000163753 001__ 163753
000163753 005__ 20251030150827.0
000163753 0247_ $$2doi$$a10.1016/j.ceramint.2025.08.154
000163753 0248_ $$2sideral$$a145611
000163753 037__ $$aART-2025-145611
000163753 041__ $$aeng
000163753 100__ $$aColomer, María T.
000163753 245__ $$aDual luminescent and magnetic properties in Ti1-xNdxO2-δ solid solutions with nanoscaled rutile
000163753 260__ $$c2025
000163753 5060_ $$aAccess copy available to the general public$$fUnrestricted
000163753 5203_ $$aIn this work, we have synthesised Ti1-xNdxO2-0.5x solid solutions (0.05 ≤ x ≤ 0.10) by a colloidal sol−gel route followed by calcination at 400, 700 or 900 °C in air for 10 min. Pure rutile solid solutions were obtained when calcined at 900 °C for compositions up to 1 mol% Nd3+. On doping with 2, 3, 5, and 10 mol% Nd3+, the solid solutions are comprised of rutile and Nd4Ti9O24 as second phase according to XRD. In addition, by HREM TiO1.9 Magneli series is also observed as a trace. Photoluminescence (PL) decay curves show a multi−exponential decay behaviour likely attributable to the structural properties of the host matrix and the formation of at least two different microenvironments. Moreover, to the best of our knowledge, it is shown for the first time that, in addition to PL emission, rutile solid solutions with x = 0.03 present ferromagnetic behaviour with a robust magnetic hysteresis. According to the magnetisation measurements, the isolated Nd3+ centres, detected by EPR, are magnetically non−interacting; in addition, Nd4Ti9O24 presents a paramagnetic behaviour. Furthermore, the height of the EPR feature increases for Nd3+ content below 3 mol%, reaches a maximum for this value, and decreases for higher values of Nd3+. In this framework, a plausible explanation is that a non−stoichiometric Nd−Ti−O based phase, undetectable via XRD or Raman but detectable by PL and magnetisation measurements, hosts the magnetic order. These results pave the way for the development of novel optomagnetic multifunctional nanomaterials.
000163753 536__ $$9info:eu-repo/grantAgreement/ES/AEI/AEI PID2022-140923NB-C21$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104118RB-C21$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130809B-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130957B-C51$$9info:eu-repo/grantAgreement/ES/MICIU/CNS2022-135876$$9info:eu-repo/grantAgreement/ES/MICIU/PID2021-124585NB-C33
000163753 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000163753 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000163753 700__ $$aQuesada, A.
000163753 700__ $$aLópez-Sánchez, J.
000163753 700__ $$0(orcid)0000-0002-5406-3280$$aMartínez Martínez, Jesús Ignacio$$uUniversidad de Zaragoza
000163753 700__ $$aMather, G.C.
000163753 700__ $$aMolina, P.
000163753 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000163753 773__ $$g51, 26 (2025), 49079-49090$$pCeram. int.$$tCeramics International$$x0272-8842
000163753 8564_ $$s12483057$$uhttps://zaguan.unizar.es/record/163753/files/texto_completo.pdf$$yVersión publicada
000163753 8564_ $$s2489356$$uhttps://zaguan.unizar.es/record/163753/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000163753 909CO $$ooai:zaguan.unizar.es:163753$$particulos$$pdriver
000163753 951__ $$a2025-10-30-14:40:17
000163753 980__ $$aARTICLE