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The separation of carbon dioxide (CO5) is presented as a current challenge in the environment and energy sector.
The primary reason for this is to control the emissions of this gas into the atmosphere and the upgrading of
biomethane. In this context, the membrane separation technology seems to be a very sustainable promising tool
for such tasks. This work presents a machine learning (ML) study, based on a database created from membrane
preparation conditions and gas separation records from the literature, achieved for the CO2/N2 and CO5/CHy
mixtures using dense membranes of thermoplastic elastomer Pebax® 1657. A comparative analysis of three
different ML models was carried out: multiple linear regression, decision tree and random forest. This last al-
gorithm demonstrates the best performance in statistics terms of coefficient of determination and root mean
square error. In addition, the combination of the ML random forest with a method based on the design of ex-
periments with response surface methodology (RSM) allowed to identify the favorable conditions for the
membrane synthesis, with the objective of enhancing the CO separation performance. This resulted in prepared
membranes in the laboratory considering the proposed conditions by RSM with CO2 permeability and CO5/X
selectivity values of 115 Barrer and 43.5 and 132 Barrer and 16.4 for the CO2/N3 and CO»/CH4 mixtures,
respectively, at 35 °C.

1. Introduction are particularly promising, due to their flexibility, cost-effectiveness and

ease of preparation [4]. Moreover, the acquisition of membranes that

The carbon dioxide (CO2) molecule, a principal contributor to global
warming due to its role in greenhouse gas emissions, is a product asso-
ciated with various processes, including the combustion of fossil fuels
[1]. The removal, capture and storage of this acid gas can be conducted
with the use of conventional technologies such as adsorption, absorption
or cryogenic distillation. These present certain disadvantages,
comprising elevated energy consumption and substantial environmental
impact. Therefore, new improved separation processes are necessary
with a greater efficiency, simplicity and smaller footprint [2].

The utilization of membranes for the separation of COy has been
proposed as a novel alternative for the capture of CO; in post-
combustion processes as well as in other processes related to sustain-
ability such as biogas upgrading. This separation proposal offers several
advantages, including cost savings in processing, energy efficiency,
simplified mechanics and compact designs [3]. Among the various types
of membranes (organic, metallic or inorganic), polymeric membranes

exhibit enhanced selectivity for CO over gases such as Ny and CHjy is
possible, based on the differences in solubility and diffusivity of these
gases within the membrane matrix [5]. In these cases, a variety of
polymer types are employed, including the PEBA (polyether block
amide) series, with the Pebax® commercial brand being the most
prominent, which has demonstrated efficacy in the treatment of these
gases [6,7]. PEBA is a thermoplastic elastomer that is formed by block
copolymers: a “hard” block of aliphatic polyamide (PA), that contributes
to mechanical stability, and a “soft or flexible” block of amorphous
polyether (PE), that enables high permeation flow and selective CO,
transport. In fact, PEBA has demonstrated a high degree of affinity for
COo, due to its polar ether group. The variation in the proportion of each
block, as well as their intrinsic composition, causes differences in sep-
aration and physical properties [8]. Specifically, the polymer called
Pebax® 1657, with suitable properties for CO2 separation [9], illustrated
in Fig. 1 and composed of polyethylene oxide (PEO) and PA in a mass
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ratio of 60:40, is employed in this study.

In these polymeric membranes, the efficiency of the gas separation
process is determined by the selectivity and the permeability of the
membrane material. In addition, according to selectivity and flux den-
sity, they can be classified as: porous and non-porous or dense, among
others. The most common preparation methods for dense membranes
are melt extrusion and solution casting [10]. In this study, the second
mentioned method is used, which consists of the preparation of the
membrane from a polymer solution with a specific solvent. Subse-
quently, the deposition or casting of the solution on a surface is carried
out, in such a way that the membrane will be formed after the complete
evaporation of the solvent. During membrane fabrication, it is important
to consider the parameters that influence this process, since they can
affect the structure of the membrane and its properties. Some of these
parameters or variables may be the type of polymer, concentration of the
solution, type of solvent and its volatility, the material of the casting
surface, operating times (casting and solution) and the casting temper-
ature [11].

Achieving the highest possible performance from the use of these
membranes as well as their optimization requires a detailed study of the
experimental variables that are part of the synthesis and preparation of
the membranes, in combination with the gas separation conditions. This
is a complex task that involves an important investment of resources,
including high cost and significant effort in terms of time and experi-
mental work, usually carried out through a trial-and-error strategy.

Consequently, the use of artificial intelligence (AI), due to its ca-
pacity to emulate human learning and reasoning abilities, is growing
exponentially among society and its application and potency is
increasing in different fields, such as medicine or materials technology,
among others. Specifically, within the domain of Al, there are tools
known as “machine learning (ML)”, which can generate models that,
upon undergoing training, exhibit the capacity to discern between
classes or predict a desired property. This capability arises from their
ability to capture nonlinear relationships between the input variables
and the output variable, producing the desired result [12,13]. Therefore,
ML techniques facilitate a rapid examination of the variables and the
optimization of processes, allowing the evaluation of the object prob-
lem. This results in a reduction of required resources and an enhance-
ment in efficiency. To achieve this objective, a ML model can be
integrated with other resources, such as the design of experiments with a
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response surface method [14], molecular design [15] and molecular
simulation [16]. Moreover, ML has been previously used in the field of
gas separation membranes [17-19] to gain insight into the prediction of
the polymer characteristics and discover new ones [20,21], predict the
separation properties of a given polymer (e.g. polyimide) [22], find a
rapid assessment of MOF based mixed matrix membranes (MMMs) [16],
estimate missing values of permeabilities of gases using exiting values
for certain gases [23], and aid to choose the best ionic liquid@MOF
composite to produce a MMM for CO, separation [24], among others.
Some works try to use the knowledge obtained with ML to prepare
MOF-based MMMs that separate CO, [11]. However, most of these ap-
proaches lack experimental exploitation and optimization of the
knowledge gained from the ML.

