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To the memory of Arkadiusz Płoski

Abstract. Reduced power series in two variables with coefficients in a field of char-
acteristic zero satisfy a well-known formula that relates a codimension related to the
normalization of a ring and the Jacobian ideal. In the general case Deligne proved that
this formula is only an inequality; García Barroso and Płoski stated a conjecture for irre-
ducible power series. In this work we generalize Kouchnirenko’s formula for any reduced
power series and also generalize García Barroso and Płoski’s conjecture. We prove the
conjecture in some cases using in particular Greuel–Nguyen’s results.

Let K be an algebraically closed field of arbitrary characteristic, and let
f ∈ K[[x, y]] be a reduced power series. Let O be the normalization of the
ring O := K[[x, y]]/(f), and let δ(f) := dimKO/O. We set

µ(f) := 2δ(f)− r(f) + 1,

where r(f) is the number of distinct irreducible factors of f .
The main result of this article is the computation of µ(f) in terms of areas

of Newton polygons, in the spirit of Kouchnirenko, without any hypothesis
on degeneration. Let

µ(f) := dimKK[[x, y]]/

(
∂f

∂x
,
∂f

∂y

)
.

In characteristic zero, we have µ(f) = µ(f). Deligne proved that

µ(f) ≥ µ(f).
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Some authors, including García Barroso and Płoski [GP18], Greuel and
Nguyen [GN12], and Hefez, Rodrigues, and Salomão [HRS18], were inter-
ested in the question of equality in characteristic p ̸= 0. We give a conjecture
on this question, and using works of these authors, we prove that after adding
some hypothesis, it is true. We show some more examples of its validity.

The paper is organized as follows. In §1, we study the Hamburger–
Noether algorithm, defined in a form which is very close to the Newton
algorithm, but that can be used in any characteristic.

In §2, using the Hamburger–Noether algorithm, we construct trees for
any reduced power series in f(x, y) ∈ K[[x, y]] in any characteristic. Note
that, given f , the tree depends on CharK. These trees are constructed using
the Newton polygon of f and the ones of its transforms at each stage of
the Hamburger–Noether algorithm. We define an important invariant: the
multiplicity of the tree. It is defined using the decorations of the tree, which
are computed from the equations of the faces of the Newton polygons.

In §3, we show that in fact the multiplicity of the tree can also be ex-
pressed in terms of the areas below the Newton polygons that appear in the
Hamburger–Noether algorithm. This is a generalization of Kouchnirenko’s
result; see Remark 6.4.

The subsequent three sections aim to prove the main result of the paper,
that the multiplicity of the tree is also equal to r−2δ(f). For this we need to
compute the multiplicity of intersection of two power series in terms of the
trees, which is done in §4. Then in §5 we study irreducible series and show
how to compute their Zariski characteristic series from the tree. The main
result is proven in §6, first for irreducible series, and then in general using
results from [CD24].

The final §7 is devoted to the study of the following conjecture. Let
f ∈ K[[x, y]], and let T (f) be its minimal tree (see §2). Let V be the set of
vertices of T (f).

Conjecture. We have

µ(f) = µ(f)

if and only if p does not divide any of the Nv for v ∈ V.

The previous sections compute the term on the right hand side. Using
Greuel and Nguyen’s result [GN12], we show that the conjecture is true
when f is non-degenerate. Here one has to be careful about the definition of
degenerate, since our definition does not coincide with Greuel–Nguyen’s.

Using a result of García Barroso and Płoski [GP18], we prove that if T is a
tree and p > M(T )+ord T , then for all f ∈ K[[x, y]] with characteristic of K
equal to p and T (f) = T , we have µ(f) = µ(f). In this case, p divides Nv

for no vertex v of T .
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We also show that the conjecture agrees with the conjecture of García
Barroso and Płoski [GP18] in the case where f is irreducible, and with the
result of Hefez, Rodrigues, and Salomão. We give some examples where the
conjecture is true.

In a subsequent article in preparation, we will show some other parts of
the conjecture.

This article owes a great deal to Arkadiusz Płoski for many reasons. The
second author met him about thirty years ago in Bordeaux, when he came
for a month as invited Professor at the University. It was the beginning
of a strong friendship and collaboration. Over the years, she learnt, dis-
cussing with him, not only mathematics, but also history, political sciences,
literature, . . . . She wants also to mention the important part played by his
wife, Anna, in this relation, and to thank her.

The book Plane Algebroid Curves in Arbitrary Characteristic [PP22], by
Gerhard Pfister and Arkadiusz Płoski, has been the main source of inspira-
tion for this article. Thanks to them both. Arkadiusz sent it to the second
author in November 2023 and it was the source of many ideas in the paper.
The second author wants to thank Michel Raibaut for interesting discussions
and the two authors are very grateful to the referees for careful reading of
the article.

1.Hamburger–Noether algorithm. The usual Newton algorithm may
not work in positive characteristic when the weights and the characteristic are
not coprime. The Hamburger–Noether algorithm works in any characteristic,
since it uses a sequence of blow-ups that solves the singularity. The Newton
algorithm can be interpreted in terms of weighted blow-ups which involve
quotient singularities by the action of some abelian group; these singularities
are not well-defined when the characteristic of the field is not coprime to the
order of the group.

