000164014 001__ 164014
000164014 005__ 20251121161350.0
000164014 0247_ $$2doi$$a10.1021/acs.analchem.3c04473
000164014 0248_ $$2sideral$$a135806
000164014 037__ $$aART-2023-135806
000164014 041__ $$aeng
000164014 100__ $$aVan Acker, Thibaut
000164014 245__ $$aLaser Ablation for Nondestructive Sampling of Microplastics in Single-Particle ICP-Mass Spectrometry
000164014 260__ $$c2023
000164014 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164014 5203_ $$aIn this work, laser ablation (LA) was characterized as a method for sampling and introducing microplastic particles (MPs) into an inductively coupled plasma (ICP) for subsequent 13C+ monitoring using an ICP-mass spectrometer operated in single-event mode. MPs of different types (PS, PMMA, and PVC) and sizes (2–20 µm) were introduced intactly. The laser energy density did not affect the particle sampling across a wide range (0.25–6.00 J cm–2). Single-shot analysis separated clustered MPs (2–7 MPs per cluster) during the LA and particle transport processes, allowing the temporally resolved analysis of the individual constituting MPs. Line scanning showed superior performance when using a small laser beam diameter combined with a high repetition rate. The 13C+ signal intensity correlated linearly (R2 >0.9945) with the absolute C mass in a 2–10 µm size range, while the use of He in the collision-reaction cell (CRC) allowed extension of the linear range to 20 µm. The LA approach generated narrower 13C+ signal distributions than the traditional solution-based approach (dry versus wet plasma conditions) and proved successful for the analysis of a mixed suspension (containing four sizes of PS MPs in a 2–5 µm size range) and for sampling MPs from PVDF and glass microfiber filters, with the latter offering a lower background.
000164014 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E43-20R$$9info:eu-repo/grantAgreement/EC/H2020/101034288/EU/International Fellowship Programme for Talent Attraction to the Campus of International Excellence Campus Iberus/IberusExperience$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101034288-IberusExperience$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-122455NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-031093-I
000164014 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000164014 590__ $$a6.8$$b2023
000164014 591__ $$aCHEMISTRY, ANALYTICAL$$b6 / 106 = 0.057$$c2023$$dQ1$$eT1
000164014 592__ $$a1.621$$b2023
000164014 593__ $$aAnalytical Chemistry$$c2023$$dQ1
000164014 594__ $$a12.1$$b2023
000164014 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000164014 700__ $$0(orcid)0000-0001-9582-6283$$aRua-Ibarz, Ana$$uUniversidad de Zaragoza
000164014 700__ $$aVanhaecke, Frank
000164014 700__ $$0(orcid)0000-0002-1856-2058$$aBolea-Fernandez, Eduardo$$uUniversidad de Zaragoza
000164014 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000164014 773__ $$g95, 50 (2023), 18579–18586$$pAnal. chem.$$tANALYTICAL CHEMISTRY$$x0003-2700
000164014 8564_ $$s3793627$$uhttps://zaguan.unizar.es/record/164014/files/texto_completo.pdf$$yPostprint
000164014 8564_ $$s3230930$$uhttps://zaguan.unizar.es/record/164014/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000164014 909CO $$ooai:zaguan.unizar.es:164014$$particulos$$pdriver
000164014 951__ $$a2025-11-21-14:24:47
000164014 980__ $$aARTICLE