The main objective of this work is to use ML to identify the key pa-
rameters affecting the preparation of dense membranes of polymer
Pebax® 1657 and then apply the information gathered to improve their
separation performance. Thus, the work seeks to design a model for the
selectivity of membranes of Pebax® 1657, based on experimental vari-
ables and considering their respective effects on these membranes. This
implies the configuration of a specific database related to Pebax® 1657
membranes from the literature including relevant information on their
synthesis and separation behavior, the development of a model able to
predict selectivity values based on previous experiments and, therefore,
the estimation of the selectivity performance of newly synthesized
membranes. Using the Al-generated model, design of experiments (DOE)
with the response surface method (RSM) is used to obtain optimal
membrane preparation conditions to maximize the separation selec-
tivity. Membranes were therefore subsequently prepared in the labora-
tory under different conditions, including optimal conditions, and tested
for CO, separation, validating the methodology. This is the first time
that AI has been integrated with DOE-RSM in the tangible membrane
preparation for gas separation. In addition, the database was revamped
with the additional experiments performed. In short, this approach (see
Fig. 1) accelerates the identification of the most influential membrane
preparation conditions by optimizing the parameters that lead to
optimal selectivity values.

MACHINE LEARNING, OPTIMIZATION AND MEMBRANE FABRICATION
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Fig. 1. Workflow integrating ML, optimization and membrane fabrication. Literature data are preprocessed and used to train several predictive models. After model
validation, a response surface methodology is applied to optimize the preparation conditions at the laboratory, which are experimentally validated.
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2. Materials and methods
2.1. Materials

Pebax® MH 1657 copolymer (60 wt% polyethylene oxide (PEO) and
40 wt% aliphatic polyamide 6 (PA6)) in pellet shape was kindly supplied
by Arkema, France. Regarding the solvent, absolute ethanol and
deionized water were purchased from Gilca, Spain. Additionally, gases
used for gas permeation measurements (i.e., COy, Ny, CHy4, He) were
supplied by Linde S.A, Spain. These gases were of a purity level greater
than 99.9 %, a standard that ensures their quality and reliability for
scientific applications.

2.2. Preparation of the membranes

A specific quantity of Pebax® MH 1657 pellets (0.36 g) was dissolved
in a mixture of ethanol and deionized water (70:30 wt%) by stirring at
several temperatures in the 70-140 °C range for 3 h to obtain solutions
of this polymer at different polymer concentrations (in 1.8-10 wt%
range). The amount of polymer added was constant to ensure a similar
thickness (approximately 60-80 pm) in all membranes under compari-
son. However, the amount of solvent varied. After cooling, solutions
were poured into a Petri dish and dried for one or two days at room
temperature or a higher temperature (always less than 60 °C) and under
controlled evaporation, until the solvent was almost completely dissi-
pated. Subsequently, membranes were placed in a vacuum oven as a
conditioning step from 30 to 60 °C for 4 h-6 h to ensure the complete
elimination of any residual solvents that may be present in them. The
membrane thickness is measured using a digital disk micrometer (Dig-
imatic Micrometer Quickmike, Mitutoyo Corp.), and five measurements
are taken at different points on each membrane, with the thickness being
calculated as the average of those measurements. The synthesized
membranes are designated as P1657DM_CX, where X denotes specific
working conditions, as indicated in Table S1 of the Supplementary
Information.

2.3. Gas permeation measurements

Membranes were cut with an area of 12.6 cm? and placed in a
module consisting of two pieces of stainless steel and a porous support
disk (Mott Co.) with a nominal pore size of 20 pm, being gripped inside
with Viton o-rings. Gas separation measurements were conducted using
feed mixtures of CO5/N5 (15:85 cm? (STP)~min’1) and CO,/CH4 (50:50
cm? (STP)-min~!) which were controlled by two Alicat Scientific mass
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flow controllers (MC-100CCM-D for CO5 and MC-200CCM-D for N5 and
CH4) at a pressure of 3 bar on the feed side and different temperatures
(25, 35 and 50 °C). The temperature of experiments is controlled by a
UNE 200 Memmert oven in which the module is placed. Moreover, the
permeate side of the membranes was swept with 10 cm? (STP)-min~! of
He at a pressure of 1 bar, which was also controlled by a mass flow
controller (MC-200CCM-D, Alicat Scientific). Regarding the concentra-
tions of CO,, Ny and CHy4 in the output stream, they were measured
online using an Agilent 990 micro-gas chromatograph. The permeability
value was calculated in Barrer (10~ 1% ¢cm? (STP)-cm4cm’2~s’1~cmHg’1)
and the selectivity was determined as the ratio of the permeabilities of
the gases in the mixture.

