Soccer helps build strong bones during growth: a systematic review and meta-analysis

AQ1

Gabriel Lozano-Berges, 1,2,3,4

Email glozano@unizar.es

Ángel Matute-Llorente, 1,2,3,4

Email amatute@unizar.es

Alejandro González-Agüero, 1,2,3,4

Email alexgonz@unizar.es

Alejandro Gómez-Bruton, 1,2,3,4

Email bruton@unizar.es

Alba Gómez-Cabello, 1,3,4,5

Email agomez@unizar.es

Aleiandro González-Agüero, 1,2,3,4 This author is already included as coauthor in the third position.

Germán Vicente-Rodríguez, 1,2,3,4

Email gervicen@unizar.es

José A. Casajús, 1,2,3,4⊠

Phone +34 876 55 37 55

Email joseant@unizar.es

¹ GENUD "Growth, Exercise, NUtrition, and Development' AQ2, Universidad de Zaragoza, Zaragoza, Spain

² Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing, Universidad de Zaragoza, Huesca, Spain

1 de 40

- Instituto Agroalimentario de Aragón-IA2-(Universidad de Zaragoza
 -CITA), Zaragoza, Spain
- ⁴ Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain

Received: 19 November 2016 / Accepted: 29 November 2017

Abstract

The aim of this study was to analyze the effects of soccer practice on bone in male and female children and adolescents. MEDLINE, PubMed, SPORTDiscus and Web of Science databases were searched for scientific articles published up to and including October 2016. Twenty-seven studies were included in this systematic review (13 in the The meta-analysis was meta-analysis). performed OpenMeta[Analyst] software. It is well documented that soccer practice during childhood provides positive effects on bone mineral content (BMC) and density (BMD) compared to sedentary behaviors and other sports, such as tennis, weightlifting, or swimming. Furthermore, soccer players present higher BMC and BMD in most weight-bearing sites such as the whole body, lumbar spine, hip, and legs. Moreover, bone differences were minimized between groups during prepuberty. Therefore, the maturity status should be considered when evaluating bone. According to meta-analysis results, soccer practice was positively associated with whole-body BMD either in males (mean difference 0.061; 95%CI, 0.042-0.079) or in females (mean difference 0.063; 95%CI, 0.026-0.099).

Conclusion: Soccer may be considered a sport that positively affects bone mass during growth. Pubertal soccer players presented increased bone mass compared to controls or other athletes; however, these bone differences are minimized during the prepubertal stage.

What is known:

• It has been described that childhood and adolescence are important

⁵ Centro Universitario de la Defensa, Zaragoza, Spain

periods for bone mass and structure.

• Previous studies have demonstrated that soccer participation improves bone mass in male and female children and adolescents.

What is new:

AQ3

- The present study reinforced that bone mass is positively stimulated by soccer practice during growth.
- The differences between soccer players and controls are more marked during puberty than prepuberty.
- Weight-bearing sites such as lumbar spine, hip, femoral neck, trochanter, intertrochanteric region and both legs are particularly sensitive to soccer actions.

Keywords

Football

Sports

Bone mass

Bone tissue

Abbreviations

BMC Bone mineral content

BMD Bone mineral density

DXA Dual-energy X-ray absorptiometry

pQCT Peripheral quantitative computed tomography

QUS Quantitative ultrasound system

SPA Single photon absorptiometry

WHO World Health Organization

Communicated by Mario Bianchetti

Electronic supplementary material

The online version of this article (https://doi.org/10.1007/s00431-017-3060-3) contains supplementary material, which is available to authorized users.

Introduction

Osteopenia and osteoporosis are important diseases worldwide and are

characterized by low bone mineral density (BMD) and microarchitectural deterioration [4]. These diseases appear mainly in the elderly causing morbidity, mortality, and high economic costs to society [8]. Nevertheless, childhood and adolescence have been described as critical periods to counteract them because 26% of the adult bone mineral content (BMC) is accumulated at the ages of approximately 12 and 14 years in females and males [5], respectively. Thus, appropriate bone mass accretion during growth seems fundamental to reduce the risk of suffering bone fractures in advanced age [32].

Both BMC and BMD are mainly determined by genetics [1]; nevertheless, lifestyle factors such as physical exercise [42] and nutrition [15] can also influence them. However, not all factors have the same relevance in this regard [45]; and similarly, not all physical exercises or sports have equal repercussions on bone tissue [38]. Different sport classifications have been proposed as follows according to their osteogenic stimulus: high/odd /repetitive/low-impact sports [26] or weight-bearing/non-weight-bearing sports [21]. Cycling and swimming are classified as non-weight-bearing sports, while others such as gymnastics or soccer are classified as high-impact sports [38].

Bone improvements are strongly correlated with high-impact and weight-bearing sports but not as correlated with non-weight-bearing ones. A continued practice of a high-impact sport such as soccer during growth could help to maintain these improvements and to attain high BMC and BMD [38].

Several studies have reported positive effects of soccer participation on bone mass either in male or in female children and adolescents [12, 28, 43, 49]; however, some authors such as Zouch et al. [48] and Seabra et al. [34] have not demonstrated this positive effect of soccer on bone mass. On the other hand, only one study is focused on gender differences during childhood or adolescence [21].

Therefore, the aim of this systematic review and meta-analysis was to investigate the effects of soccer practice on bone mass in both genders and different pubertal stages in children and adolescents.

Materials and methods

AQ4

Data sources and search strategy

This review has been performed following the criteria and methodology established by the Preferred Reporting Items for Systematic reviews and Meta-Analyses Protocols (PRISMA-P) 2015 statement [22].

Journal articles were identified by searching in electronic databases and scanning references and lists of articles. The search strategy was applied to MEDLINE, PubMed, SPORTDiscus, and Web of Science up to and including October 2016.

The search strategy used to identify the articles in MEDLINE was as follows: ("Soccer" [Mesh] AND ("Bone Density" [Mesh] OR "Bone and Bones" [Mesh])) NOT "Soccer/injuries" [Mesh]. Moreover, "Humans" and "Child: birth-18 years" filters were applied. The search strategy used in PubMed was as follows: ((Soccer [Title/Abstract] OR Football [Title/Abstract]) AND (bone [Title/Abstract] AND (child* [Title/Abstract] OR adoles* [Title/Abstract] OR young [Title/Abstract] OR youth [Title/Abstract] OR *puber* [Title/Abstract] OR prepuber* [Title/Abstract]) NOT injur* [Title/Abstract]). The search strategy applied in SPORTDiscus was as follows: (Soccer [SU Subjects (Descriptors)]) AND (Bone density [SU Subjects (Descriptors)] OR Bone [SU Subjects (Descriptors)])) NOT soccer injuries [SU Subjects (Descriptors)]. The search strategy used in Web of Science was as follows: ((soccer AND ("bone density" OR "bone structure" OR "bone strength")) NOT "soccer injuries").

Two reviewers independently evaluated all studies. Titles and abstracts were examined, and full relevant articles were obtained and assessed using the inclusion and exclusion criteria described below. Inter-reviewer disagreements were resolved by consensus, and in some cases, a third reviewer was consulted to resolve disagreements.

