important to highlight that the R2 values for the 
training and test sets should be similar [84]. A high R2 value in the 
training set and a low R2 value in the test set typically indicates over
fitting, whereas a low R2 value in both sets may suggest a poor learning 
efficacy in the model. This phenomenon can be detrimental, as it in
dicates that the model either exhibits a limited capacity for the effective 
generalization to novel data or fails to accurately capture the underlying 
patterns in the training data. The application of artificial intelligence to 
gas separation with membranes is very varied as seen in the introduc
tion. In any case, the R2 values obtained here are in the range of what 
can be found in the literature according to the recent study in the subject 
by Abdollahi et al. [18], R2 being in the 0.77–0.9999 range. More spe
cifically, Guan et al. [13], studying mixed matrix membranes based on 
MOF for CO2 separation using a random forest model (the best model 
here), with R2 values in the 0.89–0.91 and 0.70–0.77 ranges for 
CO2/CH4 separation on the training and test datasets, respectively, 
which corroborates the goodness of our values.

Consequently, the random forest model demonstrates better perfor
mance metrics in comparison to the other two alternative models 
studied here. In fact, Fig. 3 illustrates the comparison between predicted 
and real CO2/X selectivity values, revealing a better agreement between 
them for the random forest model. This is due to the proximity of the 
points to the red line, which signifies a complete alignment between the 
values. This result is supported by the capacity of the random forest 
algorithm to manage both continuous and categorical data, along with 
its high prediction accuracy [85]. This is because this algorithm is based 
on ensembles that capture complex and non-linear relationships [86], 
which is important in the context of membrane preparation, where small 
variations in variables can interact in a non-linear way affecting the gas 
separation performance. Conversely, the multiple linear model is char
acterized by its simplicity, as it does not explain non-linear relationships 
between input and output variables often leading to prediction errors 
[87]. Furthermore, the decision tree is affected by overfitting, since the 
model memorized the training data, but when it encounters unseen test 
data it lacks the ability to make accurate predictions, as small changes in 
the data can have a significant effect on the structure of the algorithm 
[88], resulting in a limited generalization capacity. For this reason, this 
model performs nearly perfectly in training and poorly in the test set. In 
contrast, the random forest model generalizes more appropriately to 
unknown data and combats overfitting by averaging the predictions of 
several decision trees trained with random subsets, resulting in a more 
balanced performance [89]. The above can be critical in the preparation 
of membranes where there are several variables that with small changes 
influence the membranes properties and therefore the separation results. Fig. 2. Flow chart of the proposed procedure.
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Finally, for the purpose of comparison, Fig. S3 shows analogous infor
mation to that in Fig. 3 for all the three models (MLR, DT and RF).

Furthermore, Fig. 3 (and similarly the others showing this type of 
plotting along the article) depicts values of selectivity below ca. 30 
corresponding to the CO2/CH4, while those above 30 are related to the 
CO2/N2 one, approximately, in agreement with the fact that the type of 
polymer studied here shows a more selective transport for this last 
mixture [3], even if, in case of mixtures, working at lower CO2 con
centration values in the feed (15 % vs. 50 %). The above is explained 
based on the differences in solubility, being greater for methane than for 
nitrogen, since in terms of diffusion it would be expected that N2 with a 
smaller kinetic diameter (0.364 nm) would diffuse faster than methane 
(0.38 nm) [3,9,90]. In any case, as explained, the selectivity to CO2 
(kinetic diameter 0.33 nm) over both gases is due to its greater solubility 
and diffusivity in the Pebax® polymer.

As illustrated in Fig. 2, an alternative approach involves extending 
the database to enhance the model. Therefore, an experiment was con
ducted in which the results of the experimental membrane tests obtained 
throughout the present study were incorporated into the entire data
base. Regarding the training, the model in question exhibited metrics of 
R2 = 0.973 and RMSE = 2.85, as previously referenced. After the 
incorporation of the additional data (24 new entries, as shown in 
Table S1 discussed below), the model demonstrated values of R2 = 0.975 
and RMSE = 2.64. These results indicate the consistency of the added 
experiments, since they do not compromise the performance of the 
model. Furthermore, it is possible to demonstrate that the extension of 
the database is a fundamental aspect, since it can allow a decrease in 
prediction error. Currently, the experimental work done (see Sections 
3.4 and 3.5) was mainly designed to the validation of the best membrane 
preparation conditions aided by the ML model.

