000163708 001__ 163708
000163708 005__ 20251030150826.0
000163708 0247_ $$2doi$$a10.1016/j.seppur.2025.135596
000163708 0248_ $$2sideral$$a145785
000163708 037__ $$aART-2025-145785
000163708 041__ $$aeng
000163708 100__ $$aRefaat, Dalia$$uUniversidad de Zaragoza
000163708 245__ $$aInnovative starch-PVA membranes incorporating amino-functionalized Zeolitic Imidazolate frameworks for CO2/CH4 separation
000163708 260__ $$c2025
000163708 5060_ $$aAccess copy available to the general public$$fUnrestricted
000163708 5203_ $$aThe growing need for efficient CO2 separation in natural gas purification and carbon capture has driven the advancement of high-performance membrane technologies. This study incorporates the zeolitic imidazolate framework ZIF-8-NH2 into blends of polysaccharide starch and polyvinyl alcohol (PVA) to fabricate eco-friendly membranes. These materials, prepared as dense mixed matrix membranes (MMMs) and thin-film nanocomposite (TFN) membranes, offer a sustainable solution for CO2/CH4 separation. The integration of ZIF-8-NH2 nanoparticles, recognized for their high crystallinity and surface area and selective adsorption capacity into the starch–PVA matrix (33/67 blend ratio), significantly enhances CO2 permeability, increasing from 124 to 188 Barrer at 10 wt% loading, while preserving high CO2/CH4 selectivity (14.1 for the pristine blend and 16.5 for the MMM). For TFNs, a 9/91 starch-PVA matrix with 15 wt% ZIF-8-NH2 incorporated into the selective layer resulted in the best conditions. This architecture provided robust mechanical stability and high separation performance, yielding a CO2 permeance of up to 208 GPU and a CO2/CH4 selectivity of 26.9 at 3 bar feed pressure, nearly doubling the selectivity compared to the dense biopolymer blend. This work highlights the potential of renewable, starch-based materials in membrane-based gas separation, contributing to sustainable solutions for natural gas purification and carbon capture.
000163708 536__ $$9info:eu-repo/grantAgreement/ES/AEI/RYC2022-0381393-I$$9info:eu-repo/grantAgreement/ES/DGA/T68-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-138582OB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130621B-C4$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S
000163708 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000163708 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000163708 700__ $$aAmenakpor, Jacking
000163708 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000163708 700__ $$0(orcid)0000-0002-9934-1707$$aZornoza, Beatriz$$uUniversidad de Zaragoza
000163708 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000163708 773__ $$g382, Part. 1 (2025), 135596 [14 pp.]$$pSep. Purif. Technol.$$tSeparation and Purification Technology$$x1383-5866
000163708 8564_ $$s6671196$$uhttps://zaguan.unizar.es/record/163708/files/texto_completo.pdf$$yVersión publicada
000163708 8564_ $$s2765063$$uhttps://zaguan.unizar.es/record/163708/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000163708 909CO $$ooai:zaguan.unizar.es:163708$$particulos$$pdriver
000163708 951__ $$a2025-10-30-14:39:24
000163708 980__ $$aARTICLE