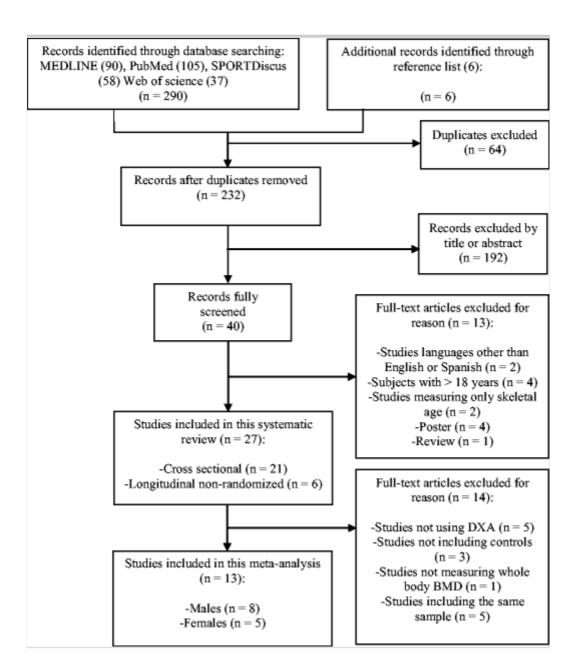
The inclusion criteria

Languages of studies: English and Spanish.

Types of studies: Cross-sectional, randomized, and non-randomized

controlled trials and longitudinal studies researching the effects of soccer practice on bone mass.

Types of participants: male and female soccer players (age range 6–18 years).


Types of outcomes: whole body, lumbar spine, leg, hip (femoral neck, trochanter, intertrochanteric region, and Ward's triangle subregions) BMC and BMD, bone architecture and ultrasound parameters (broadband ultrasound attenuation (BUA), speed of sound (SOS), and stiffness index).

The search summary

A total of 290 relevant articles were identified using the search strategies. Six additional articles were found through the reference lists. Following a review of titles and abstracts and excluding duplicates, the total number of articles was reduced to 40. Then, 27 articles met the inclusion criteria and were selected to be included in this review. On the other hand, the number of studies included in this meta-analysis, in comparison with the systematic review, were reduced from 27 to 13. Articles were excluded because of the following reasons: (1) DXA was not used [3, 7, 10, 17, 21]; (2) a control group was not included [23, 26, 40]; (3) whole-body BMD was not measured [33]; and (4) the same sample was included in different studies [12, 30, 43, 47, 48] (Fig. 1).

Fig. 1

PRISMA flow diagram of articles that were selected

The characteristics of each study included in this systematic review were summarized in different sections following PICOS format [22]: participants (P), intervention (I), comparison between groups or control group (C), outcomes (O), and study design (S).

Quality assessment

Studies were assessed using two different quality assessment tools, one for the cross-sectional studies proposed by Hinckson et al. [13] and another for the longitudinal studies proposed by Tooth et al. [39].

The first tool consisted of ten criteria that were classified in four categories (descriptive information, external validity, internal validity, and

clinical effects). All of them were scored as "Yes," "No," or "Not available." Afterwards, the final score of each article was obtained by the sum of the positive answers that were classified in a specific qualitative description (0–20%, bad; 21–40%, poor 41–60%, fair; 61–80%, good; and 81–100%, excellent).

In the second quality assessment tool [39], 33 criteria were assessed, scored as "Yes," "No," or "Not available" and classified in two categories: factors that could modify the effects and descriptive elements. Then, all positive scores were summed, and the average quality score of each item and study were independently calculated. However, a specific qualitative description was not available for these scores.

Statistical analysis

Statistical analyses were performed using OpenMeta [Analyst] software (OS X version obtained from http://www.cebm.brown.edu/openmeta/). Heterogeneity between studies was assessed by chi-squared test, expressed as inconsistency index (I^2) and interpreted as follows: $I^2 = 0-25\%$ no heterogeneity, $I^2 = 25-50\%$ moderate heterogeneity, $I^2 = 50-75\%$ high heterogeneity, and $I^2 = 75-100\%$ extreme heterogeneity. BMD mean differences between soccer players and controls and their 95% confidence intervals were calculated using a continuous random-effects model (DerSimonian-Laird method) due to significant heterogeneity between studies was found.

Results and discussion

Methodological quality

Supplementary Table 1 summarizes the details of the methodological quality assessment tool for cross-sectional studies. The average quality score was 77.6% (ranged from 60 to 100); therefore, the articles included in this review can be defined as good quality. Although two studies showed poor methodological quality, they were included in this review but their conclusions should be interpreted with caution.

In longitudinal studies, the average quality score was 17.8 out of 33 (ranged from 16/33 to 19/33) (Supplementary Table 2). However, all studies were included in this review, considering that the quality

assessment used was described as "very demanding" by other authors such as Tooth et al. [39] who applied this tool and showed similar results (17/33). The inclusion of this information may be of interest to enhance the quality of future longitudinal studies.

Effects of soccer practice on bone mass in children and adolescent soccer players

Due to the clear sexual dimorphism in bone development during growth [5], the outcomes of this review have been divided by gender. Tables 1 and 2 summarize studies concerning males and females. In addition, the text has been distributed according to the comparison group: controls, athletes, and among themselves.

Table 1

Effects of soccer training on bone mass in youth male soccer players

AO5

Study	Parti	cipants		Study	Training	Weekl
	Number	Sex Age		design	experience (years)	trainin (h)
McCulloch et al. [21]	SOC (23) SWI (20) CG (25)	M-F	15.3 ± 0.8 15.0 ± 1.1 14.9 ± 0.6	Cross- sectional	NA	10 18
Vicente- Rodriguez et al. [44]	SOC (53) CG (51)	M	9.3 ± 0.2 9.3 ± 0.2	Cross- sectional	1.8 ± 0.2	At leas

BA bone area, BB basketball, BMC bone mineral content, BMD bone mineral den sectional area, CSMI cross-sectional moment of inertia, CST circular strength trai child, DXA dual-energy X-ray absorptiometry, FNECK femoral neck, FNECK_W neck diameter, HOCK hockey players, HIS hip strength index, HSA hip structural intertrochanteric region, JUD judo, KAR karate, L2 second lumbar vertebrae, L4 spine, M male, NA not available, NOR normal training, PB pubescent, PPB prepu computed tomography, QUS quantitative ultrasound system, SB subtotal body, SC speed of sound, SI stiffness index, SPA single photon absorptiometry, SUM summ TN tanner, TOT total sample, TROCH trochanter, U15 under 15 years, U17 under volleyball, WB whole body, WHO World Health Organization, WIN winter, WLI v

C4d.	Partic	cipants		Study	Training	Weekl
Study	Number	Sex	Age	design	experience (years)	trainir (h)
Vicente- Rodriguez et al. [43]	SOC (17) CG (11)	M	8.7 ± 0.4 9.4 ± 0.3	Longitudinal study	1.8 ± 0.2	At leas 3
Zouch et al. [47]	SOC (39): 4H (21) 2H (18) CG (13)	M	11.7 ± 0.9 10.7 ± 0.6	Longitudinal study	At least 3	(4/2)
Nebigh et al. [24]	SOC (91): TN1 (11) TN2-3 (54) TN4-5 (26) CG (61): TN1 (6) TN2-3 (38) TN4-5 (17)	M	13.3 ± 0.2 13.5 ± 0.3 13.5 ± 0.3	Cross- sectional	3.9 ± 0.8	8