2.4. Data preparation and machine learning models

2.4.1. Data collection from literature

The aim of this section is to analyze and compile the information
available in the literature that is related to the study of dense mem-
branes for separation of CO2 from other gases (N3 or CH4) with the
selected Pebax® 1657 polymer. This will allow the constitution of a
database to be exploited through a machine learning (ML) model. It is
important to examine the conditions and methodologies during the
fabrication and measurement processes, as these factors will define the
behavior of each membrane, and it will allow future research to improve
the results. For this purpose, academic and scientific collections such as
Web of Science and Google Scholar were used through keywords such as
“COy separation”, “Pebax® 1657” and “Membrane”. A total of 55 arti-
cles [1,5,25-77] were collected, representing 109 samples or entries into
our database and in Supplementary Information, Fig. S1 and Table S2
present a summary about the distribution of the variables and some data
related with this dataset collection, respectively. However, it is impor-
tant to note that a greater volume of data was collected; nevertheless,
these data are not directly used to construct the model, as some samples
contain a high number of incomplete variables and outliers or they do
not appear to a high degree to be representative, which can harm the
model by making it difficult to learn. Initially, the total collected data
consisted of 1846 entries corresponding to 139 samples, of which 30
samples were eliminated, and 218 entries were presented as missing
values, representing 22 % of samples and 12 % of data entries, respec-
tively. The main variables where gaps existed were the percentage of
CO;, in the gas mixture, the membrane thickness and temperature and
time of the conditioning step. From a future perspective, a valuable
improvement would be to collect additional data to increase the repre-
sentativeness of a broader dataset, thereby allowing the study of other

Table 1
Descriptive statistics (range, mean and standard deviation (sd)) of input variables and output variable that participated in the machine learning model.
Variable (units) Range Mean + sd Description
Input variables
Solvent 0.0-2.0 1.5+0.8 “Butanol”, “DMF” and “Ethanol/water” were normalized to 0, 1 and 2, respectively.
Polymer conc. (wt%) 0.6-10.0 4.0+ 1.7 -
Thickness (pm) 30.0-110.0 60.2 +£17.5 —
Solution temp. (°C) 70.0-140.0 92.3 £17.5 -
Solution time (h) 2.0-24.0 8.0 +8.3 -
Casting temp. (°C) 25.0-70.0 33.0£13.0 -
Casting time (h) 10.0-72.0 34.1 +14.2 -
Conditioning temp. (°C) 30.0-100.0 547 +11.4 -
Conditioning time (h) 0.0-72.0 17.9 £ 13.7 -
Separation temp. (°C) 25.0-55.0 30.0 £ 6.5 —
Pressure (bar) 1.0-10.0 3.3+21 -
CO,, percentage (%) 10.0-100.0 54.0 + 35.2 -
Gas mixture 0.0-1.0 0.4 + 0.5 “C0O4/CH,” and “CO»/N,” were normalized to 0 and 1.
Output variable
CO2/Njy selectivity 20.0-69.6 46.4 £11.2 -
CO,/CHy4 selectivity 4.0-36.0 16.5 + 5.0 -
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conditions. Note that, even if the availability of data was limited,
Pebax® 1657 was chosen due to the fact that, besides showing a relevant
performance to separate CO, containing mixtures, it is one of the most
studied membrane polymers, so that the study carried out here could be
focused on an important set of preparation variables excluding the
polymer type. In any case, data were subjected to several preprocessing
steps, which included the imputation of missing values using the mean
of the corresponding variable and the implementation of normalization
to enhance the interpretation of the data by the model. Consequently,
Table 1 shows the statistical data of each input (categorical and
numeric) and output variable for the models used in this study.

2.4.2. Machine learning algorithms and models

Most ML algorithms are classified into supervised and unsupervised
learning based on the examples provided during training. Supervised
learning involves providing a set of input variables (x) along with its
corresponding label or output variable (y), while in unsupervised
learning only the input variables (x) are provided. Supervised learning
tasks can be divided into classification tasks, which classify each sample
into a certain group or category, and regression tasks, in which the al-
gorithm establishes relationships between the input variables and the
output variable [78]. Typically, the dataset is divided into different
subsets, such as training and testing sets.

These algorithms were applied to various models, through the
development of a Python code (see the supporting information) using
the Google Colab tool. In this study, supervised learning algorithms, of
growing complexity, were used for regression tasks, specifically, with
certain types of models. Multiple linear regression seeks the connection
between dependent and independent variables through their respective
definitions as input and output characteristics since they are potentially
interrelated, a phenomenon known as multicollinearity. In addition, the
decision tree combines simple numerical tests. Each node contains a test
that classifies a feature, and the branches extend from the parent nodes
to the child nodes. Thus, they will be divided into new nodes in such a
way that the iterations continue. Finally, random forest is an ensemble of
decision trees that solves the overfitting problem typically associated
with decision tree models [79].

In this study, 13 input variables were selected to estimate the CO2
selectivity (i.e. CO2/Ny and COy/CHy4 separation selectivities, called
CO9/X throughout the study, X being either Ny or CH4) for dense
membranes obtained from polymer Pebax® 1657. Selectivity was the
output variable of the models. Note that, due to the limited amount of
data available, both CO5/N3 and CO,/CHy selectivities are integrated in
the output of the model which can therefore differentiate between the
two studied mixtures. The input characteristics are listed in Table 1.
Regarding the types of solvents found in the literature, they are ethanol/
water, propanol/water, dimethylformamide (DMF), dimethylacetamide
(DMAc), propanol/butanol and butanol. Only the first three solvents
from the above list were selected for the study, because they were
representative of the dataset. The selected gas mixtures were COy/Ny
and COy/CHy because they are the most studied mixtures in the litera-
ture and are suitable for copolymer Pebax® 1657 with proven specific
interaction with the CO, molecule given its COz-philic polar blocks or
flexible polyether (complimented with the rigid polyamide blocks) [3].

