000163118 001__ 163118
000163118 005__ 20251024170832.0
000163118 0247_ $$2doi$$a10.1016/j.ijggc.2025.104453
000163118 0248_ $$2sideral$$a145619
000163118 037__ $$aART-2025-145619
000163118 041__ $$aeng
000163118 100__ $$aSáez-Guinoa, Javier
000163118 245__ $$aStudy of an alternative route for alumina production: Integration of calcium looping to Pedersen process aiming at zero emissions and bauxite residue avoidance
000163118 260__ $$c2025
000163118 5060_ $$aAccess copy available to the general public$$fUnrestricted
000163118 5203_ $$aThe aluminium industry is a notable emitter of CO2 and a significant contributor to mineral scarcity. Alumina extraction, typically conducted via the Bayer process, faces two main challenges: using fossil fuels and generating bauxite residue. A recently proposed approach, the Pedersen process, aims to address these challenges by removing the iron oxide content from the ore through an additional iron smelting step, thereby eliminating the generation of bauxite residue. This study evaluates the material and energy performance of alumina and pig iron co-production from bauxite using the principles of the Pedersen process. Different thermodynamic simulations of a Pedersen process layout were carried out using Aspen Plus software, and key parameters were validated against existing literature. Additionally, diverse CO2 capture configurations based on calcium looping were assessed, performing an energy optimization to achieve carbon-neutral and zero-residue alumina production.
Results indicate that the energy demand of the Pedersen process is notably higher than the average Bayer process for bauxites with high aluminium/iron ratios, with an estimated energy consumption of 11.92 GJ per tonne of products. However, low aluminium/iron ratios render better energy performances (10.15 GJ per tonne), showing potential feasibility in terms of energy consumption. The integration of a calcium-looping plant led to low energy penalties, thanks to the replacement of CaCO3 in the Pedersen plant by adding purged CaO from the calcium-looping plant. The energy penalties, estimated at a minimum of 1.10-2.79 GJ per tonne of CO2 avoided, show favourable results that could pave the way for a smarter use of resources and a decarbonized alumina production.
000163118 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T46-23R
000163118 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000163118 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000163118 700__ $$0(orcid)0000-0002-6103-7136$$aLlera-Sastresa, Eva$$uUniversidad de Zaragoza
000163118 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis M$$uUniversidad de Zaragoza
000163118 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000163118 773__ $$g146 (2025), 104453$$pInternational Journal of Greenhouse Gas Control$$tInternational Journal of Greenhouse Gas Control$$x1750-5836
000163118 8564_ $$s3032565$$uhttps://zaguan.unizar.es/record/163118/files/texto_completo.pdf$$yVersión publicada
000163118 8564_ $$s2486722$$uhttps://zaguan.unizar.es/record/163118/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000163118 909CO $$ooai:zaguan.unizar.es:163118$$particulos$$pdriver
000163118 951__ $$a2025-10-24-17:02:49
000163118 980__ $$aARTICLE