1.1. Preliminaries. Let p, q ∈ N be coprime and p ≥ q ≥ 1. Consider
the Euclidean algorithm

p = k1q+r1, q = k2r1+r2, r1 = k3r2+r3, . . . , rω−1 = kω+1rω+1, rω = kω+2.

Define r0 := q, m1 := k1, n1 := 1, m̃1 := k2, ñ1 := 1, and mi, ni, m̃i, ñi, for
i ≥ 1, satisfying

p = miri−1 + niri, q = m̃iri + ñiri+1.

Lemma 1.1. For i ≥ 1, we have

mi+1 = miki+1 + ni, ni+1 = mi,

m̃i+1 = m̃iki+2 + ñi, ñi+1 = m̃i.

Proof. By induction.
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Lemma 1.2. For i ≥ 1, ∆i := ni+1m̃i − ñimi+1 equals (−1)i.

Proof. We can see that ∆1 = −1 and ∆i +∆i−1 = 0 if i ≥ 2.

1.2. Algorithm. Let

x = x1y
k1
1 , y = y1,

x1 = x2, y1 = xk22 y2,

x2 = x3y
k3
3 , y2 = y3.

More generally,

xi = xi+1, yi = x
ki+1

i+1 yi+1, i odd,

xi = xi+1y
ki+1

i+1 , yi = yi+1, i even.

The following lemma is proved by induction.

Lemma 1.3. For i ≥ 0,

x = x
n2i+1

2i+1 , y
m2i+1

2i+1 ,

y = xñ2i
2i+1y

m̃2i
2i+1;

for i ≥ 1,

x = xm2i
2i yn2i

2i ,

y = x
m̃2i−1

2i y
ñ2i−1

2i .

Since rω+1 = 1, rω+2 = 0, we have p = mω+2, q = m̃ω+1.

Lemma 1.4. If ω is odd, then

x = x
nω+2

ω+2 y
p
ω+2,

y = x
ñω+1

ω+2 y
q
ω+2;

if ω is even, then

x = xpω+2y
nω+2

ω+2 ,

y = xqω+2y
ñω+1

ω+2 .

Proof. If n is odd, then (xω+2, yω+2) = (Y1, X1), and if n is even, then
(xω+2, yω+2) = (X1, Y1). Hence x = Xp

1Y
q′

1 , y = Xq
1Y

p′

1 ,

det

(
p q′

q p′

)
= 1.

We can check that p′ = nω+2 ≤ p and q′ = ñω+1 ≤ q. Let

(1.1) P (x, y) = xayb
k∏

i=1

(xq − µiy
p)νi , N := ap+ bq + pq

k∑
i=1

νi.
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The sequence of Hamburger–Noether maps gives, if ω is odd,

P (x, y) := x
anω+2+bñω+1

ω+2 yNω+2

k∏
i=1

(x
nω+2q
ω+2 − µix

ñω+1p
ω+2 )νi

= xℓω+2y
N
ω+2

k∏
i=1

(xω+2 − µi)
νi ,

where ℓ = anω+2 + bñω+1 + ñω+1p
∑k

i=1 νi. If ω is even, we obtain

xNω+2y
ℓ
ω+2

k∏
i=1

(1− µiyω+2)
νi .

Let us assume that f ∈ K[[x, y]] has a (p, q)-edge in its Newton polygon and
that its face polynomial (see (2.1)) for this edge is P . Hence, if we put

(1.2) x = (Y1 + µ̄)q
′
Xp

1 , y = (Y1 + µ̄)p
′
Xq

1 , µ̄ = µ±1
i ,

then
f(x, y) = XN

1 (Y νi
1 + · · · )︸ ︷︷ ︸
f1(X1,Y1)

.

The germ of plane curve defined by f1(X1, Y1) is called an HN-transform
of f .

Definition 1.5. A germ of plane curve is non-degenerate if no HN-
transformation is needed, i.e. the exponents νi are all equal to 1.

2. Newton trees. Let f ∈ K[[x, y]] be a non-constant reduced series,
with K algebraically closed. Let us consider the Newton polygon of f , with
edges S1, . . . , Sk, ordered from top to bottom. The edge vi representing Si
is supported by the line piX + qiY = Ni with gcd(pi, qi) = 1.

pi

qi
(Ni)vi

(j0)

(i0)

pk

qk
(Nk)

p1

q1
(N1)

(j0)

(i0)

S1

Sk

i0

j0

Fig. 1. The left figure corresponds to the part of the Newton tree associated to the edge vi.
The central one is the Newton tree of the right figure.
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The Newton polygon is represented by a vertical linear tree. Each face is
represented by a vertex of the tree, and two vertices of the tree are connected
by an edge if and only if the corresponding faces intersect. Each edge is deco-
rated at its extremities with natural numbers. Near a vertex vi, representing
a face with equation piX+qiY = Ni, the edges arising from vi are decorated
with pi and qi (see Figure 1). The vertex vi is decorated with Ni. If xi0 and
yj0 are factors of f (with maximal multiplicity, 0 ≤ i0, j0 ≤ 1) then the
non-compact faces X = i0, Y = j0 are represented by two decorated arrows.
The decorated tree contains the same information as the Newton polygon.
As in (1.1), each face has an associated homogeneous polynomial (the face
polynomial )

Pi(x, y) = xniymi

ki∏
j=1

(xqi − µi,jy
pi)νi,j , gcd(pi, qi) = 1.