2.4.3. Performance metrics

To evaluate the usefulness and operation of the models as well as to
compare them, the metrics used to measure the quality were the root
mean square error (RMSE) and the coefficient of determination R?
[80]. The RMSE is the square root of the mean of the errors, so it has the
same units as the response or output variable. Its value indicates how far
the predictions of the model are, on average, from the real value. The R?
is dimensionless and describes the proportion of variance of the response
or output variable explained by the model relative to the total variance.
These metrics can be estimated using Egs. (1) and (2):
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n 2
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where P; indicates the predicted output by the model, while y; is the real
value of the output, y; represents the sample data mean, and n denotes
the number of data entries.

2.4.4. Data normalization

Normalization is a data preprocessing technique that adjusts the
characteristics or attributes of data within a specific range to facilitate
the results interpretation. Thus, normalization is an essential part of data
science and ML, increasing consistency and improving the performance,
efficiency and precision of algorithms and models [81]. It is also possible
to reduce differences in the scale and magnitude of data features, which
is relevant because an attribute with larger values will have a dominant
influence on the machine learning model. Many algorithms, such as
regression or decision trees, require normalized data for its correct
function.

There are numerous normalization techniques, but in this case min-
max scaler normalization for numerical input was employed. This
technique involves transforming the values of a characteristic into a
range of specific values between zero and one. This objective is achieved
by subtracting the minimum value of the data from each value and
dividing the result by the difference between maximum and minimum
values, as indicated in Eq. (3):

Xi — Xmin

N; = =i~ “min_ 3
' Xmax - Xmin

where N;j is the normalized data, X; represents the original data and Xpn
and Xpax denote the lowest and highest values of each attribute. This
approach enables the comparison of attributes with different units and
ranges of values within the same dataset, while ensuring a simple
implementation. In the case of categorical inputs, the transformation of
the data into numerical values was achieved through the implementa-
tion of the label encoding technique. Furthermore, a normalized data
exhibits an enhanced robustness to potential outliers when compared
with alternative normalization methods.

2.5. Study of variables that affect synthesis and measurement processes

The use of a ML model allows the prediction of various experiments;
however, the integration of these models with other tools, such as design
of experiments (DOE), enables the optimization of variables to achieve
the best possible process and, consequently, maximizes the selectivity
value of the membranes. DOE is a statistical technique that is used to
optimize a process. This technique involves a simultaneous study of
different factors to obtain optimal values. A specific range of each var-
iable studied is defined in such a way that the DOE proposes a set of
experiments. This optimization is achieved through a multivariate
analysis using a Box-Behnken design (BDD) with Statgraphics Centurion
software [82], which was used to investigate the relationship between
variables that influence the process. The variables of polymer concen-
tration (2-6 wt%), thickness (30-90 pm), polymer solution temperature
(70-140 °C), casting temperature (25-75 °C) and conditioning tem-
perature (30-100 °C) were analyzed using the response surface meth-
odology (RSM) [83]. The polymer concentration was used as variable for
the DOE because it affects the membrane processing with direct influ-
ence on the thickness and homogeneity of the dense film and also with
implications in future developments dealing with thin film supported
membranes. In any event, 46 combinations of experimental conditions
were obtained, which selectivity values were calculated with the
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optimum machine learning model.

For the optimization, the remaining variables were maintained
constant during the optimization study. The numerical variables were
set to specific values, solution time (3 h), casting time (48 h), condi-
tioning time (4 h), gas separation temperature (35 °C), pressure (3 bar)
and CO; percentage in the feed (15 %). In the case of categorical vari-
ables, ethanol/water (70:30 wt%) like polymer solvent and COy/Njy
mixture of gas separation were selected.

3. Results and discussion

As depicted in Figs. 1 and 2, a specific database was first built related
to Pebax® 1657 membranes from the literature including relevant in-
formation on their synthesis and COy/X separation performance. Then, a
Python code was written and executed using Google Colab platform to
apply the dataset in the development of a ML model able to predict the
CO4, separation selectivity values based on experiments reported in the
literature and, therefore, the estimation of the selectivity performance of
newly synthesized membranes. Next, a methodology of DOE was com-
bined with the ML model and the obtained output was applied to carry
out specific experimental work preparing and testing Pebax® 1657
dense membranes for the separation of CO2/N5 and CO,/CHy4 mixtures.

3.1. Correlations between input variables

It is necessary to know the correlation between each pair of input
variables that are within the ML model, as a high coefficient between
these variables can lead to overfitting. The values representing the
Pearson correlation coefficients between the variables of the model for
selectivity are presented in Table 2 and illustrated with the corre-
sponding matrix of correlation given in Fig. S2. In this case, the co-
efficients have low values (less than 0.7), indicating an insufficient
correlation between the input variables proposed in the models. It is
notable that there are high values that are close to this limit, such as the
relationship between the solvent and the solution preparation condi-
tions. This is logical, since it is well established that these conditions are
related to the boiling point of each solvent and its ability to dissolve the
polymer. Another case is the inverse relationship between the casting
conditions, since if a higher temperature is used to evaporate the sol-
vent, less time will be required to obtain the membrane. Therefore, these
variables are interconnected and, although they exhibit a certain rela-
tionship, it is important that they participate in the model. As a result,
the 13 variables enumerated in section 2.4.1 have been selected for the
estimation of the output variable, which is selectivity.