Selectivity is the most significant parameter in the CO2 separation, 
consequently, the model developed was oriented towards this value. 
Conversely, permeability constitutes an additional key parameter used 
for the estimation of selectivity. In this study, an investigation was 
conducted into a model focused on this parameter. In this instance, for 
the permeability, the metrics obtained were R2 = 0.907 and RMSE =

12.1 for the training set, and R2 = 0.688 and RMSE = 16.9 for the testing 
set. The model demonstrates learning capabilities; however, there are 
cases where it shows difficulty in identifying novel data. This result may 
be attributable to the necessity for a more substantial dataset that is 
more representative of a parameter, such as permeability, that can 
exhibit a wide range of values.

3.3. Importance analysis of input features

Once the random forest model was selected, some detailed analysis 
was done to gain insight into the application of ML in the prediction of 
the membrane performance. This analysis gives the degree of the 
importance of input variables of the random forest model for the esti
mation of CO2/X selectivity as a result. Additionally, the sensitivity of 
input variables increases with the higher absolute value of the relative 
importance index. Fig. 4 illustrates the degree of importance of each 
input variable for the estimation of selectivity. The results indicate that 
the order of importance of input variables for selectivity is as follows: 1. 
Gas mixture, 2. Separation temperature, 3. Solution temperature, 4. 
Solvent, 5. CO2 percentage, 6. Thickness, 7. Pressure, 8. Solution time, 9. 
Conditioning time, 10. Polymer concentration, 11. Casting time, 12. 
Conditioning temperature and 13. Casting temperature. Therefore, the 
variable with the greatest weight corresponds to the gas mixture 
composition, which is important because gases (in this case, N2 and CH4) 
do not have the same diffusivity and solubility capacity through the 
membrane. In this case, molecular interactions and kinetic diameters 
play a key role, thus resulting in different permeability values. Conse
quently, a specific range for the ratio of gas permeabilities is defined, 
which in turn defines the separation selectivity. Another significant 
variable is the measurement or separation temperature, as it affects the 
permeability with an increase in temperature resulting in a decrease in 
selectivity due to a decrease in CO2 solubility. The solution temperature 
for the preparation of the polymer solution is also important, as it in
fluences the complete dissolution of the polymer, the viscosity of the 
solution and the structure and morphology of the membrane. The ca
pacity of a given solvent to dissolve the polymer influences the synthesis 
of membranes and their characteristics. Variables identified with a 
lower importance are the conditions of the casting step, this is possibly 
due to the membrane homogeneity and the absence of significant 
structural changes under sufficiently controlled conditions; conditioning 
temperature, a step to ensure measurement stability, does not signifi
cantly modify the already established membrane characteristics; and 
polymer concentration may have a significant impact on the process
ability and thickness of the membrane, but its effect on the gas separa
tion selectivity and structure is not evident. This occurs under controlled 
conditions and in the absence of defects.

Table 2 
Pearson correlation coefficients among input variables used to assess multicollinearity and validate their suitability for inclusion in predictive models.

Solvent Polym. 
conc.

Thickness Solution 
temp.

Solution 
time

Cast 
temp.

Cast 
time

Cond. 
temp.

Cond. 
time

Sep. 
temp.

Pressure % 
CO2

Gas 
mixture

Solvent 1 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Polym. 

conc.
0.16 1 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Thickness 0.07 0.30 1 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Solution 

temp.
0.68 − 0.23 0.04 1 ​ ​ ​ ​ ​ ​ ​ ​ ​

Solution 
time

0.62 − 0.20 − 0.13 0.36 1 ​ ​ ​ ​ ​ ​ ​ ​

Cast temp. 0.23 0.26 0.16 0.26 − 0.14 1 ​ ​ ​ ​ ​ ​ ​
Cast time 0.07 − 0.31 − 0.06 0.08 0.08 − 0.46 1 ​ ​ ​ ​ ​ ​
Cond. temp. 0.31 0.08 − 0.07 0.20 0.17 0.12 − 0.20 1 ​ ​ ​ ​ ​
Cond. time 0.02 0.03 0.28 − 0.12 0.01 − 0.22 − 0.08 − 0.07 1 ​ ​ ​ ​
Sep. temp. 0.18 0.02 − 0.09 0.06 0.13 − 0.16 0.27 0.08 − 0.05 1 ​ ​ ​
Pressure 0.14 0.28 0.14 0.13 0.07 0.18 0.14 0.28 − 0.01 0.03 1 ​ ​
% CO2 0.14 0.06 0.04 0.08 0.07 0.25 − 0.11 0.02 − 0.14 − 0.04 0.09 1 ​
Gas mixture 0.00 0.15 0.07 0.16 − 0.09 0.16 − 0.21 0.09 0.04 − 0.01 0.01 0.31 1

Table 3 
R2 and RMSE metrics obtained in the training and test sets for the multiple linear 
regression (MLR), decision tree (DT) and random forest (RF) models.