Let us fix i, j; if νi,j = 1, we attach to the vertex vi an edge ending with an
arrow (to the right). If νi,j > 1, we apply the Hamburger–Noether algorithm
(1.2) for (pi, qi, µi,j) (the choice of the power ±1 depends on the parity of
the length of the Euclidean algorithm):

(2.1) fi,j(x1, y1) = xNi
1 (y

νi,j
1 + · · · ) ∈ K[[x, y]],

to which a new Newton polytope can be applied (in general with a smaller
height) and translated to the right by Ni. We glue the new Newton tree as
in Figure 2, including the changes of decorations.

p′k′

q′k′
(N ′

k′)

p′1

q′1
(N ′

1)

(Ni)

pi

qi
(Ni)

p′k′

q′k′ + piqip
′
k′

p′1

q′1 + piqip
′
1

Fig. 2. New Newton tree and gluing

Remark 2.1. The construction of Newton trees in characteristic 0 is
similar, but we can use Newton maps instead of Hamburger–Noether maps,
with the same result.

2.1. Examples

Example 2.2. Let

f(x, y) := (x2 − y3)4 − 2(x2 − y3)2xy11 − y19(1− y3)(x2 − y3) + y25.
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The Newton polygon has only one edge, with face polynomial P (x, y) :=
(x2 − y3)4 with ω = 0. There is only one edge and one root, hence only one
transformation:

x = x31(y1 + 1), y = x21(y1 + 1).

Then
f(x, y) = x241 (y1 + 1)8((y21 − x131 )2 + · · · ).

The Newton polytope is associated to (y21 − x131 )2, ω = 0. Hence,

x1 = x22(y2 + 1), y1 = x132 (y2 + 1)6,

and
f(x, y) = x1002 (y2 + 1)48(1 + x132 + · · · )8(y22 + x2 + · · · ).

(0)

(0) (0) (0)

3

2
(24)

25

2

(100)

101

2

(202)

Fig. 3. Newton tree of Example 2.2

(0, 14)
S1 : 2X + Y = 14

(2, 10)

S2 : 3X + 2Y = 26

(6, 4)
S3 : 4X + 5Y = 44

(11, 0)

Fig. 4. Newton polygon of Example 2.3

Example 2.3. Let

f(x, y) := −x2y4(x2 − y3)2 + x11 + y14 + xy13.

The factorized face polynomials are

P1 =

{
y10(y2 − x)(y2 + x) if CharK ̸= 2,

y10(y2 − x)2 if CharK = 2,
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P2 = x2y4(x2 − y3)2, and P3 = x6(x5 − y4). For S1 and CharK = 2, we take

x = x21(y1 + 1), y = x1,

for which we find that, up to a unit in K[[x1, y1]], f is x141 (y21 + x1 + · · · ).
For S2,

x = x31(y1 + 1), y = x21(y1 + 1).

Then
f(x, y) = x261 (y1 + 1)10(x21 − y21 + · · · ).

If CharK = 2, we perform the transformation

x1 = x2(y2 + 1), y1 = x2,

and we obtain for f , up to a unit in K[[x2, y2]], x282 (y22 + x2 + · · · ). If
CharK ̸= 2, we finish with two arrows.

(0)

(0)

5

4
(44)

7

(28)

(0)

2

3
(26)

1

2
(14)

(0)

(0)

5

4
(44)

2

3
(26)

7

(28)

(0)

15 (58)

2

(0)

5

2

(30)

(0)

1

2
(14)

Fig. 5. Newton tree of Example 2.3 if CharK ̸= 2 (left), or CharK = 2 (right)

2.2. Minimal trees. Let us consider a Newton tree T . Let V be its set
of vertices, E its set of edges, A its set of arrows, and A0 the set of its arrows
decorated with (0).

Definition 2.4. A dead end is an edge between a vertex and an arrow
decorated with (0).

We will proceed with the following conventions:

(a) The dead ends decorated with 1 and the attached arrows will be erased.
(b) Vertices of valency 2 will be erased, while the decorations of the remain-

ing vertices will be kept.
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(0)

v v

(0)

vv′ v′′ v′ v′′

Fig. 6. Erasure operations

Remark 2.5. These operations are defined in [CD24, Def. 1.1.1], and
their properties are studied. A tree is minimal if no operation (a)–(b) can
be performed.

Example 2.6. The tree in Figure 3 is already minimal. In Figure 5 (left)
the dead end to the left can be erased and the tree becomes minimal. The
minimalization of Figure 5 (right) is in Figure 7.

(0)

(0)

5

4
(44)

2

3
(26)

15

2

(58)

(0)

2

5
(30)

Fig. 7

Definition 2.7. Let v ∈ V. The valency δv of v is the number of edges
through v (the valency of an arrow is 1). Let v′ ∈ A0 be attached to v ∈ V
such that a is the decoration of the edge joining v, v′. Then the multiplicity
of v′ is Nv′ := Nv/a. Finally, the multiplicity of T is

M(T ) := −
∑

v∈V∪A0

Nv(δv − 2),

where δv is the valency of v in the tree.
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Example 2.8. For Example 2.2, the multiplicity is M(T ) = −155; for
Example 2.3, it is −103 if CharK = 2, and −101 otherwise.