Literature
review

Database enhancement

Dataset

Response surface
methodology through
V| design of experiments

}

Membrane-aided
synthesis

Python code for
pre-treatment and
model running

Change ML model | x

| Results assesment |

Fig. 2. Flow chart of the proposed procedure.
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3.2. Comparison of selected algorithms

After the preparation of the database and subsequent analysis of
variables, three distinct models (multiple linear regression, decision tree
and random forest) were constructed for the purpose of evaluating their
efficacy identifying the most suitable model for the given separation
application. To this end, the dataset containing the input variables and
the output or response variable was divided into two subsets: one subset
designated as the “training set”, which serves to train the model,
comprising 80 % of the data, and another subset as the “test set”, which
is not known to the model and is, therefore, used for model evaluation,
comprising 20 % of the data (see Table 3).

The values obtained for the multiple linear regression model are R?
= 0.833 and RMSE = 7.10, for the training set, and R? = 0.824 and
RMSE = 6.89, for the testing set. The decision tree model demonstrates
R? and RMSE values of 0.999 and 0.56 and 0.655 and 9.12 for the
training and test sets, respectively. Finally, the metrics for the random
forest model are R? = 0.973 and RMSE = 2.85 and R = 0.962 and RMSE
= 3.20 for the training and test sets, respectively. The ideal result is a
high R? value and a low RMSE value, indicating that the model can
explain the response variable better and that there is a less difference
between the model predictions and the real values from the database.
Furthermore, it is important to highlight that the R? values for the
training and test sets should be similar [84]. A high R? value in the
training set and a low R? value in the test set typically indicates over-
fitting, whereas a low R? value in both sets may suggest a poor learning
efficacy in the model. This phenomenon can be detrimental, as it in-
dicates that the model either exhibits a limited capacity for the effective
generalization to novel data or fails to accurately capture the underlying
patterns in the training data. The application of artificial intelligence to
gas separation with membranes is very varied as seen in the introduc-
tion. In any case, the R? values obtained here are in the range of what
can be found in the literature according to the recent study in the subject
by Abdollahi et al. [18], R? being in the 0.77-0.9999 range. More spe-
cifically, Guan et al. [13], studying mixed matrix membranes based on
MOF for CO; separation using a random forest model (the best model
here), with R? values in the 0.89-0.91 and 0.70-0.77 ranges for
CO2/CH4 separation on the training and test datasets, respectively,
which corroborates the goodness of our values.

Consequently, the random forest model demonstrates better perfor-
mance metrics in comparison to the other two alternative models
studied here. In fact, Fig. 3 illustrates the comparison between predicted
and real CO9/X selectivity values, revealing a better agreement between
them for the random forest model. This is due to the proximity of the
points to the red line, which signifies a complete alignment between the
values. This result is supported by the capacity of the random forest
algorithm to manage both continuous and categorical data, along with
its high prediction accuracy [85]. This is because this algorithm is based
on ensembles that capture complex and non-linear relationships [86],
which is important in the context of membrane preparation, where small
variations in variables can interact in a non-linear way affecting the gas
separation performance. Conversely, the multiple linear model is char-
acterized by its simplicity, as it does not explain non-linear relationships
between input and output variables often leading to prediction errors
[87]. Furthermore, the decision tree is affected by overfitting, since the
model memorized the training data, but when it encounters unseen test
data it lacks the ability to make accurate predictions, as small changes in
the data can have a significant effect on the structure of the algorithm
[88], resulting in a limited generalization capacity. For this reason, this
model performs nearly perfectly in training and poorly in the test set. In
contrast, the random forest model generalizes more appropriately to
unknown data and combats overfitting by averaging the predictions of
several decision trees trained with random subsets, resulting in a more
balanced performance [89]. The above can be critical in the preparation
of membranes where there are several variables that with small changes
influence the membranes properties and therefore the separation results.
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Table 2
Pearson correlation coefficients among input variables used to assess multicollinearity and validate their suitability for inclusion in predictive models.
Solvent  Polym. Thickness  Solution Solution Cast Cast Cond. Cond. Sep. Pressure % Gas
conc. temp. time temp. time temp. time temp. CO mixture
Solvent 1
Polym. 0.16 1
conc.
Thickness 0.07 0.30 1
Solution 0.68 —0.23 0.04 1
temp.
Solution 0.62 —0.20 —0.13 0.36 1
time
Cast temp. 0.23 0.26 0.16 0.26 —0.14 1
Cast time 0.07 —0.31 —0.06 0.08 0.08 —0.46 1
Cond. temp. 0.31 0.08 —0.07 0.20 0.17 0.12 —0.20 1
Cond. time 0.02 0.03 0.28 —-0.12 0.01 —-0.22 —0.08 —0.07 1
Sep. temp. 0.18 0.02 —-0.09 0.06 0.13 —0.16 0.27 0.08 —0.05 1
Pressure 0.14 0.28 0.14 0.13 0.07 0.18 0.14 0.28 -0.01 0.03 1
% CO3 0.14 0.06 0.04 0.08 0.07 0.25 —0.11 0.02 -0.14 —0.04 0.09 1
Gas mixture 0.00 0.15 0.07 0.16 —-0.09 0.16 -0.21 0.09 0.04 —0.01 0.01 0.31 1

Table 3
RZ and RMSE metrics obtained in the training and test sets for the multiple linear
regression (MLR), decision tree (DT) and random forest (RF) models.