MLR DT RF

R2 Train 0.833 0.999 0.973
Test 0.824 0.655 0.962

RMSE Train 7.10 0.56 2.85
Test 6.89 9.12 3.20
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3.4. Study and optimization of the procedure for the best conditions

Following the determination of the variables that are more or less 
important for the model, as well as the establishment of the experi
mental criteria, only some variables were studied to optimize the pro
cess, the study being conducted on a subset of the variables to optimize 
the process. The remaining variables are fixed at a constant value to 
simplify the study. Therefore, the variables studied in this section were 
previously defined in Section 2.5.

As previously discussed, variables such as the polymer concentra
tion, membrane thickness or temperatures involved in the procedure 
influence the preparation of the membranes and, consequently, the 
selectivity achieved in gas separation. These variables were studied by a 
multivariate approach through the design of experiments. For this pur
pose, a defined range is established for each variable. The minimum, 
intermediate and maximum values within these ranges are systemati
cally combined, resulting in a set of experimental conditions that 

comprehensively cover the entire domain of study. It is important to 
note that the selectivity values introduced in all the proposed experi
ments were obtained through the utilization of the optimum machine 
learning model (i.e., the random forest one) developed in this work.

The analysis of the results was conducted using a response surface 
methodology, which facilitates the identification of the optimal condi
tions within the analyzed range. Fig. 5 illustrates the relationship among 
the three most influential factors studied, revealing that the selectivity 
increases at low polymer concentrations, with intermediate-to-high 
membrane thicknesses and low-to-intermediate solution temperatures. 
Moreover, an evident correlation between these variables and their 
interdependence across the surface can be discerned. In contrast, com
binations involving casting and conditioning temperatures yielded a 
nearly uniform response, indicating their limited impact on the mem
brane CO2/X selectivity. This observation is consistent with the variable 
importance analysis discussed in Section 3.3, as the order of importance 
of the variables subjected to the optimization process corresponds to the 
effects observed in the surface plots. Furthermore, Eq. (4), correspond
ing to the fitting equation for selectivity, demonstrates the weights of the 
variables quantitatively through the effects estimated in the design of 
experiments: 

Selectivity=41.7 − 2.32A + 3.25B − 8.44C + 0.61D − 0.27E + 0.1AB

− 0.50AC + 0.05AD + 0.25AE − 0.20BC − 0.50BD + 0.60BE

+ 0.40CD − 0.35CE + 0.00DE + 2.26A2 − 3.97B2 − 5.92C2 − 0.35D2

+ 0.29E2

(4) 

where A, B, C, D and E represent polymer concentration (wt%), mem
brane thickness (μm) and solution, casting and conditioning tempera
tures (◦C), respectively. Moreover, if the coefficients are accompanied 
by a positive sign, it means that if that factor increases, so will the 
response, while a negative sign indicates that an increase in the factor 
has a negative effect on the response. In addition, the order of impor
tance through coefficients is solution temperature > thickness > poly
mer concentration > casting temperature > conditioning temperature, 
which is the same order obtained in the importance analysis in the 
model. Specifically, the solution temperature shows the most significant 
influence on the response, followed by membrane thickness and 

Fig. 3. Comparison between real and predicted values (CO2/X selectivity) 
using the random forest model: a) training subset and b) testing subset. The red 
line in the figure represents the bisector y = x, which indicates the ideal line 
where the predictions exactly match the real values. The performance of the 
model is directly proportional to the proximity of the points to the mentioned 
line. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)

Fig. 4. Ranking for relative importance index of input variables in the random 
forest model for CO2/X selectivity prediction. Feature importance was deter
mined by the internal scores of the model, and log-scaling was applied to 
enhance the visibility of variables with lower relative contributions.
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polymer concentration, which shows a less variable surface and a 
reduced influence. Finally, casting and conditioning temperatures were 
found to be of minimal importance and have no significant effect as 
shown by their coefficients in the linear terms of Eq. (4), resulting in flat 
surfaces (not shown). The optimal values derived from the multivariate 
analysis included a polymer concentration of 2.3 wt%, a membrane 
thickness of 70 μm, a solution temperature of 80 ◦C, a casting temper
ature of 45 ◦C, and a conditioning temperature of 30 ◦C. These condi
tions were selected for the purpose of future studies.