3. Multiplicity of a tree and area of Newton polygons

Definition 3.1. A convenient Newton polygon is a Newton polygon
which hits both axes.Let A be the area between the Newton polygon and
the axes.

A semiconvenient Newton polygon is a Newton polygon that hits the
lines y = 0 and x = N . In this case, let A be the area between the Newton
polygon and lines.

Definition 3.2. A reduced convenient Newton polygon is a Newton poly-
gon which hits the lines x = 0 or x = 1 and y = 0 or y = 1.

Remark 3.3. We can make a Newton polygon convenient in case it does
not hit x = 0 or y = 0. This is done as follows. Assume that the polygon
does not hit x = 0. Let v be the vertex of the Newton polygon N with
coordinates (1, β) and let vn be a point with coordinates (0, n) with n large
enough such that the set of vertices of the convex hull of V ′ := V ∪ {vn}
is V ′. A similar procedure can be applied if the polygon does not hit y = 0.
If a and b are the lengths on the axes, then 2A− a− b does not depend on
how we make the Newton polygon convenient.

Definition 3.4. A reduced semiconvenient Newton polygon is a Newton
polygon which hits the lines x = N and y = 0 or y = 1. Again, we can make
it semi-convenient and if a+N is the length on the x-axis, then 2A−a does
not depend on the chosen semiconvenient Newton polygon.

Definition 3.5. A tree is non-degenerate if it is vertical except for the
non-decorated arrows. For the associated Newton polygon, the face poly-
nomials are as in (1.1) with νi = 1. In particular, the Hamburger–Noether
algorithm is not needed.

Remark 3.6. In positive characteristic this definition does not imply that
the face polynomials do not have singularities in the torus. For example, let

f(x, y) := xy(x+ y),

which is non-degenerate according to this definition but (1, 1) is a common
zero of the derivatives in F2

3.

Lemma 3.7 ([CV14, Lemma 5.20]). If the tree T is reduced and non-
degenerate, then

−M(T ) = 2A− a− b.
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Theorem 3.8. Let f ∈ K[[x, y]], and let T be its Newton tree. Then

−M(T ) = 2A0 − a− b+
r∑

ℓ=1

(2Aℓ − aℓ),

where A0 is the area of the first Newton polygon and a, b are the traces on
the axes. The summation is taken over all Hamburger–Noether transforms,
Aℓ is the area of the Newton polygon limited by the line x = Nℓ, and aℓ+Nℓ

is the trace on the x-axis.

Proof. Let v be a vertex, and let AB be the face of the Newton polygon
which corresponds to v in the HN algorithm. Let δv be the valency of v, and
let dv be the number of points with integral coordinates on the face AB.

O

B

A

Fig. 8

Let Av be the area of the triangle OAB. We have 2Av−a−b = Nv(dv−2)
where a is the first coordinate of A if A is on the x-axis and 0 otherwise, and
b the second coordinate of B if B is on the y-axis, and 0 otherwise. Since

dv =

δv∑
i=1

νi =⇒ dv − δv =

δv∑
i=1

(νi − 1),

we see that

Nv(δv − 1) = Nv(dv − 1)−Nv(dv − δv) = Nv(dv − 1)−Nv

δv∑
i=1

(νi − 1).

If νi = 1 for all i, then 2Av − a− b = Nv(dv − 2) = Nv(δv − 2).

Nv

νi

av,i

Av,i

(a)

O Nv

νi

av,i

Av,i

(b)

Fig. 9
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If there exists i such that νi > 1, we consider all HN-transforms, and we
compute

Av,1 := 2Av − a− b+

δv∑
i=1

(2Av,i − av,i).

Then Av,1=Nv(δv−2)+
∑

i 2Av,i+Nvνi−(Nv+av,i). Let Av,i :=2Av,i+Nvνi
be the area of the polygon delimited by the Newton polygon Nv,i and O,
and let av,i :=Nv+av,i be its trace on the x-axis.

Then we proceed by induction, and we stop when all ν’s are 1.

4. Newton trees and intersection multiplicity. In this section, we
will show how to compute the intersection multiplicity of two branches using
the trees.

Notation 4.1. Let v be a vertex of T , and let εv be the set of edges
incident to v. If e ∈ εv, let q(v, e) be the decoration of e near v. Let v, w be
two vertices or arrows of T ; we denote the path from v to w in T as ε = εv,w;
Vε is the set of vertices and arrows in ε, and Eε is the set of edges in ε. If x
is a vertex, then Ex is the set of edges containing x. We denote

ρ(v, w) :=
∏

x∈Vε\{v,w}

∏
e∈Ex\Eε

q(x, e),

ρ(v, w) :=
∏

x∈Vε\{w}

∏
e∈Ex\Eε

q(x, e).

In case v, w are two distinct arrows, we put i(v, w) := ρ(v, w). For V1,V2 ⊂ A
we set

i(V1,V2) :=
∑
v1∈V1

∑
v2∈V2\{v1}

i(v1, v2).

... eij
. . .

v xi w

Fig. 10

An irreducible series f ∈ K[[x, y]] admits primitive parametrizations t 7→
(φ(t), ψ(t)). If g is another series, then

i(f, g) := ord g(φ(t), ψ(t)).

If g is irreducible, we can exchange the roles of f, g, and the value does
not change, and the definition can be extended to the case where f, g are
reducible assuming that i(f, f) = ∞.
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Theorem 4.2. Let f, g ∈ K[[x, y]] be irreducible series, let T be the
Newton tree of fg, and let αf , αg be the arrows representing the last HN-
transforms of f, g. Then

i(f, g) = i(αf , αg).