MLR DT RF
R? Train 0.833 0.999 0.973
Test 0.824 0.655 0.962
RMSE Train 7.10 0.56 2.85
Test 6.89 9.12 3.20

Finally, for the purpose of comparison, Fig. S3 shows analogous infor-
mation to that in Fig. 3 for all the three models (MLR, DT and RF).

Furthermore, Fig. 3 (and similarly the others showing this type of
plotting along the article) depicts values of selectivity below ca. 30
corresponding to the CO2/CHj4, while those above 30 are related to the
CO2/N; one, approximately, in agreement with the fact that the type of
polymer studied here shows a more selective transport for this last
mixture [3], even if, in case of mixtures, working at lower COy con-
centration values in the feed (15 % vs. 50 %). The above is explained
based on the differences in solubility, being greater for methane than for
nitrogen, since in terms of diffusion it would be expected that N, with a
smaller kinetic diameter (0.364 nm) would diffuse faster than methane
(0.38 nm) [3,9,90]. In any case, as explained, the selectivity to CO2
(kinetic diameter 0.33 nm) over both gases is due to its greater solubility
and diffusivity in the Pebax® polymer.

As illustrated in Fig. 2, an alternative approach involves extending
the database to enhance the model. Therefore, an experiment was con-
ducted in which the results of the experimental membrane tests obtained
throughout the present study were incorporated into the entire data-
base. Regarding the training, the model in question exhibited metrics of
R? = 0.973 and RMSE = 2.85, as previously referenced. After the
incorporation of the additional data (24 new entries, as shown in
Table S1 discussed below), the model demonstrated values of R? = 0.975
and RMSE = 2.64. These results indicate the consistency of the added
experiments, since they do not compromise the performance of the
model. Furthermore, it is possible to demonstrate that the extension of
the database is a fundamental aspect, since it can allow a decrease in
prediction error. Currently, the experimental work done (see Sections
3.4 and 3.5) was mainly designed to the validation of the best membrane
preparation conditions aided by the ML model.

Selectivity is the most significant parameter in the CO5 separation,
consequently, the model developed was oriented towards this value.
Conversely, permeability constitutes an additional key parameter used
for the estimation of selectivity. In this study, an investigation was
conducted into a model focused on this parameter. In this instance, for
the permeability, the metrics obtained were R? = 0.907 and RMSE =

12.1 for the training set, and R? = 0.688 and RMSE = 16.9 for the testing
set. The model demonstrates learning capabilities; however, there are
cases where it shows difficulty in identifying novel data. This result may
be attributable to the necessity for a more substantial dataset that is
more representative of a parameter, such as permeability, that can
exhibit a wide range of values.

3.3. Importance analysis of input features

Once the random forest model was selected, some detailed analysis
was done to gain insight into the application of ML in the prediction of
the membrane performance. This analysis gives the degree of the
importance of input variables of the random forest model for the esti-
mation of COy/X selectivity as a result. Additionally, the sensitivity of
input variables increases with the higher absolute value of the relative
importance index. Fig. 4 illustrates the degree of importance of each
input variable for the estimation of selectivity. The results indicate that
the order of importance of input variables for selectivity is as follows: 1.
Gas mixture, 2. Separation temperature, 3. Solution temperature, 4.
Solvent, 5. CO5 percentage, 6. Thickness, 7. Pressure, 8. Solution time, 9.
Conditioning time, 10. Polymer concentration, 11. Casting time, 12.
Conditioning temperature and 13. Casting temperature. Therefore, the
variable with the greatest weight corresponds to the gas mixture
composition, which is important because gases (in this case, Ny and CHy)
do not have the same diffusivity and solubility capacity through the
membrane. In this case, molecular interactions and kinetic diameters
play a key role, thus resulting in different permeability values. Conse-
quently, a specific range for the ratio of gas permeabilities is defined,
which in turn defines the separation selectivity. Another significant
variable is the measurement or separation temperature, as it affects the
permeability with an increase in temperature resulting in a decrease in
selectivity due to a decrease in CO3 solubility. The solution temperature
for the preparation of the polymer solution is also important, as it in-
fluences the complete dissolution of the polymer, the viscosity of the
solution and the structure and morphology of the membrane. The ca-
pacity of a given solvent to dissolve the polymer influences the synthesis
of membranes and their characteristics. Variables identified with a
lower importance are the conditions of the casting step, this is possibly
due to the membrane homogeneity and the absence of significant
structural changes under sufficiently controlled conditions; conditioning
temperature, a step to ensure measurement stability, does not signifi-
cantly modify the already established membrane characteristics; and
polymer concentration may have a significant impact on the process-
ability and thickness of the membrane, but its effect on the gas separa-
tion selectivity and structure is not evident. This occurs under controlled
conditions and in the absence of defects.
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Fig. 3. Comparison between real and predicted values (CO,/X selectivity)
using the random forest model: a) training subset and b) testing subset. The red
line in the figure represents the bisector y = x, which indicates the ideal line
where the predictions exactly match the real values. The performance of the
model is directly proportional to the proximity of the points to the mentioned
line. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

3.4. Study and optimization of the procedure for the best conditions

Following the determination of the variables that are more or less
important for the model, as well as the establishment of the experi-
mental criteria, only some variables were studied to optimize the pro-
cess, the study being conducted on a subset of the variables to optimize
the process. The remaining variables are fixed at a constant value to
simplify the study. Therefore, the variables studied in this section were
previously defined in Section 2.5.