	Partic	ipants		Study	Training	Weekl
Study	Number	Sex	Age	design	experience (years)	trainir (h)
			12.8 ± 1.1 13.4 ± 0.5 13.3 ± 0.4			
Falk et al. [10]	CHI (90): 10–12 years SOC (26) HOCK(30) CG (34) ADO (92): 14–16 years SOC (30) HOCK (31) CG (31)	M	CHI: 11.1 ± 0.5 11.2 ± 0.8 11.1 ± 0.7 15.2 ± 0.9 15.2 ± 0.9	Cross- sectional	5.4 ± 1.0 4.7 ± 1.1 7.4 ± 2.3 9.0 ± 2.1	5.6 ± 1.6 6.4 ± 1.3 6.7 ± 1.8 6.5 ± 1.6
Sanchis et al. [33]	SOC (21) TEN (25) CG (22)	М	10.3 ± 0.2 10.6 ± 0.2 10.6 ± 0.2	Cross- sectional	1.8 ± 0.2 4.1 ± 1.8	4–6

C4 J	Parti	cipants		Study	Training	Weekl
Study	Number	Sex	Age	design	experience (years)	trainir (h)
Mota et al. [23]	SOC (71): U19 (12) U17 (20) U15 (39)	M	< 19 ≤ 17 ≤ 15	Cross- sectional	NA	NA
Madic et al. [17]	SOC (32) CG (30)	M	10.7 ± 0.5 11.2 ± 0.7	Cross- sectional	At least 1	10–15
Silva et al. [35]	SOC (10) SWI (12) TEN (10) CG (14)	M	14.7 ± 0.8 13.8 ± 2.5 14.1 ± 1.6 13.4 ± 2.0	Cross- sectional	At least 3	15.1 ± 0.8 17.3 ± 1.6 16 ± 0 .
Seabra et al. [34]	SOC (117) CG (34)	M	13.8 ± 1.5 13.3 ± 1.3	Cross- sectional	At least 3	≈ 5

C4 - 1	Parti	cipants		Study	Training	Weekl
Study	Number	Sex	Age	design	experience (years)	trainir (h)
Anliker et al. [3]	SOC (66)	M	15.1 ± 1.5	Cross- sectional	9.1 ± 2.5	10.7 ± 2.0
Zouch et al. [48]	PPB (35): SOC (22) CG (13) PB (41): SOC (26) CG (15)	M	11.9 ± 0.8 11.7 ± 0.6 12.9 ± 0.8 12.5 ± 0.6	Longitudinal study	At least 3	≈ 2-5

C4 J	Parti	cipants		Study	Training	Weekl trainir
Study	Number	Sex	Age	design	experience (years)	(h)
Plaza- Carmona et al. [31]	HG: SOC (14) SG: SOC (14) CG (14)	M	9.4 ± 0.2 8.9 ± 0.2 9.3 ± 0.1	Cross- sectional	At least 1	At leas 3
Zouch et al. [49]	SOC (42) CG (23)	M	12.0 ± 0.8 11.7 ± 0.6	Longitudinal study	At least 3	2–5

C4 J	Parti	cipants		Study	Training	Weekl trainir
Study	Number	Sex	Age	design	experience (years)	(h)
Agostinete et al. [2]	SOC (18) SWI (16) BB (14) JUD (12) KAR (9) CG (13)	M	12.4 ± 1.9 13.5 ± 1.5 13.4 ± 1.2 13.1 ± 1.8 11.9 ± 2.2	Longitudinal study	41.5 ± 43.8 57.1 ± 32.1 32.2 ± 22.2 47.6 ± 39.3 41.1 ± 37.4 months	NA

Study	Parti	cipants		Study	Training	Weekl
Study	Number	Sex	Age	design	experience (years)	trainir (h)
Vlachopoulos et al. [46]	SOC (37) SWI (41) CYC (29) CG (14)	M	12.8 ± 0.9 13.4 ± 1.0 12.3 ± 0.5	Cross-sectional	At least 3	10.0 ± 2.3 9.5 ± 5.1 5.1 ± 2.1

C4 J	Partic	cipants		Study	Training experience (years)	Weekl trainir (h)
Study	Number	Sex	Age	Study design		

Table 2Effects of soccer training on bone mass in youth female soccer players

Study	Partic	ipants		Study design	Training	Weekly training (h)
	Number	Sex	Age		experience (y)	
Soderman et al. [36]	SOC (51): ≤16 years (23) >16 years (18) CG (41) ≤16 years (28) >16 years (23)	F	16.3 ± 0.3 16.2 ± 1.3	Cross- sectional	8.1 ± 2.1	5.0 ± 1.7

AT artificial turf, BA bone area, BB basketball, BMC bone mineral content, BMD CG control group, CSMI cross-sectional moment of inertia, DXA dual-energy X-r FHEAD femoral head, FNECK femoral neck, FS the shaft, HB handball, HI high/INTROCH intertrochanteric region, IT intertrochanteric, LAC lacrosse, LSP lumb narrow neck, NN narrow neck, NS not specify, PAR parquet, PB pubertal, PPB propertitive/non-impact, RSK rope-skipping, RUN runners, SJT sprinters, jumpers, a soccer players, SOF softball, SPA single-photon absorptiometry, SWI swimmers, a volleyball, WB whole body, WTRI wards triangle, Z section modulus

64 1	Partic	ipants		Study	Training	Weekly
Study	Number	Sex	Age	design	experience (y)	training (h)
Pettersson et al. [28]	SOC (15) RSK (10) CG (25)	F	17.4 ± 0.8 17.8 ± 0.8 17.6 ± 0.8	Cross- sectional	8.7 ± 2.2 11.5 ± 1.7	5.1 ± 2.2 6.1 ± 3.4 0.9 ± 1.1
Bellew et al. [7]	SOC (16) SWI (29) WLI (19)	F	15.1 ± 1.2 12± 2.1 13.6 ± 1.3	Cross- sectional	4.9 ± 1.8 5.2 ± 2.5 5.1 ± 2.4	9.8 ± 4.0 9.7 ± 5.0 9.2 ± 4.9
Nichols et al. [26]	HI (93): SOC (22) SJT (29) SOF (15) VOL (11) TEN (10) LAC (6) RNI (68): RUN (56) SWI (12)	F	TOT 15.7 ± 1.3 HI 15.6 ± 1.2 RNI 15.6 ±	Cross- sectional	TOT 6.4 ± 3.4 HI 6.5 ± 3.4 RNI 6.1 ± 3.3	TOT 1.9 ± 0.4 HI 2.0 ± 0.4 RNI 1.9 ± 0.4

AT artificial turf, BA bone area, BB basketball, BMC bone mineral content, BMD CG control group, CSMI cross-sectional moment of inertia, DXA dual-energy X-r FHEAD femoral head, FNECK femoral neck, FS the shaft, HB handball, HI high/INTROCH intertrochanteric region, IT intertrochanteric, LAC lacrosse, LSP lumb narrow neck, NN narrow neck, NS not specify, PAR parquet, PB pubertal, PPB pre repetitive/non-impact, RSK rope-skipping, RUN runners, SJT sprinters, jumpers, a soccer players, SOF softball, SPA single-photon absorptiometry, SWI swimmers, a volleyball, WB whole body, WTRI wards triangle, Z section modulus

C4ndy	Partic	ipants		Study	Training	Weekly	
Study	Number	Sex	Age	design	experience (y)	training (h)	
			1.3				
Ferry et al. [11]	SOC (32) SWI (26) CG (15)	F	16.2 ± 0.7 15.9 ± 2.0	Cross- sectional	At least 7 At least 6	10	
Ferry et al. [12]	SOC (32) SWI (26) CG (15)	F	16.2 ± 0.7 15.9 ± 2.0	Longitudinal study	At least 7 At least 6	10	

