Tuning e-fuel selectivity in sorption-enhanced CO2 hydrogenation over In2O3/ZrO2: The effect of LTA and FAU zeolites

González-Pizarro, R. (Universidad de Zaragoza) ; Calero-Berrocal, R. ; Lasobras, J. (Universidad de Zaragoza) ; Renda, S. (Universidad de Zaragoza) ; Rodríguez-Pardo, M.R. ; Soler, J. (Universidad de Zaragoza) ; Menéndez, M. (Universidad de Zaragoza) ; Herguido, J. (Universidad de Zaragoza)
Tuning e-fuel selectivity in sorption-enhanced CO2 hydrogenation over In2O3/ZrO2: The effect of LTA and FAU zeolites
Resumen: The e-fuels synthesis via CO2 hydrogenation and the Sorption Enhanced Reaction technology are captivating strategies for CO2 utilization and the integration of renewable energy sources. This study focuses on enhancing the conversion of CO2 over an In2O3/ZrO2 catalyst by incorporating LTA zeolites (3A and 4A) and a FAU zeolite (13X). Key operational parameters, such as temperature (T), Gas Hour Space Velocity (GHSV), type of zeolite, and Zeolite: Catalyst mass ratio (Z/C), were systematically varied. LTA zeolites (3A and 4A) provided the highest CO2 conversions. The introduction of a water-adsorbing solid into the reactor significantly altered the products yield and selectivity. While the selectivity towards CH4, CH3OH, and C2H6O appeared to lay on the type of zeolite, the selectivity towards CO remained unaffected. Zeolite 3A demonstrated the greatest enhancement in selectivity towards CH4 and CH3OH, whereas the synthesis of C2H6O was favored by zeolites 4A and 13X. The Zeolite:Catalyst mass ratio also played a crucial role in process performance, influencing both CO2 conversion and product selectivity. Increasing this ratio improved CO2 conversion and reduced CO selectivity under all operating conditions, while CH4 selectivity increased. However, the selectivity toward CH3OH and C2H6O exhibited an anomalous and complementary behavior. While a maximum was observed for DME, a minimum was registered in methanol production, suggesting a dependency of the dehydration reaction kinetics on the amount of water produced during the reaction.
Idioma: Inglés
DOI: 10.1016/j.fuel.2025.136974
Año: 2025
Publicado en: Fuel 406, Part. B (2025), 136974 [15 pp.]
ISSN: 0016-2361

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2022-139819OB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/T43_23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133066-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PRE2023-UZ-26
Financiación: info:eu-repo/grantAgreement/ES/MICIU/JDC2023-052947-I
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Tecnologi. Medio Ambiente (Dpto. Ing.Quím.Tecnol.Med.Amb.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2025-10-08-12:59:40)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Tecnologías del Medio Ambiente
Artículos > Artículos por área > Ingeniería Química



 Registro creado el 2025-10-09, última modificación el 2025-10-09


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)