000163047 001__ 163047
000163047 005__ 20251009133841.0
000163047 0247_ $$2doi$$a10.1016/j.matcom.2025.09.001
000163047 0248_ $$2sideral$$a145545
000163047 037__ $$aART-2025-145545
000163047 041__ $$aeng
000163047 100__ $$aKumari, Parvin
000163047 245__ $$aSpline-based approximation for two-parameter singularly perturbed systems with large time delay with applications in science and engineering
000163047 260__ $$c2025
000163047 5060_ $$aAccess copy available to the general public$$fUnrestricted
000163047 5203_ $$aA numerical method, used for solving two-parameter singularly perturbed systems with large time delays which are commonly encountered in a variety of scientific and engineering applications, is constructed and analyzed in this work. To attain high precision and stability, the suggested approach combines the cubic spline interpolation with the Crank–Nicolson method. The two-parameter nature of the problem introduces significant challenges due to the presence of boundary layers and the interaction of small perturbation parameters with large time delays. The technique successfully captures the abrupt changes and steep slopes present in such systems by using cubic splines. According to theoretical analysis, the suggested scheme significantly outperforms current techniques by achieving second-order convergence in both spatial and temporal variables. The theoretical conclusions are corroborated in practice by numerical experiments, which show the method’s robustness and its efficiency. Discussions of applications in fluid dynamics, heat transport and control systems reflect clearly the approach’s applicability in real-world scenarios. The findings show that the Crank–Nicolson method together with the cubic spline approach is an effective technique for precisely resolving two-parameter singularly perturbed systems with significant time delays, providing a solid foundation for practical scientific and engineering problems.
000163047 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R$$9info:eu-repo/grantAgreement/ES/MCINN/PID2022-136441NB-I00
000163047 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000163047 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000163047 700__ $$0(orcid)0000-0003-1263-1996$$aClavero, Carmelo$$uUniversidad de Zaragoza
000163047 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000163047 773__ $$g241, Part. A (2025), 326-350$$pMath. comput. simul.$$tMATHEMATICS AND COMPUTERS IN SIMULATION$$x0378-4754
000163047 8564_ $$s3063040$$uhttps://zaguan.unizar.es/record/163047/files/texto_completo.pdf$$yVersión publicada
000163047 8564_ $$s2151093$$uhttps://zaguan.unizar.es/record/163047/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000163047 909CO $$ooai:zaguan.unizar.es:163047$$particulos$$pdriver
000163047 951__ $$a2025-10-09-13:25:56
000163047 980__ $$aARTICLE