Proof. The proof is in several steps.
(1) Either the Newton polygons of f, g are distinct or their face polyno-

mials do not coincide.
(a) They separate at different vertices as in Figure 11 (left). Under these

conditions, we can assume that

f(x, y) = (xqi − µypi)νi + · · · ,
and a parametrization of g = 0 is given by

φ(t) = tpjνj φ̃(t), ψ(t) = tqjνj ψ̃(t), φ̃(0), ψ̃(0) units.

Then
f(φ(t), ψ(t)) = (tpjqiνj φ̃pi(t)− µtqjpiνj ψ̃qi

1 (t))νi + · · · .
Since piqj > qipj , we have i(f, g) = qipjνiνj . On the other hand, one can see
that the product of the weights on the horizontal part of ε are νi, νj and the
product on the vertical part is qipj , i.e., i(αf , αg).

αf

αg
pj

qj
(Nj)

pi

qi
(Ni)

αf

βf

a

b
v

Fig. 11. Separations as in (a) and (b)

(b) They separate on the same face, see Figure 11 (right). We have i = j,
and we denote (pi, qi) =: (a, b). We have

Pf,v(x, y) = (xb − µya)ν1 , φ(t) = taν2φ̃(t), ψ(t) = tqjbν2ψ̃(t),

with
φ̃(0), ψ̃(0), φ̃(0)b − µψ̃(0)a ̸= 0

and

i(f, g) = ord tabν1ν2(φ̃(0)b − µψ̃(0)a) = abν1ν2 = i(αf , αg).

(2) We use induction on the number of steps such that f, g are separated
(see Figure 12). The first step has been done. Let us assume the formula
holds if the separation is at step h − 1, and we check that it holds if the
separation is at step h.
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(0)

(0)

(0) (0)

αf

βf

¯̄b

a

¯̄b1

a1

¯̄bk

ak

Fig. 12. Case (2)

After the first step, we have

f(x, y) = X
Nf

1 f1(X1, Y1), g(x, y) = X
Ng

1 g1(X1, Y1)

with

x = Xa
1 (Y1 − µ)a

′
, y = Xb

1(Y1 − µ)b
′
.

From a primitive parametrization (φ1(t), ψ1(t)) of f1(X1, Y1) we obtain a
primitive parametrization (φ(t), ψ(t)) of f(X1, Y1) using the above expres-
sion. Then

i(f, g) = ord g(φ(t), ψ(t)) = ordφ1(t)
Ngg1(φ1(t), ψ1(t))

= ord g1(φ1(t), ψ1(t)) +Ng ordφ1(t) = i(f1, g1) +Ngi(X1, f1);

by symmetry, the second term equals Nf i(X1, g1). By induction, we have
i(f1, g1) = b̄kakd1d2.

We claim that

(4.1) ¯̄bi = a · b · a21 · . . . · a2i−1ai + b̄i.

To prove this claim, note that ¯̄b1 = aba1 + b̄1. We assume (4.1) is true until
i and we prove it for i+ 1:

¯̄bi+1 =
¯̄bi · ai · ai+1 + bi+1

= a · b · a21 · . . . · ai−1 · a2i · ai+1 + b̄i · ai · ai+1 + bi+1︸ ︷︷ ︸
b̄i+1

,

and the claim is true.
Let us consider a parametrization for g1:

φ1(t) = ta1φ̃1(t), ψ1(t) = tb1ψ̃1(t), φ̃1(0), ψ̃1(0) units.

The order of φ1(t) equals a1 · . . . ·ak ·d2, and Nf = a · b ·a1 · . . . ·ak ·d1. Since

φ(t) = φ1(t)
aφ̃2(t), ψ(t) = ψ1(t)

bψ̃2(t), φ̃2(0), ψ̃2(0) units,

and f(φ(t), ψ(t)) = φ1(t)
Nf f(φ1(t), ψ1(t)), the computation of the order

gives the statement.
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(0)

Nf +Ng

(0) (0)

αf

βf

b̄1

a1

b̄2

a2

b̄k

ak

Fig. 13. Induction step for case (2)

5. Irreducible power series

Definition 5.1. A sequence (v0, v1, . . . , vr) of positive integers is said to
be a Zariski characteristic sequence if it satisfies the following two conditions:

(Z1) Set dk := gcd(v0, . . . , vk), 0 ≤ k ≤ r. Then dk > dk+1, 0 ≤ k < r, and
dr = 1.

(Z2) Let nk := dk−1/dk, 1 ≤ k < r. Then nkvk < vk+1, 1 ≤ k < r.

Let T be a tree with one arrow not decorated with 0 as in Figure 14.
Assume that T is a minimal tree. Let v0 := N1/b1, v1 := N1/a1, . . . , vr :=
Nr/ar.

(0)

(0)

(0) (0)

b1

a1
N1

b2

a2

N2 br

ar

Nr

Fig. 14. Tree T

Proposition 5.2. The sequence (v0, v1, . . . , vr) is a Zariski characteris-
tic sequence.