AT artificial turf, BA bone area, BB basketball, BMC bone mineral content, BMD CG control group, CSMI cross-sectional moment of inertia, DXA dual-energy X-r FHEAD femoral head, FNECK femoral neck, FS the shaft, HB handball, HI high/INTROCH intertrochanteric region, IT intertrochanteric, LAC lacrosse, LSP lumb narrow neck, NN narrow neck, NS not specify, PAR parquet, PB pubertal, PPB prorepetitive/non-impact, RSK rope-skipping, RUN runners, SJT sprinters, jumpers, a soccer players, SOF softball, SPA single-photon absorptiometry, SWI swimmers, a volleyball, WB whole body, WTRI wards triangle, Z section modulus

Study	Participants			Study	Training	Weekly
	Number	Sex	Age	design	experience (y)	training (h)
Plaza- Carmona et al. [29]	SOC (10) SWI (13) CG(10)	F	8.2 ± 0.1 8.5 ± 0.1 9.7 ± 0.2	Cross- sectional	NA	2

AT artificial turf, BA bone area, BB basketball, BMC bone mineral content, BMD CG control group, CSMI cross-sectional moment of inertia, DXA dual-energy X-r FHEAD femoral head, FNECK femoral neck, FS the shaft, HB handball, HI high/INTROCH intertrochanteric region, IT intertrochanteric, LAC lacrosse, LSP lumb narrow neck, NN narrow neck, NS not specify, PAR parquet, PB pubertal, PPB prepetitive/non-impact, RSK rope-skipping, RUN runners, SJT sprinters, jumpers, a soccer players, SOF softball, SPA single-photon absorptiometry, SWI swimmers, a volleyball, WB whole body, WTRI wards triangle, Z section modulus

Study	Participants			Study	Training	Weekly
	Number	Sex	Age	design	experience (y)	training (h)
Ubago- Guisado et al. [41]	PPB (20): SOC (20) SWI (20) BB (20) HB (20) CG (20) PB (20): SOC (20) SWI (20) BB (20) HB (20) CG (20)	F	9.6 ± 1.0 9.2 ± 0.7 10.4 ± 0.5 9.9 ± 0.6 12.3 ± 0.6 12.2 ± 0.6 13.1 ± 0.3 12.7 ± 0.9 12.1 ± 0.7	Cross-sectional	3.9 ± 1.8 4.9 ± 2.0 3.4 ± 1.5 3.4 ± 1.4 4.5 ± 1.7 4.1 ± 2.4 4.4 ± 1.4 3.9 ± 1.8	3.0 ± 0.0 3.8 ± 1.9 2.9 ± 0.4 3.1 ± 0.2 3.6 ± 0.8 4.4 ± 2.7 3.1 ± 0.2 4.2 ± 2.8
Plaza- Carmona et al. [30]	PPB (20): SOC (10) CG (10) PEPB (45): SOC (30) CG (15)	F	8.2 ± 0.1 9.7 ± 0.2	Cross- sectional	2.5 ± 0.7 4.3 ± 1.8	2

AT artificial turf, BA bone area, BB basketball, BMC bone mineral content, BMD CG control group, CSMI cross-sectional moment of inertia, DXA dual-energy X-r FHEAD femoral head, FNECK femoral neck, FS the shaft, HB handball, HI high/INTROCH intertrochanteric region, IT intertrochanteric, LAC lacrosse, LSP lumb narrow neck, NN narrow neck, NS not specify, PAR parquet, PB pubertal, PPB propertitive/non-impact, RSK rope-skipping, RUN runners, SJT sprinters, jumpers, a soccer players, SOF softball, SPA single-photon absorptiometry, SWI swimmers, a volleyball, WB whole body, WTRI wards triangle, Z section modulus

Study	Participants			Study	Training	Weekly
	Number	Sex	Age	design	experience (y)	training (h)
			11.7 ± 0.1 10.9 ± 0.2			
Ubago- Guisado et al. [40]	PPB (60) SOC (11/9) (G/AT) BB (14/6) (SYN/PAR) HB (12/8) (SYN/SMO) PB (60) SOC (11/9) (G/AT) BB (7/13) (SYN/PAR) HB (8/12) (SYN/SMO)	F	10.0 ± 0.9 9.1 ± 0.9 10.3 ± 0.6 10.5 ± 0.6 10.0 ± 0.7 12.6 ± 0.6 12.0 ± 0.6 13.3 ±	Cross sectional	4.3 ± 1.4 3.3 ± 2.2 3.1 ± 1.5 4.0 ± 1.6 3.3 ± 1.4 3.5 ± 1.3 4.6 ± 1.4 4.3 ± 2.1 4.1 ± 2.0 4.5 ± 1.1 4.4 ± 2.2 3.6 ± 1.4	3.0 ± 0.0 3.0 ± 0.0 2.8 ± 0.5 3.0 ± 0.0 3.0 ± 0.0 3.1 ± 0.4 3.5 ± 0.8 3.7 ± 0.7 3.2 ± 0.3 3.0 ± 0.1 6.5 ± 3.4 6.0 ± 2.4

AT artificial turf, BA bone area, BB basketball, BMC bone mineral content, BMD CG control group, CSMI cross-sectional moment of inertia, DXA dual-energy X-r FHEAD femoral head, FNECK femoral neck, FS the shaft, HB handball, HI high/INTROCH intertrochanteric region, IT intertrochanteric, LAC lacrosse, LSP lumb narrow neck, NN narrow neck, NS not specify, PAR parquet, PB pubertal, PPB prorepetitive/non-impact, RSK rope-skipping, RUN runners, SJT sprinters, jumpers, a soccer players, SOF softball, SPA single-photon absorptiometry, SWI swimmers, a volleyball, WB whole body, WTRI wards triangle, Z section modulus

G4 I	Participants			Study	Training	Weekly
Study	Number	Sex	Age	design	experience (y)	training (h)
			0.3 13.0 ± 1.0 12.5 ± 0.8			

AT artificial turf, BA bone area, BB basketball, BMC bone mineral content, BMD CG control group, CSMI cross-sectional moment of inertia, DXA dual-energy X-r FHEAD femoral head, FNECK femoral neck, FS the shaft, HB handball, HI high/INTROCH intertrochanteric region, IT intertrochanteric, LAC lacrosse, LSP lumb narrow neck, NN narrow neck, NS not specify, PAR parquet, PB pubertal, PPB prepetitive/non-impact, RSK rope-skipping, RUN runners, SJT sprinters, jumpers, a soccer players, SOF softball, SPA single-photon absorptiometry, SWI swimmers, a volleyball, WB whole body, WTRI wards triangle, Z section modulus

Gender differences

The only study evaluating gender differences in bone mass between male and female adolescent soccer players was performed by McCulloch et al. [21], finding no differences in BMC or in BMD between genders but showing a tendency towards higher bone mass in female soccer players compared to their male counterparts. These results could be explained by the fact that females accumulate BMC earlier than males [18, 19].