As previously discussed, variables such as the polymer concentra-
tion, membrane thickness or temperatures involved in the procedure
influence the preparation of the membranes and, consequently, the
selectivity achieved in gas separation. These variables were studied by a
multivariate approach through the design of experiments. For this pur-
pose, a defined range is established for each variable. The minimum,
intermediate and maximum values within these ranges are systemati-
cally combined, resulting in a set of experimental conditions that
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Fig. 4. Ranking for relative importance index of input variables in the random
forest model for CO,/X selectivity prediction. Feature importance was deter-
mined by the internal scores of the model, and log-scaling was applied to
enhance the visibility of variables with lower relative contributions.

comprehensively cover the entire domain of study. It is important to
note that the selectivity values introduced in all the proposed experi-
ments were obtained through the utilization of the optimum machine
learning model (i.e., the random forest one) developed in this work.

The analysis of the results was conducted using a response surface
methodology, which facilitates the identification of the optimal condi-
tions within the analyzed range. Fig. 5 illustrates the relationship among
the three most influential factors studied, revealing that the selectivity
increases at low polymer concentrations, with intermediate-to-high
membrane thicknesses and low-to-intermediate solution temperatures.
Moreover, an evident correlation between these variables and their
interdependence across the surface can be discerned. In contrast, com-
binations involving casting and conditioning temperatures yielded a
nearly uniform response, indicating their limited impact on the mem-
brane CO,/X selectivity. This observation is consistent with the variable
importance analysis discussed in Section 3.3, as the order of importance
of the variables subjected to the optimization process corresponds to the
effects observed in the surface plots. Furthermore, Eq. (4), correspond-
ing to the fitting equation for selectivity, demonstrates the weights of the
variables quantitatively through the effects estimated in the design of
experiments:

Selectivity =41.7 — 2.32A + 3.25B — 8.44C + 0.61D — 0.27E + 0.1AB
— 0.50AC + 0.05AD + 0.25AE — 0.20BC — 0.50BD + 0.60BE
+0.40CD — 0.35CE + 0.00DE + 2.26A% — 3.97B% — 5.92C* — 0.35D”
+ 0.29F>

4

where A, B, C, D and E represent polymer concentration (wt%), mem-
brane thickness (um) and solution, casting and conditioning tempera-
tures (°C), respectively. Moreover, if the coefficients are accompanied
by a positive sign, it means that if that factor increases, so will the
response, while a negative sign indicates that an increase in the factor
has a negative effect on the response. In addition, the order of impor-
tance through coefficients is solution temperature > thickness > poly-
mer concentration > casting temperature > conditioning temperature,
which is the same order obtained in the importance analysis in the
model. Specifically, the solution temperature shows the most significant
influence on the response, followed by membrane thickness and
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polymer concentration, which shows a less variable surface and a
reduced influence. Finally, casting and conditioning temperatures were
found to be of minimal importance and have no significant effect as
shown by their coefficients in the linear terms of Eq. (4), resulting in flat
surfaces (not shown). The optimal values derived from the multivariate
analysis included a polymer concentration of 2.3 wt%, a membrane
thickness of 70 pm, a solution temperature of 80 °C, a casting temper-
ature of 45 °C, and a conditioning temperature of 30 °C. These condi-
tions were selected for the purpose of future studies.

3.5. Experimental measurements and comparison with model estimation

Finally, several membranes were prepared under the optimal con-
ditions suggested by the RSM in the design of experiments and in other
experimental conditions, with the aim of verifying the validity of the
approach. To verify the importance provided and to determine the ca-
pacity of the model to perceive the influence of the change of these
factors, some experimental conditions were modified. Table S1 presents
the experimental conditions, and a comparison of the experimental
values obtained together with the predicted values from the model.
Fig. 6a illustrates the training, test and experimental datasets, showing
that this last set exhibits a comparable correspondence between the
predicted and experimental values, resulting in a favorable predictive
performance, with metrics of R? = 0.945 and RMSE = 3.08. Optimal
conditions were also evaluated, revealing that the selectivity values
proposed, 45.8 and 44.5 b y both the design of experiments and the
model, respectively, are close to the experimentally obtained value of
43.5. As shown in Fig. 6b, a comparison of experiments with a better gas
separation performance at 35 °C is provided, indicating that the pro-
posed conditions by the response surface methodology (P1657DM_C6,
see Table S1) enable the highest selectivity to be achieved. C5, C7 and
C8 are other membranes that were further studied in other conditions.
Furthermore, it is possible to observe a close correspondence between
the experimental values with the predicted values by the model. This
allows us to infer that the ability of the model to predict the dataset
values with a normalized error percentage of 10.4 %, is a strong indi-
cation of its effectiveness. In addition, the accuracy of the predictions in
comparison to the experimental selectivity measurements was deter-
mined to be 3.5 % on average, as indicated by the relative standard

deviation. Finally, in the case of experimental gas separation, the
membranes were measured for approximately 2 h, considering the
average of the values of the last 3 measurements performed in each
experiment, each of them being conducted in duplicate (i.e., with a
different membrane sample). Experimental errors for selectivity, rep-
resented as standard deviation, are in the range of 0.2-3.4, where factors
such as analytical errors, slight temperature fluctuations, possible
membrane instability during experiments and membrane reproduc-
ibility itself may contribute to variation between replicates.