Proof. Note that

d0 = v0 =
N1

b1
= a1 · a2 · . . . · ar,

d1 = gcd(v0, v1) = gcd(a1 · a2 · . . . · ar, b1 · a2 · . . . · ar) = a2 · . . . · ar.
Then d1 < d0. Assume

di = ai+1 · . . . · ar.
Then

di+1 = gcd(a1 · a2 · . . . · ar, . . . , bi+1 · ai+2 · . . . · ar) = ai+2 · . . . · ar.
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Hence, di > di+1, and (Z1) is proved. We have

nkvk < vk+1 ⇐⇒ Nk <
Nk+1

ak+1
,

Nk = bk · ak · . . . · ar,

Nk <
Nk+1

ak+1
⇐⇒ bk · ak · ak+1 · . . . · ar < bk+1 · ak+2 · . . . · ar,

⇐⇒ bk · ak · ak+1 < bk+1,

which is true since bk+1 = bk · ak · ak+1 + bk+1 with bk+1 > 0.

We have the following result.

Proposition 5.3 ([PP22, Ch. 3, Prop. 1.17]). Let G be the semigroup
generated by a Zariski sequence (v0, v1, . . . , vr). Then the conductor c of G
equals

c =
r∑

k=1

(nk − 1)vk − v0 + 1.

Let f be an irreducible power series. Recall that the semigroup Γ (f) of f
is defined by Γ (f) := {vf (g) : g a power series such that g ̸≡ 0 (f)}.

Proposition 5.4. Assume f is an irreducible power series, and T is its
tree. The semigroup generated by (v0, . . . , vr) is the semigroup Γ (f).

Proof. Let g be an irreducible power series separating from f at a vertex
of T . Then

i(f, g) = Nidg = viaidg.

Hence, i(f, g) ∈ ⟨v0, . . . , vr⟩.
Now assume that g separates from f at a dead end of T . Then

i(f, g) = dg · bi · ai+1 · . . . · ar = dg · vi.
Hence, i(f, g) ∈ ⟨v0, . . . , vr⟩. Moreover, we see that if dg = 1, then vi ∈ Γ (f).

Finally, assume that g separates from f between the vertices vi−1 and vi.
We have i(f, g) > Ni−1.

We want to show that Ni−1 > ci−1 ·ai · . . . ·ar, where ci−1 is the conductor
of the semigroup generated by〈

v0
ai · . . . · ar

, . . .
vi−1

ai · . . . · ar

〉
.

We have

ai · . . . ·ar ·ci−1 = Ni−1−
Ni−1

ai−1
+Ni−2−

Ni−2

ai−2
+Ni−3−· · ·−N2

a2
+N1−v0+1.

Then ai · . . . · ar · ci−1 < Ni−1 and i(f, g) > Ni−1 > ci−1 · ai · . . . · ar. Hence,
i(f, g) ∈ ⟨v0, . . . vi−1⟩.
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6. Multiplicity of a tree and δ-invariant. In this section we want
to compute the δ-invariant of a series f in terms of the multiplicity of its
tree. Let f ∈ K[[x, y]] be a reduced power series. Let r(f) be the number of
arrows of the tree not decorated with (0). In this section, we shall use results
from [CD24] and [CV14]. In particular, we need the following:

Proposition 6.1 ([CV14, Prop. 3.3]). For all v ∈ V, we have

Nv =
∑

α∈A \A0

ρ(v, α).

This proves that the definitions of multiplicity in [CD24] and in the
present work are the same, and we can use the results of [CD24].

Proposition 6.2 ([CD24]). The number −M(Tf ) + r(f) is even.

Let
Of := K[[x, y]]/(f).

Let Of be the integral closure of Of . Define

δ(f) := dimKOf/Of .

We can state and prove the main result of the paper.

Theorem 6.3. 2δ(f) = −M(f) + r(f).

Proof. Assume first that f is an irreducible power series. Then r(f) = 1.
We have

M(T ) = −
r∑

i=1

(
Ni −

Ni

ai

)
− N1

a1
.

Then c(f) = −M(T ) + 1. It is proven in [PP22, Ch. 4, Thm. 2.1] that
c(f) = 2δ(f). Hence, the result is true when f is irreducible.

Let us recall [PP22, Ch. 4, Thm. 2.1]:

If f = f1 . . . fr with irreducible coprime factors fi, then

δ(f) =

r∑
i=1

δ(fi) +
∑

1≤i<j≤r

i(fi, fj).

If we define

δ̃(T ) :=
−M(T ) + r(f)

2
,

then [CD24, Prop. 4.13] says that

δ̃(T ) =
∑

α∈A \A0

δ̃(Tα) +
i(A \ A0,A \ A0)

2
,

which proves the general case.
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Remark 6.4. The combination of Theorems 3.8 and 6.3 provides a new
interpretation of Kouchnirenko’s theorem, namely it refers to µ̄ and not µ
for some positive characteristics. Moreover, it can be extended without any
hypothesis of non-degeneracy.

7. Multiplicity of a tree and Milnor number. Recall that the Mil-
nor number of f is

µ(f) := dimKK[[x, y]]/

(
∂f

∂x
,
∂f

∂y

)
.

If CharK = 0, Milnor’s results (in particular [Mil68, Theorem 10.5]) imply
that

µ(f) = 1−M(T ) = 2δ(f)− r(f) + 1,

and Deligne [Del73] showed that in general we only have

(7.1) µ(f) ≥ 1−M(f) = 2δ(f)− r(f) + 1.