Males

Comparison between soccer players and controls The first study that reported on bone mass in male children and adolescent soccer players and age-matched controls was performed by McCulloch et al. [21]. They observed that BMD tended to be increased in children and adolescent soccer players compared with controls, but these differences were not significant. Moreover, Vicente-Rodríguez et al. [44] showed that prepubertal soccer players had increased BMC at lower limbs and trochanter and increased BMD at pelvis, legs, lumbar spine, proximal femur, femoral neck, and trochanter compared with the control group. Nebigh et al. [24] showed similar results in pubertal but not in prepubertal soccer players compared to controls. In addition, Seabra et al. [34] also showed increased whole-body and lower limb BMD in soccer players compared to controls but not in the lumbar spine. Even considering other possible confounders, soccer participation by itself seems to be associated

with increased bone mass. Considering this, Plaza-Carmona et al. [31] studied the influence of the playing surface (soft vs. hard ground). Independent of the playing surface, prepubertal soccer players showed increased BMC and BMD in most weight-bearing sites compared to controls, and no differences were found between playing surface groups. Although most of the studies use DXA, the quantitative ultrasound system (QUS) is another method to measure bone properties related to bone density and structure such as speed of sound (SOS), broadband ultrasound attenuation, and stiffness index. Madic et al. [17] used QUS reporting increased calcaneus SOS in soccer players compared to those of control subjects. In addition, a recent study performed by Vlachopoulos et al. [46] also reported that soccer players demonstrated an increased stiffness index, BMC, BMD, and bone structure at most weight-bearing sited compared to controls.

Today, few longitudinal studies have evaluated the effects of soccer practice on bone tissue during growth. Vicente-Rodriguez et al. [43], in a 3-year follow-up longitudinal study, reported greater increases in BMC and BMD parameters at the whole body, lower limbs, lumbar spine, femoral neck, and intertrochanteric region as well as a hypertrophic effect on bone in soccer players compared to controls. Three longitudinal studies performed by Zouch et al. [47, 48, 49] compared the bone tissue between two different activity groups. In the first study [47], although no differences were shown at baseline between soccer players and controls, positive increments for BMC at whole body, lumbar spine, total hip, and lower limbs were found in soccer players after 10 months of training, with higher increases in those who trained for 4 h per week compared with those who trained for 2 h per week. In the second study [48], participants were split into prepubertal and pubertal groups and were followed up for 1 year. Similarly, at baseline, prepubertal soccer players and controls demonstrated no BMC differences; however, pubertal soccer players showed increased BMC compared to controls. After a 1-year follow-up, greater increases for BMC at whole body, total hip, and lower limbs were observed for prepubertal soccer players compared to controls, whereas pubertal players also showed greater increases at lumbar spine. When both groups of soccer players were compared, greater BMC increases were reported in pubertal players than in prepubertal players. The last study performed by Zouch et al. [49] demonstrated increased BMD in

whole body and both legs at baseline. After 3 years, soccer players presented increased BMC and BMD gains at whole body, lumbar spine, total hip, and lower limbs compared to the control group. In contrast, a study performed by Agostinete et al. [2] found no BMD accrual differences between young soccer players and controls after 9-month follow-up. It is important to state that the previous study had the lowest duration of follow-up and the hours per week of training in each sport were not reported.

The high-impact actions in the lower limbs caused by soccer practice could explain the positive influence of this sport on different weight-bearing sites such as pelvis, lower limbs, lumbar spine, and proximal femur. However, BMC and BMD differences at hip should be cautiously interpreted because the hip is a site with high variability during bone development [9]. Moreover, these differences between soccer players and controls are more marked in pubertal than prepubertal soccer players. On the other hand, the number of hours and days of training should be considered, as prepubertal soccer players perform fewer hours of training and have a shorter history of practice compared to pubertal ones.

Comparison with other athletes McCulloch et al. [21] compared soccer players with other athletes (including swimmers) and showed no differences in BMD at calcaneus. In addition, Falk et al. [10] found no SOS differences at tibia but increases at the radius in hockey players compared to soccer players. In contrast, Sanchis-Moysi et al. [33] found that adolescent soccer players had increased femoral neck BMD compared to tennis players, but these results were not corroborated by Silva et al. [35], although they showed increased values in these two groups compared with swimmers. Compared with previous studies, Vlachopoulos et al. [46] reported that soccer players had better bone structure, stiffness index, and BMD at most weight-bearing sites compared to swimmers and cyclists. However, arms, lumbar spine, and shaft bone area and arms BMD and BMC were increased in swimmers compared to soccer players. In addition, a longitudinal study performed by Agostinete et al. [2] showed that basketball players increased more whole body and arms BMD than soccer players.

These studies revealed that the differences in bone tissue at each bone site

evaluated are highly influenced by the environment and the type of specific actions of each sport, as has been previously suggested [14]. Moreover, finding that there were no bone differences in lower limbs comparing soccer with hockey and tennis could be explained by the greater number of years of practice and training among hockey and tennis players compared with soccer players.

Comparison between soccer players Mota et al. [23] studied adolescent soccer players comparing them in three age groups and reported that soccer players who were under 17 years old showed increased BMD in the non-dominant leg when compared to the dominant leg, while those under 19 and under 15 presented this tendency without a significant difference. In the study by Ankiler et al. [3] increased bone mass and better bone geometry was shown in the non-dominant leg compared to the dominant leg evaluated with peripheral quantitative computed tomography (pQCT).

These differences between both legs could be explained by the fact that the non-dominant leg performs the majority of jumps and supports the action of the dominant leg while kicking. Thus, the loading suffered by the non-dominant leg is higher than that experienced by the dominant leg [34].

Hormone levels Discrepancies between studies in the effect of soccer on bone tissue during growth could be influenced by bone mineral accrual differences during growth [6] and the increases of important secreted hormones that influence bone mass during puberty [20]. Nevertheless, Nebigh et al. [24] reported increased IGF-1 and IGFBP-3 concentrations in prepubertal soccer players compared to age-matched controls, although these authors showed no differences in BMC and BMD between groups. However, hormonal concentrations, BMC and BMD variables studied in the pubertal soccer players were increased compared to those reported in controls. Therefore, these bone improvements derived from soccer training could be influenced by the levels of hormones such as IGF-1, IGFBP-3, GH, and testosterone. Moreover, soccer training during prepubertal stage could increase these hormones and consequently promote bone improvements.

In summary, bone properties are slightly improved in prepubertal soccer

players compared to older soccer players, but at the same time, these improvements are greater in prepubertal soccer players compared to control subjects [48]. These bone differences between development stages could also be explained by the fact that pubertal soccer players have probably been exposed to soccer strains for more years than prepubertal soccer players. Therefore, prepuberty and puberty are important stages in the bone development process where playing some high-impact sport such as soccer could be beneficial to improving bone mass.

Each sport could have different effects on bone tissue depending on the biomechanics and the type of specific actions executed [10, 27]. Soccer players suffer more strains in their lower limbs, while other athletes such as hockey and tennis players have more strains in their upper limbs because actions are made with an implement such as a stick or a racket. These differences are minimized between high-impact sports; therefore, it is not clear if soccer practice provokes increased bone changes at weight-bearing sites compared to other high-impact sports.

Females

Comparison between soccer players and controls Soderman et al. [36] first evaluated bone characteristics between female soccer players and control subjects, finding increased BMD in every studied variable. Dividing the sample into two age-groups (younger or older than 16), younger players only showed differences at trochanter BMD, while the older players presented increased BMD at whole body and all weight-bearing sites compared to the control group. Ubago-Guisado et al. [41] reported increased femoral neck and trochanter BMC and intertrochanteric region BMD in prepubertal female soccer players compared to controls. They also showed increased BMC and BMD at most weight-bearing sites in pubertal soccer players compared to controls. Moreover, a recent study by Plaza-Carmona et al. [30], which compared bone mass and divided the groups by pubertal status, found similar results.