3.5. Experimental measurements and comparison with model estimation

Finally, several membranes were prepared under the optimal con
ditions suggested by the RSM in the design of experiments and in other 
experimental conditions, with the aim of verifying the validity of the 
approach. To verify the importance provided and to determine the ca
pacity of the model to perceive the influence of the change of these 
factors, some experimental conditions were modified. Table S1 presents 
the experimental conditions, and a comparison of the experimental 
values obtained together with the predicted values from the model. 
Fig. 6a illustrates the training, test and experimental datasets, showing 
that this last set exhibits a comparable correspondence between the 
predicted and experimental values, resulting in a favorable predictive 
performance, with metrics of R2 = 0.945 and RMSE = 3.08. Optimal 
conditions were also evaluated, revealing that the selectivity values 
proposed, 45.8 and 44.5 b y both the design of experiments and the 
model, respectively, are close to the experimentally obtained value of 
43.5. As shown in Fig. 6b, a comparison of experiments with a better gas 
separation performance at 35 ◦C is provided, indicating that the pro
posed conditions by the response surface methodology (P1657DM_C6, 
see Table S1) enable the highest selectivity to be achieved. C5, C7 and 
C8 are other membranes that were further studied in other conditions. 
Furthermore, it is possible to observe a close correspondence between 
the experimental values with the predicted values by the model. This 
allows us to infer that the ability of the model to predict the dataset 
values with a normalized error percentage of 10.4 %, is a strong indi
cation of its effectiveness. In addition, the accuracy of the predictions in 
comparison to the experimental selectivity measurements was deter
mined to be 3.5 % on average, as indicated by the relative standard 

deviation. Finally, in the case of experimental gas separation, the 
membranes were measured for approximately 2 h, considering the 
average of the values of the last 3 measurements performed in each 
experiment, each of them being conducted in duplicate (i.e., with a 
different membrane sample). Experimental errors for selectivity, rep
resented as standard deviation, are in the range of 0.2–3.4, where factors 
such as analytical errors, slight temperature fluctuations, possible 
membrane instability during experiments and membrane reproduc
ibility itself may contribute to variation between replicates.

3.6. Comparative with other membranes in literature

In this study, analysis and optimization of selectivity were performed 
within a specific range and under the control of only a subset of vari
ables. Therefore, a comparison with previously published gas separation 
studies related to the polymer Pebax® 1657 being worked with here is 
necessary to assess whether a real improvement was achieved. Fig. 7
presents the permeability-selectivity plots for the CO2/N2 and CO2/CH4 
mixtures, constructed using data collected from literature achieved 
under similar conditions (mainly using the same ethanol/water solvent 
and similar separation temperatures) and those in the experiments of 
this work with the optimized membranes P1657DM_C6 (see Table S1). 
The proposed conditions by RSM, resulted in prepared membranes in the 
laboratory, with CO2 permeability and CO2/X selectivity values of 115 
Barrer and 43.5 and 132 Barrer and 16.4 for the CO2/N2 and CO2/CH4 
mixtures, respectively, at 35 ◦C; and CO2 permeability and CO2/X 
selectivity values of 89 Barrer and 47.8 and 97 Barrer and 18.9 for these 
gas mixtures, respectively, at 25 ◦C. Moreover, Table S3 compares these 
optimized values with some values reported in the literature under 
similar conditions as mentioned above. To quantify the improvement, 
the performance of the optimized membranes was ranked among 34 
literature-reported data points for the CO2/N2 mixture and 39 for the 
CO2/CH4 mixture (shown in Fig. 7), considering both permeability and 
selectivity simultaneously. The position in plots of each result within 
these ranked datasets allowed estimating the proportion of literature 
results that were outperformed. For the CO2/N2 and CO2/CH4 mixtures, 
the optimized membraned exceeded approximately 79 % and 92 % of 
the comparable literature data. On average, the membranes developed 
in this work outperformed the performance of 85 % of previously 

Fig. 5. Response surface plots of CO2/X selectivity values as a function of the interaction between variables: a) polymer concentration and membrane thickness, b) 
polymer concentration and solution temperature, and c) membrane thickness and solution temperature. In the plots presented here, the remaining variables not 
represented in each plot are maintained at their respective intermediate values within the range established during the study. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)
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published results in terms of the permeability-selectivity trade-off (this 
percentage would be 80 % considering only the selectivity values). As 
can be observed, this fact confirms that the optimization guided by 
machine learning and the DOE-RSM methodology led to a significant 
enhancement in membrane performance.

