000163266 001__ 163266 000163266 005__ 20251024172258.0 000163266 0247_ $$2doi$$a10.1021/acsomega.5c07938 000163266 0248_ $$2sideral$$a145695 000163266 037__ $$aART-2025-145695 000163266 041__ $$aeng 000163266 100__ $$0(orcid)0000-0003-3255-3227$$aBoix, Raúl 000163266 245__ $$aIssues of Using Benzyl Ether in Nanomaterials’ Synthesis: Insights for a Standardized Synthesis of FeWO<sub><i>x</i></sub> Nanocrystals and Their Use as Photocatalysts 000163266 260__ $$c2025 000163266 5060_ $$aAccess copy available to the general public$$fUnrestricted 000163266 5203_ $$aThe synthesis of nonstoichiometric FeWOx nanocrystals via thermal decomposition in benzyl ether has been systematically optimized, addressing reproducibility issues typically associated with this solvent. A key finding of this work is the identification of benzoic acid, a benzyl ether oxidation byproduct, as a necessary ligand for stabilizing tungsten intermediates and enabling consistent FeWOx formation. The optimized protocol allows fine-tuning of the Fe/W atomic ratio, leading to a series of materials with tailored stoichiometry, surface properties, and electronic structure. Fe1.5WOx, Fe1.0WOx, and Fe0.1WOx have been selected as representative examples of materials with Fe excess, slight Fe excess, and an Fe/W ratio close to 1. Among them, Fe0.1WOx exhibited the best photocatalytic performance in the degradation of rifampicin under simulated solar irradiation, achieving a 67% degradation within 150 min and displaying a kinetic rate constant (0.0076 min–1) three times higher than the other compositions. This superior activity is attributed to its reduced band gap (1.45 eV) and favorable band-edge positions. Scavenger experiments confirmed that holes and hydroxyl radicals (•OH) are the main reactive species involved in the degradation process. These findings provide key insights for designing reproducible benzyl ether-based syntheses and demonstrate the potential of FeWOx nanomaterials for photocatalytic water treatment applications. 000163266 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/AEI/PID2023-150574NB-I00$$9info:eu-repo/grantAgreement/ES/MICIU/FPU19-01935$$9info:eu-repo/grantAgreement/ES/UZ/ICTS NANBIOSIS-CIBER-BBN$$9info:eu-repo/grantAgreement/ES/UZ/UZ2023-IyA-01 000163266 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es 000163266 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000163266 700__ $$0(orcid)0000-0002-2436-1041$$aLobera, M. Pilar$$uUniversidad de Zaragoza 000163266 700__ $$0(orcid)0000-0003-2800-6845$$aBernechea, María 000163266 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química 000163266 773__ $$g10, 40 (2025), 47609-47622$$pACS Omega$$tACS OMEGA$$x2470-1343 000163266 8564_ $$s5082642$$uhttps://zaguan.unizar.es/record/163266/files/texto_completo.pdf$$yVersión publicada 000163266 8564_ $$s3269469$$uhttps://zaguan.unizar.es/record/163266/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000163266 909CO $$ooai:zaguan.unizar.es:163266$$particulos$$pdriver 000163266 951__ $$a2025-10-24-16:56:05 000163266 980__ $$aARTICLE