These results support that the osteogenic effect caused by high-impact actions from soccer is more evident in older athletes. Although younger athletes showed no significant differences compared with controls, a tendency existed towards increased BMC and BMD compared to controls,

suggesting that soccer may have a positive influence on bone mass during growth. As suggested for males, the greater benefits found in older soccer players could be because older soccer players have been exposed to soccer loads for more years.

Comparison between soccer players and other athletes Petterson et al. [28] compared female soccer players with rope skippers, and no raw differences between athletes were observed, but when adjusting for lean body mass, soccer players showed decreased total body, lumbar spine, and right humerus BMD compared to rope skippers. In addition, soccer players also showed decreased tibia and radius BMC and femur and tibia bone area compared to rope skippers. The high impacts that rope skippers receive need to be considered.

Ferry et al. [11] compared female soccer players and swimmers and positive bone effects were only reported in soccer players, as also suggested by Plaza-Carmona et al. [29], who found increased BMC at total body, hip, and legs in female soccer players compared to swimmers. Bellew et al. [7] showed increased BMD in female soccer players compared to swimmers and weight lifters. In addition, they compared these results to normative data and found that those values in female adolescent soccer players were higher than those expected in adult controls. Ubago-Guisado et al. [41] compared female practicing soccer, swimming, handball, and basketball in prepubertal and pubertal stages. Prepubertal soccer players presented increased hip, femoral neck, and trochanter BMC and trochanter BMD compared to swimmers and higher BMC at femoral neck and trochanter than basketball players. Pubertal soccer players showed increased whole body, hip, femoral neck, trochanter and legs BMC, and pelvis and hip BMD compared to pubertal swimmers.

The study performed by Ferry et al. [12] was the only longitudinal study evaluating the effects of soccer practice on bone tissue in female soccer players. These authors reported that soccer practice improved bone characteristics after 1 year of practice, supporting the cross-sectional findings, whereas 1 year of swimming practice caused neither changes nor enhancements in bone mass.

The differences between athletes that practice high-impact sports such as

soccer, basketball, or rope-skipping remain unclear. Although these sports are composed of high-impact movements, the loading patterns seem to be different, especially in relation to the direction of the forces, being that compressive forces are more common during jumps and that tensile forces are more common during versatile movements [28]. Therefore, team sports characterized by dynamic and versatile movements such as soccer seem to be the most adequate sports to provoke the best effect on bone [16]. However, the existence of some sports or physical exercises, such as rope-skipping (characterized by compressive forces and a continue high-impact loads), which could be more osteogenic than soccer, should be considered.

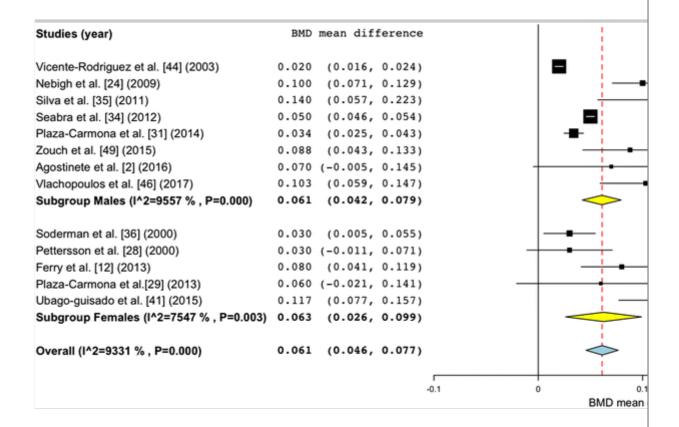
Comparison between soccer players Ubago-Guisado et al. [40] compared bone mass between soccer players who trained on the ground and those who trained on artificial turf. Moreover, the comparisons were stratified according to maturity status. They only reported higher hip BMC and BMD in pubertal soccer players who trained on the ground when compared to their counterparts who trained on artificial turf. However, no differences were found between prepubertal soccer groups. These results could be explained by the fact that prepubertal soccer players trained and played for fewer years and hours per week than their pubertal peers. On the other hand, because ground is harder than artificial turf, those soccer players who trained on the ground could have a higher osteogenic stimulus.

Menstrual cycle Nichols et al. [26] evaluated the interaction between menstrual status and the type of load caused by several sports in female soccer players. All bone comparisons performed in the study demonstrated that normal menstrual status and the practice of high-impact sports are the best interaction for obtaining high BMC and BMD.

BMC and BMD are influenced by the practice of high-impact sports such as soccer; nevertheless, menstrual status during adolescence highly influenced the bone mineralization and should therefore be considered [26]. It has also been described that menstrual irregularities could negatively affect bone independently of the practiced activity [26], causing loss of BMD and stress fractures in these athletes [37].

In summary, although there are few studies regarding young female soccer

players, most of the studies included in this review reported increased bone mass values compared to other athletes and age-matched control subjects [7, 12, 25, 29, 36, 41], with only Petterson et al. [28], reporting decreased BMD compared with rope-skippers. Both sports are characterized by high ground reaction forces, but the direction of the forces is different: compressive forces are caused during jumping, which is the most repeated action while rope-skipping, and tensile forces are caused during the versatile movements that are typically found in soccer. Although soccer practice with a dynamic loading regimen characterized by unusual movements could cause a greater effect on bone mass [16], rope skippers in this study were more exposed to high-impact strains than soccer players. Moreover, sport-specific exercise during soccer training should be registered because this training could be developed at a low intensity, without including so many high-impact actions such as jumps, kicks, starts or stops.


The effects of maturity stage on bone mass has been studied in young female soccer players, and the differences between soccer players and controls are more marked in pubertal than prepubertal soccer players. These results could be explained by the fact that bone development is more advanced in pubertal players than in prepubertal ones. Moreover, prepubertal soccer players have trained for fewer years than pubertal soccer player; therefore, the time of exposure is also lower, and this needs to be taken into account. In addition, those soccer players who had normal menstrual status and practiced high/odd-impact sports could be in the best condition to develop bone.

Meta-analysis results

A forest plot of whole-body BMD comparison between soccer players and controls separated by gender is shown in Fig. 2. Analyzing together the studies including male or female participants, BMD mean difference between soccer players and controls was 0.061 (95% CI, 0.046–0.077) associated with an extreme heterogeneity ($I^2 = 93\%$). Analyzing males and females separately, BMD mean differences between soccer players and controls was 0.061 (95% CI, 0.042–0.079) in males and 0.063 (95% CI, 0.026–0.099) in females. Both gender analyses presented extreme heterogeneity (males: $I^2 = 96\%$; females: $I^2 = 75\%$).

Fig. 2

Forest plot of whole-body BMD mean difference between soccer players and controls. BMD bone mineral density, CI confidence interval 95% CI is missing in the second column label. Thus, Fig2. has been attached. \vec{L} , \vec{L} inconsistency index

The results of this meta-analysis reinforced the positive effects of soccer practice on bone mass during growth demonstrated along this systematic review. Furthermore, these analyses highlighted that positive effects are similar independently of the gender.

Limitations

Some limitations of this review should be recognized. Studies in languages other than English or Spanish were not included in this review; therefore, a language bias may be present. The age range of this systematic review is wide, from 8 to 18 years old. It is possible that, if a smaller age range was included, different results might have emerged due to the known differences in bone development between childhood and adolescence. Moreover, there were few studies of growing soccer players that evaluated bone strength using pQCT or hip structural analysis (HSA). Finally, descriptive variables that could modify bone mass values such as

hours per week of soccer training, years of soccer practice, and calcium intake were not evaluated in several studies included in this review.