4. Conclusions

This work describes an approach for the development of a machine 
learning (ML) model, which can be used to predict membrane separation 
selectivity values from the preparation conditions of polymer mem
branes. The purpose of this ML model is to determine the most suitable 
values of an experiment of membrane preparation for a given gas sep
aration application, before conducting it. The employment of variable 
analysis tools facilitates the determination of the optimal experimental 
conditions leading to the improvement of membrane preparation 

procedures. The method was applied to dense Pebax® 1657 membranes 
for the gas separation of CO2/N2 and CO2/CH4 mixtures. Among the 
three ML models applied (multiple linear regression, decision tree and 
random forest), the use of the random forest model elucidated the sig
nificance of the variables that influence the process, as well as the ca
pacity to predict CO2/N2 and CO2/CH4 selectivity values from the data 
collected in the literature and new experimental data more accurately 
(higher R2 and lower RMSE values). Moreover, the implementation of a 
multivariate analysis through the design of experiments with a response 
surface methodology (DOE-RSM) resulted in the determination of the 
values of specific experimental variables that enhanced the membrane 
selectivities obtained. In other words, the integration of the random 
forest ML model with the RSM suggested a set of experimental condi
tions for the membrane preparation and successive application to gas 

Fig. 6. a) Plot comparing the predicted CO2/X selectivity versus the real values 
of selectivity for the training, test and experimental datasets using the devel
oped ML model. b) Comparison of predicted and experimental selectivity values 
under several conditions for CO2/N2 and CO2/CH4 gas mixtures. The highest 
selectivity values were achieved under optimal conditions identified through 
the response surface methodology. In all cases, the separation temperature was 
35 ◦C. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)

Fig. 7. Selectivities of a) CO2/N2 and b) CO2/CH4 gas pairs as a function of CO2 
permeability with polymer Pebax® 1657. The improved data from this study 
(green and red stars at 25 ◦C and 35 ◦C, respectively) are compared with 
literature values (circles) to assess the performance of the prepared dense 
membranes. The dashed lines are to facilitate the visualization of the data, 
while the continuous ones correspond to the 2008 Robeson’s upper bound [91]. 
The sample size of the comparison is 73 points (34 and 39 data for CO2/N2 and 
CO2/CH4 mixtures, respectively). Some of the values obtained in the literature 
can be seen in Table S3. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)
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separation mixtures which led to good theoretical-experimental 
matching and high reproducibility.

Beyond technical accuracy, the integration of machine learning into 
experimental design also provides clear economic benefits. Conven
tional trial-and-error methodologies typically employed in the field of 
membrane development are time-consuming and require of significant 
expenses and substantial resource requirements. Conversely, data- 
driven models allow researchers to focus experimental efforts on the 
most promising conditions, simplifying the experimental approach by 
reducing both the number of required tests and associated costs. As the 
pool of known membranes expands, the cost of discovering new, high- 
performing materials through purely empirical methods increases 
significantly. Consequently, approaches like the one proposed in this 
study not only boost prediction and performance but also enhance the 
efficiency and sustainability of membrane research.

In addition, from a future-oriented standpoint, it is important to 
emphasize on the accuracy of the predictions, as this will enhance the 
effectiveness of the ML methodology. Consequently, given the nature of 
this data-driven tool, key aspects that should be further explored include 
data acquisition and quality assurance. This includes, for instance, the 
application of more robust statistical methods for outlier detection, 
which could be more effectively implemented with a more extensive 
database. In the future, it would be ideal to conduct studies with a larger 
dataset to improve the representativeness and reliability of the models, 
along with the exploration of different algorithms and the optimization 
of the overall process. An essential approach, which was also imple
mented in this study, is the validation of the model through experi
mental verification.
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