Note that in positive characteristic, the Milnor numbers of f and uf (for u
a unit) may differ, see e.g. Examples 7.9 and 7.10, but µ does not [PP22,
Ch. 4, Prop. 3.1]. For a review of these equalities (and inequalities) we refer
to [GP18].

Conjecture. Let T be a minimal tree of f . Equality holds in (7.1) if
and only if CharK divides Nv for no v ∈ V ∪ A0.

We shall now show that the conjecture was already proven in some par-
ticular cases.

Definition 7.1. Let ∆ be a face of the Newton polygon of f . We call f
non-degenerate (ND) along ∆ if the Jacobian ideal of f∆ has no zero in the
torus (K∗)2. We say that f is Newton non-degenerate (NND) if f is ND
along each face (of any dimension) of the Newton polygon of f .

In 1976, Kouchnirenko [Kou76] proved that if f is NND and convenient,
then µ(f) = 1−M(f). This result was extended by [BGM12] in 2010 (pub-
lished in 2012) without the hypothesis of convenience (if µ(f) <∞).

Proposition 7.2. Let f be non-degenerate. If CharK divides Nv for
no v, then f is NND.

Proof. Let ∆ be a face of dimension 1 of the Newton polygon of f .
Let v be the corresponding vertex on the tree, and Nv the corresponding
multiplicity. The equation of the face is aX + bY = Nv. We want to show
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that if CharK = p does not divide Nv, then f is ND along ∆. We have

f∆(x, y) = xnym
k∑
i

cix
iay(k−i)b,

∂f∆
∂x

(x, y) =

k∑
i

ci(n+ ia)xn+ia−1y(k−i)b+m,

∂f∆
∂y

(x, y) =

k∑
i

ci(m+ (k − i)b)xn+iay(k−i)b+m−1.

If the Jacobian ideal of f∆ has a zero (α, β) in (K∗)2, then
k∑
i

ci(n+ ia)αiaβ(k−i)b = 0,

k∑
i

ci(m+ (k − i)b)αiaβ(k−i)b = 0,

which is impossible: for all i we have

(n+ ia)(m+ (k − i+ 1)b− (n+ (i− 1)a)(m+ (k − i)b)) = Nv ̸= 0,

since p does not divide Nv.
Now if f is not ND with respect to a vertex of the Newton polygon, then

p divides Nv for a face of the Newton polygon which contains the vertex.

Corollary 7.3. If f is non-degenerate and CharK divides Nv for no v,
then µ(f) = 2δ(f)− r(f) + 1.

Proof. Assume f is non-degenerate. Recall that we assume that the tree
is minimal. If f is non-degenerate and CharK divides Nv for no v, then f is
NND (Proposition 7.2) and µ(f) = 1−M(f) (see [BGM12]).

Corollary 7.4. The conjecture is true if f is non-degenerate.

Proof. If p divides some Nv, then f is not ND along ∆, the corresponding
face of the Newton polygon. Using [GN12, Prop. 2.12] we deduce that µ(f) >
2δ(f)− r(f) + 1.

Now we recall two interesting results from [GP18]. Let p := CharK,
l(x, y) := ax+ by, and Pl(f) := b∂f∂x − a∂f

∂y .

Proposition 7.5 ([GP18, Prop. 2.1]). Let l be a regular parameter of
K[[x, y]], and f = f1 · . . . · fr be such that i(fi, l) ̸≡ 0 mod p. Then

i(f, Pl(f)) = 2δ(f) + i(f, l)− r = −M(T (f)) + i(f, l).
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Proposition 7.6 ([GP18, Prop. 4.4]). Assume that there exists a regular
parameter l such that i(f, l) = ord f and i(f, Pl(f)) < p. Then µ(f) =
−M(T (f)) + 1 = 2δ − r + 1.

Then we deduce the following:
Proposition 7.7. If p > −M(T (f))+ord f , then µ(f) = −M(T )+1 =

2δ(f)− r + 1.
Now we study the case where f is irreducible. In this case, we have two

results. García Barroso and Płoski [GP18, Theorem 5.1] proved the following:
Let n∗ := max(a1, . . . , ar) (see Figure 14). If CharK = p > n∗,
then

µ(f) = 2δ(f) ⇐⇒ ∀k, 0 ≤ k ≤ r, νk ̸≡ 0 mod p.

This proves the conjecture when p > n∗. On the other hand, Hefez, Rodrigues,
and Salomão [HRS18] proved that if for every k ∈ {0, . . . , r} we have
νk ̸≡ 0 mod p, then µ(f) = 2δ(f).

Example 7.8. We consider
f(x, y) := (x− a1y)(x− a2y)(x− a3y)(x− a4y) + xy5 + x4y.

Let
bi := ai+1 − a1, 1 ≤ i < 4, ci := ai+2 − a2, 1 ≤ i < 3, d1 := a4 − a3.

We assume p ̸= 2 and consider several cases.

(4)

(a) T1

(4)
1

(8)
1

3

(b) T2

(7)
1

2

(c) T3

(0)
(20)5

3

(d) T4

Fig. 15

(1) Assume all the ai are pairwise distinct mod p. In this case, the tree
is T1 in Figure 15(a), and we have

µ(f) = 1−M(T1) = 2δ(f)− 3 = 9, ∀p ̸= 2.