Conclusion

Overall, positive effects of soccer practice on bone mass at most weightbearing sites during prepubertal and pubertal stages have been highly demonstrated. However, these effects are more marked in pubertal compared to prepubertal soccer players partially because pubertal athletes presented a bone development that was more advanced, had been playing soccer for more years, and have consequently been exposed to soccer loadings for more time. Lumbar spine, hip, femoral neck, trochanter, intertrochanteric region, and both legs are particularly sensitive to the mechanical loads elicited by soccer actions in either prepubertal and pubertal soccer players or male and female athletes. Moreover, the majority of osteoporotic fractures during adulthood occur in these weightbearing sites, especially at lumbar spine and hip. Thus, soccer practice could be an adequate sport to reduce future osteoporotic problems in adults. Therefore, beginning to play soccer at the prepubertal stage and continuing during puberty seems to be appropriate for improving bone health during those developmental stages and in the future.

Perspective

Although positive effects of soccer practice on bone tissue in children and adolescents have been demonstrated, some questions remain unanswered.

The optimal type and amount of training for achieving the greatest bone improvements are still unknown as well as the adequate age or range of ages (if any) to begin playing soccer. Other parameters, such as the types of surface and shoes, should be taken into account because they could affect bone accretion. Moreover, the effects of soccer training on bone mass during a season or several seasons have been scarcely studied as well as the differences on BMC and BMD between prepubertal and pubertal soccer players. Therefore, future studies should take these considerations into account and attempt to answer them.

Authors' Contributions

All the authors have been actively involved in the planning and enactment

of the study. JAC and GVR were the main researchers in the present study, and GLB was the first author. AML, AGA, AGB, and AGC were co-researchers. GLB and AML independently evaluated all studies, and AGA resolved inter-reviewer disagreements. GLB drafted the document, and AML, AGA, AGB, and AGC critically reviewed the document. All authors have read and approved of the manuscript.

Funding

This work was funded by the Spanish "Ministerio de Economía y Competitividad" (Project DEP 2012-32724). GLB received a Grant FPU 2013 (FPU13/02111) from the "Ministerio de Educación, Cultura y Deporte". AML received a Grant (AP2012/02854) from the "Ministerio de Educación, Cultura y Deporte." AGB received a Grant FPI 2012 (bes-2012-051888) from the "Ministerio de Economía y Competitividad."

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Supplementary Table 1 Supplementary Table 2

(DOCX 47 kb) (DOCX 39 kb)

References

- 1. Abrams SA, Griffin IJ, Hawthorne KM, Chen Z, Gunn SK, Wilde M, Darlington G, Shypailo RJ, Ellis KJ (2005) Vitamin D receptor Fok1 polymorphisms affect calcium absorption, kinetics, and bone mineralization rates during puberty. J Bone Mineral Res 20(6):945–953. https://doi.org/10.1359/jbmr.050114
- 2. Agostinete RR, Lynch KR, Gobbo LA, Lima MC, Ito IH, Luiz-de-Marco R, Rodrigues-Junior MA, Fernandes RA (2016) Basketball

- affects bone mineral density accrual in boys more than swimming and other impact sports: 9-mo follow-up. J Clin Densitom 19(3):375–381. https://doi.org/10.1016/j.jocd.2016.04.006
- 3. Anliker E, Sonderegger A, Toigo M (2013) Side-to-side differences in the lower leg muscle-bone unit in male soccer players. Med Sci Sports Exerc 45(8):1545–1552. https://doi.org/10.1249/MSS.0b013e31828cb712
- 4. Anonymous (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650
- 5. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 14(10):1672–1679. https://doi.org/10.1249/MSS.0b013e31828cb712
- 6. Bass SL (2000) The prepubertal years: a uniquely opportune stage of growth when the skeleton is most responsive to exercise? Sports Med 30(2):73–78. https://doi.org/10.2165/00007256-200030020-00001
- 7. Bellew JW, Gehrig L (2006) A comparison of bone mineral density in adolescent female swimmers, soccer players, and weight lifters. Pediatr Phys Ther 18(1):19–22. https://doi.org/10.1097/01.pep.0000200952.63544.16
- 8. Cooper C, Atkinson EJ, Jacobsen SJ, O'Fallon WM, Melton LJ (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137(9):1001–1005. https://doi.org/10.1093/oxfordjournals.aje.a116756
- 9. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon CM (2014) Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom 17(2):225–242. https://doi.org/10.1016/j.jocd.2014.01.003
- 10. Falk B, Braid S, Moore M, Yao M, Sullivan P, Klentrou N (2010)

- Bone properties in child and adolescent male hockey and soccer players. J Sci Med Sport 13(4):387–391. https://doi.org/10.1016/j.jsams.2009.03.011
- 11. Ferry B, Duclos M, Burt L, Therre P, Le Gall F, Jaffre C, Courteix D (2011) Bone geometry and strength adaptations to physical constraints inherent in different sports: comparison between elite female soccer players and swimmers. J Bone Miner Metab 29(3):342–351. https://doi.org/10.1007/s00774-010-0226-8
- 12. Ferry B, Lespessailles E, Rochcongar P, Duclos M, Courteix D (2013) Bone health during late adolescence: effects of an 8-month training program on bone geometry in female athletes. Joint Bone Spine 80(1):57–63. https://doi.org/10.1016/j.jbspin.2012.01.006
- 13. Hinckson EA, Curtis A (2013) Measuring physical activity in children and youth living with intellectual disabilities: a systematic review. Res Dev Disabil 34(1):72–86. https://doi.org/10.1016/j.ridd.2012.07.022
- 14. Iuliano-Burns S, Stone J, Hopper JL, Seeman E (2005) Diet and exercise during growth have site-specific skeletal effects: a co-twin control study. Osteoporos Int 16(10):1225–1232. https://doi.org/10.1007/s00198-004-1830-z
- 15. Julian-Almarcegui C, Gomez-Cabello A, Huybrechts I, Gonzalez-Aguero A, Kaufman JM, Casajus JA, Vicente-Rodriguez G (2015) Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: a systematic review. Nutr Rev 73(3):127–139. https://doi.org/10.1093/nutrit/nuu065
- 16. Lanyon LE (1992) Control of bone architecture by functional load bearing. J Bone Miner Res 7(Suppl 2):S369–S375. https://doi.org/10.1002/jbmr.5650071403
- 17. Madic D, Obradovic B, Smajic M, Obradovic J, Maric D, Boskovic K (2010) Status of bone mineral content and body composition in boys engaged in intensive physical activity. Vojnosanit Pregl 67(5):386–390. https://doi.org/10.2298/VSP1005386M