3.6. Comparative with other membranes in literature

In this study, analysis and optimization of selectivity were performed
within a specific range and under the control of only a subset of vari-
ables. Therefore, a comparison with previously published gas separation
studies related to the polymer Pebax® 1657 being worked with here is
necessary to assess whether a real improvement was achieved. Fig. 7
presents the permeability-selectivity plots for the CO5/N3 and CO,/CH4
mixtures, constructed using data collected from literature achieved
under similar conditions (mainly using the same ethanol/water solvent
and similar separation temperatures) and those in the experiments of
this work with the optimized membranes P1657DM_C6 (see Table S1).
The proposed conditions by RSM, resulted in prepared membranes in the
laboratory, with CO4 permeability and CO2/X selectivity values of 115
Barrer and 43.5 and 132 Barrer and 16.4 for the CO5/N5 and CO5/CHg4
mixtures, respectively, at 35 °C; and CO, permeability and COy/X
selectivity values of 89 Barrer and 47.8 and 97 Barrer and 18.9 for these
gas mixtures, respectively, at 25 °C. Moreover, Table S3 compares these
optimized values with some values reported in the literature under
similar conditions as mentioned above. To quantify the improvement,
the performance of the optimized membranes was ranked among 34
literature-reported data points for the CO5/N; mixture and 39 for the
CO2/CH4 mixture (shown in Fig. 7), considering both permeability and
selectivity simultaneously. The position in plots of each result within
these ranked datasets allowed estimating the proportion of literature
results that were outperformed. For the CO2/N5 and CO5/CH4 mixtures,
the optimized membraned exceeded approximately 79 % and 92 % of
the comparable literature data. On average, the membranes developed
in this work outperformed the performance of 85 % of previously
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Fig. 6. a) Plot comparing the predicted CO5/X selectivity versus the real values
of selectivity for the training, test and experimental datasets using the devel-
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selectivity values were achieved under optimal conditions identified through
the response surface methodology. In all cases, the separation temperature was
35 °C. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

published results in terms of the permeability-selectivity trade-off (this
percentage would be 80 % considering only the selectivity values). As
can be observed, this fact confirms that the optimization guided by
machine learning and the DOE-RSM methodology led to a significant
enhancement in membrane performance.

4. Conclusions

This work describes an approach for the development of a machine
learning (ML) model, which can be used to predict membrane separation
selectivity values from the preparation conditions of polymer mem-
branes. The purpose of this ML model is to determine the most suitable
values of an experiment of membrane preparation for a given gas sep-
aration application, before conducting it. The employment of variable
analysis tools facilitates the determination of the optimal experimental
conditions leading to the improvement of membrane preparation
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Fig. 7. Selectivities of a) CO»/N5 and b) CO,/CHj, gas pairs as a function of CO,
permeability with polymer Pebax® 1657. The improved data from this study
(green and red stars at 25 °C and 35 °C, respectively) are compared with
literature values (circles) to assess the performance of the prepared dense
membranes. The dashed lines are to facilitate the visualization of the data,
while the continuous ones correspond to the 2008 Robeson’s upper bound [91].
The sample size of the comparison is 73 points (34 and 39 data for CO,/N, and
CO,/CH,4 mixtures, respectively). Some of the values obtained in the literature
can be seen in Table S3. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

procedures. The method was applied to dense Pebax® 1657 membranes
for the gas separation of CO2/Ng and COy/CH4 mixtures. Among the
three ML models applied (multiple linear regression, decision tree and
random forest), the use of the random forest model elucidated the sig-
nificance of the variables that influence the process, as well as the ca-
pacity to predict CO2/Ny and CO2/CHy selectivity values from the data
collected in the literature and new experimental data more accurately
(higher R? and lower RMSE values). Moreover, the implementation of a
multivariate analysis through the design of experiments with a response
surface methodology (DOE-RSM) resulted in the determination of the
values of specific experimental variables that enhanced the membrane
selectivities obtained. In other words, the integration of the random
forest ML, model with the RSM suggested a set of experimental condi-
tions for the membrane preparation and successive application to gas
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separation mixtures which led to good theoretical-experimental
matching and high reproducibility.

Beyond technical accuracy, the integration of machine learning into
experimental design also provides clear economic benefits. Conven-
tional trial-and-error methodologies typically employed in the field of
membrane development are time-consuming and require of significant
expenses and substantial resource requirements. Conversely, data-
driven models allow researchers to focus experimental efforts on the
most promising conditions, simplifying the experimental approach by
reducing both the number of required tests and associated costs. As the
pool of known membranes expands, the cost of discovering new, high-
performing materials through purely empirical methods increases
significantly. Consequently, approaches like the one proposed in this
study not only boost prediction and performance but also enhance the
efficiency and sustainability of membrane research.

In addition, from a future-oriented standpoint, it is important to
emphasize on the accuracy of the predictions, as this will enhance the
effectiveness of the ML methodology. Consequently, given the nature of
this data-driven tool, key aspects that should be further explored include
data acquisition and quality assurance. This includes, for instance, the
application of more robust statistical methods for outlier detection,
which could be more effectively implemented with a more extensive
database. In the future, it would be ideal to conduct studies with a larger
dataset to improve the representativeness and reliability of the models,
along with the exploration of different algorithms and the optimization
of the overall process. An essential approach, which was also imple-
mented in this study, is the validation of the model through experi-
mental verification.
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