(2) Assume that a1 ≡ a2 ≡ 0 mod p, a3, a4 ̸≡ 0 mod p, a3 ̸≡ a4 mod p.
In this case, the tree is T2 in Figure 15(b), and we have

µ(f) = 1−M(T2) = 2δ(f)− 3 = 13, ∀p ̸= 2.

(3) Assume only a4 is non-vanishing mod p. In this case, the tree is T3 in
Figure 15(c), and we have
µ(f) = 1−M(T3) = 2δ(f)− 3 = 15, ∀p ̸= 2, 7; µ(f) = 17 if p = 7.
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(4) Assume that ai ≡ 0 mod p. In this case, the tree is T4 in Figure 15(d),
and we have

µ(f) = 1−M(T4) = 2δ(f)− 1 = 17, ∀p ̸= 2, 5; µ(f) = 20 if p = 5.

In all cases (1)–(4), we use the fact that f is non-degenerate.
(5) Assume no ai vanishes mod p, a1 ≡ a2 mod p, and a2, a3, a4 are pair-

wise distinct mod p. In this case the tree is T1,2 in Figure 16(a), and we
have

µ(f) = 1−M(T1,2) = 2δ(f)− 2 = 10 if p = 0; µ(f) = 11 if p = 5.

From Proposition 7.7, we know that if p > 13, then µ = 10. This value is
also obtained for the remaining cases p = 3, 7, 11, 13.

Assume no ai vanishes mod p, a1 ≡ a2 ̸≡ a3 ≡ a4 mod p. In this case the
tree is T1,3 in Figure 16(b), and we have

µ(f) = 1−M(T1,3) = 2δ(f)− 1 = 11 if p = 0; µ(f) = 13 if p = 5.

Again, using Proposition 7.7, we know that if p > 14, then µ = 11, and we
verify for p = 3, 7, 11, 13 that µ = 11 (using Singular or Sagemath).

(0)
(4)

(10)
3 2

(a) T1,2

(0)

(0)

(4)

(10)
3

(10)

2

2

3

(b) T1,3

(0)

(15)4

3

(c) T1,4

Fig. 16

(7) Assume no ai vanishes mod p, a1 ≡ a2 ≡ a3 ̸≡ a4 mod p. In this case
the tree is T1,4 in Figure 16(c), and we have µ(f) = 1−M(T1,4) = 2δ(f)− 1
= 11 if p = 0; µ = 12 if p = 5; and µ = 13 if p = 3. We know that if p > 14,
then µ = 11, and we verify that this is also the case for p = 7, 11, 13.

(8) Assume no ai vanishes mod p, and they are equal mod p. In this case
the tree is T1,5 in Figure 17(a), and we have

µ(f) = 1−M(T1,5) = 2δ(f)− 1 = 12 if p = 0; µ(f) = 13 if p = 5.

We know that if p > 15, then µ = 12, and we verify that this is also the case
for p = 3, 7, 11, 13.

(9) Assume that a1 ≡ a2 ≡ 0 mod p and a3 ≡ a4 ̸≡ 0 mod p. In this case
the tree is T2,1 in Figure 17(b), and we have

µ(f) = 1−M(T2,1) = 2δ(f)− 2 = 14 if p = 0; µ(f) = 15 if p = 5.
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We know that for p > 17, then µ = 14, and we verify that this is also the
case for p = 3, 7, 11, 13, 17.

The conjecture is true for this family.

(0)

(0)

5

4

(a) T1,5

(0)

(10)
3

2

(8)
1

3

(b) T2,1

1

2
(7)

5

2

(16)

(0)

(c) T1,6

Fig. 17

Now we consider the case where p = 2.
(10) Assume that ai ̸= 0 for all i. Then the tree is T1,5. The multiplicity

of the tree is 11, and we can compute µ = 20.
(11) Assume that exactly one of the ai vanishes. Then the tree is T1,4.

We have M(T1,4) = 10 and µ = 11 since 2 does not divide Nv.
(12) Assume that exactly two of the ai vanish. The tree is T2,1. Its mul-

tiplicity is 13 and µ = 20.
(13) Assume that exactly three of the ai vanish. The tree is T1,6 in Fig-

ure 17(c). Its multiplicity is 15 and we compute µ = 19.
(14) Assume all the ai vanish. The tree is T4. The multiplicity is 16 and

µ = 20.

Example 7.9. Let us consider Example 2.2. In this example, f is irre-
ducible. The results of [GP18] tell us that if p > 3 then µ = 156 if and only if
p ̸= 5, 101, where µ = 157. We can check that µ = ∞ for p = 2, and µ = 166
for p = 3. Note also that if we multiply f by a random unit then µ = 168
for p = 2 and µ = 157 for p = 3; nothing changes for the other primes. Thus
the conjecture is true for this example.

Example 7.10. Let us consider Example 2.3. First we assume p ̸= 2. If
p > 111, then µ = 102. The prime numbers which divide Nv for some v are
p = 7 with µ = 105, p = 11 with µ = ∞, and p = 13 with µ = 104. For
the remaining primes p < 111, we also have µ = 102. For p = 2, we have
µ = 133. Note also that if we multiply f by some unit then µ = 118 for
p = 2, µ = 104 for p = 3, and µ = 105 for p = 11; nothing changes for the
other primes. Thus the conjecture is true in this example.
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