- 18. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44(235):291–303. https://doi.org/10.1136/adc.44.235.291
- 19. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45(239):13–23. https://doi.org/10.1136/adc.45.239.13
- 20. Mauras N, Rogol AD, Haymond MW, Veldhuis JD (1996) Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Horm Res 45(1–2):74–80. https://doi.org/10.1159/000184763
- 21. McCulloch RG, Bailey DA, Whalen RL, Houston CS, Faulkner RA, Craven BR (1992) Bone density and bone mineral content of adolescent soccer athletes and competitive swimmers. Pediatr Exerc Sci 4(4):319–330. https://doi.org/10.1123/pes.4.4.319
- 22. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1. https://doi.org/10.1186/2046-4053-4-1
- 23. Mota S, Brito J, Passos E, Marques E, Mota J, Seabra A, Rebelo A (2010) Variation of isokinetic strength and bone mineral density in youth Portuguese soccer players with age. Open Sports Sci J 3(1):49–51. https://doi.org/10.2174/1875399X01003010049
- 24. Nebigh A, Rebai H, Elloumi M, Bahlous A, Zouch M, Zaouali M, Alexandre C, Sellami S, Tabka Z (2009) Bone mineral density of young boy soccer players at different pubertal stages: relationships with hormonal concentration. Joint Bone Spine 76(1):63–69. https://doi.org/10.1016/j.jbspin.2008.03.002
- 25. Nichols DL, Sanborn CF, Essery EV (2007) Bone density and young athletic women. An update Sports Med 37(11):1001–1014. https://doi.org/10.2165/00007256-200737110-00006
- 26. Nichols JF, Rauh MJ, Barrack MT, Barkai HS (2007) Bone

- mineral density in female high school athletes: interactions of menstrual function and type of mechanical loading. Bone 41(3):371–377. https://doi.org/10.1016/j.bone.2007.05.003
- 27. Nordstrom P, Pettersson U, Lorentzon R (1998) Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J Bone Miner Res 13(7):1141–1148. https://doi.org/10.1359/jbmr.1998.13.7.1141
- 28. Pettersson U, Nordstrom P, Alfredson H, Henriksson-Larsen K, Lorentzon R (2000) Effect of high impact activity on bone mass and size in adolescent females: a comparative study between two different types of sports. Calcif Tissue Int 67(3):207–214. https://doi.org/10.1007/s002230001131
- 29. Plaza-Carmona M, Ubago-Guisado E, Sánchez-Sánchez J, Felipe JL, Fernández-Luna A, García-Unanue J, Burillo P, Gallardo L (2013) Body composition and physical fitness in prepubertal girls swimmers and soccer players. JSHR 5(3):251–258
- 30. Plaza-Carmona M, Vicente-Rodriguez G, Gomez-Cabello A, Martin-Garcia M, Sanchez-Sanchez J, Gallardo L, Ara I (2016) Higher bone mass in prepubertal and peripubertal female footballers. Eur J Sport Sci 16(7):877–883. https://doi.org/10.1080/17461391.2016.1144794
- 31. Plaza-Carmona MP, Vicente-Rodriguez G, Martin-Garcia M, Burillo P, Felipe JL, Mata E, Casajus JA, Gallardo L, Ara I (2014) Influence of hard vs. soft ground surfaces on bone accretion in prepubertal footballers. Int J Sports Med 35(1):55–61. https://doi.org/10.1055/s-0033-1345140
- 32. Saggese G, Baroncelli GI, Bertelloni S (2002) Puberty and bone development. Best Pract Res Clin Endocrinol Metab 16(1):53–64. https://doi.org/10.1053/beem.2001.0180
- 33. Sanchis-Moysi J, Dorado C, Olmedillas H, Serrano-Sanchez JA, Calbet JA (2010) Bone mass in prepubertal tennis players. Int J Sports Med 31(6):416–420. https://doi.org/10.1055/s-0030-1248331

- 34. Seabra A, Marques E, Brito J, Krustrup P, Abreu S, Oliveira J, Rego C, Mota J, Rebelo A (2012) Muscle strength and soccer practice as major determinants of bone mineral density in adolescents. Joint Bone Spine 79(4):403–408. https://doi.org/10.1016/j.jbspin.2011.09.003
- 35. Silva CC, Goldberg TB, Teixeira AS, Dalmas JC (2011) The impact of different types of physical activity on total and regional bone mineral density in young Brazilian athletes. J Sports Sci 29(3):227–234. https://doi.org/10.1080/02640414.2010.529456
- 36. Soderman K, Bergstrom E, Lorentzon R, Alfredson H (2000) Bone mass and muscle strength in young female soccer players. Calcif Tissue Int 67(4):297–303. https://doi.org/10.1007/s002230001149
- 37. Sundgot-Borgen J, Torstveit MK (2007) The female football player, disordered eating, menstrual function and bone health. Br J Sports Med 41(Suppl 1):i68–i72. https://doi.org/10.1136/bjsm.2007.038018
- 38. Tenforde AS, Fredericson M (2011) Influence of sports participation on bone health in the young athlete: a review of the literature. Pm R 3(9):861–867. https://doi.org/10.1016/j.pmrj.2011.05.019
- 39. Tooth L, Ware R, Bain C, Purdie DM, Dobson A (2005) Quality of reporting of observational longitudinal research. Am J Epidemiol 161(3):280–288. https://doi.org/10.1093/aje/kwi042
- 40. Ubago-Guisado E, Garcia-Unanue J, Lopez-Fernandez J, Sanchez-Sanchez J, Gallardo L (2016) Association of different types of playing surfaces with bone mass in growing girls. J Sports Sci 35(15):1484–1492. https://doi.org/10.1080/02640414.2016.1223328
- 41. Ubago-Guisado E, Gomez-Cabello A, Sanchez-Sanchez J, Garcia-Unanue J, Gallardo L (2015) Influence of different sports on bone mass in growing girls. J Sports Sci 33(16):1–9. https://doi.org/10.1080/02640414.2015.1004639

- 42. Vicente-Rodriguez G (2006) How does exercise affect bone development during growth? Sports Med 36(7):561–569. https://doi.org/10.2165/00007256-200636070-00002
- 43. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet JA (2004) High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc 36(10):1789–1795. https://doi.org/10.1249/01.MSS.0000142311.75866.D7
- 44. Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, Serrano-Sanchez JA, Dorado C, Calbet JA (2003) Enhanced bone mass and physical fitness in prepubescent footballers. Bone 33(5):853–859. https://doi.org/10.1016/j.bone.2003.08.003
- 45. Villareal DT, Fontana L, Weiss EP, Racette SB, Steger-May K, Schechtman KB, Klein S, Holloszy JO (2006) Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med 166(22):2502–2510. https://doi.org/10.1001/archinte.166.22.2502
- 46. Vlachopoulos D, Barker AR, Williams CA, Arngrimsson SA, Knapp KM, Metcalf BS, Fatouros IG, Moreno LA, Gracia-Marco L (2017) The impact of sport participation on bone mass and geometry in adolescent males. Med Sci Sports Exerc 49(2):317–326. https://doi.org/10.1249/mss.0000000000001091
- 47. Zouch M, Jaffre C, Thomas T, Frere D, Courteix D, Vico L, Alexandre C (2008) Long-term soccer practice increases bone mineral content gain in prepubescent boys. Joint Bone Spine 75(1):41–49. https://doi.org/10.1016/j.jbspin.2006.12.008
- 48. Zouch M, Vico L, Frere D, Tabka Z, Alexandre C (2013) Young male soccer players exhibit additional bone mineral acquisition during the peripubertal period: 1-year longitudinal study. Eur J Pediatr 173(1):53–61. https://doi.org/10.1007/s00431-013-2115-3
- 49. Zouch M, Zribi A, Alexandre C, Chaari H, Frere D, Tabka Z, Vico L (2015) Soccer increases bone mass in prepubescent boys during

growth: a 3-yr longitudinal study. J Clin Densitom 18(2):179–186. https://doi.org/10.1016/j.jocd.2014.10.004