000164022 001__ 164022
000164022 005__ 20251121161350.0
000164022 0247_ $$2doi$$a10.3390/polym17182538
000164022 0248_ $$2sideral$$a146268
000164022 037__ $$aART-2025-146268
000164022 041__ $$aeng
000164022 100__ $$0(orcid)0000-0002-4066-7294$$aBaquero-Aznar, Víctor
000164022 245__ $$aNovel Egg White Protein–Chitin Nanocrystal Biocomposite Films with Enhanced Functional Properties
000164022 260__ $$c2025
000164022 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164022 5203_ $$aThis study aims to develop egg white protein (EWP) biocomposite films reinforced with chitin nanocrystals (ChNCs, 1–5 wt.%) by compression molding to overcome the mechanical and barrier limitations of protein-based films for sustainable packaging. ChNC incorporation may modulate film microstructure, crystallinity, and thermal stability, thereby enhancing functional performance. Films were prepared by adding ChNCs either as aqueous suspensions or lyophilized powder, and their structural, thermal, mechanical, optical, and barrier properties were systematically evaluated. Scanning electron microscopy confirmed a more homogeneous dispersion of ChNCs when added as suspensions, while powder addition promoted partial aggregation. X-ray diffraction revealed increased crystallinity with ChNC reinforcement. Mechanical tests showed that films with 2 wt.% ChNCs in suspension exhibited the highest tensile strength, whereas those with 5 wt.% in powder form became stiffer but less extensible. Oxygen permeability was not significantly affected, while water vapor permeability decreased by up to 14.5% at 2 wt.% ChNCs incorporated as powder. Transparency and color remained largely unchanged by ChNC addition, except for a slight increase in yellowness. Overall, these findings demonstrate that the incorporation method and concentration of ChNCs play a crucial role in tailoring the physicochemical performance of EWP films. The results provide new insights into the design of EWP-based nanocomposites and support their potential as bio-derived materials for advanced food packaging applications.
000164022 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PRE2020-094379$$9info:eu-repo/grantAgreement/ES/DGA/T03-23R$$9info:eu-repo/grantAgreement/ES/DGA/T07–23R$$9info:eu-repo/grantAgreement/ES/DGA/T41-24$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-108080RR-100$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-142850OR-I00
000164022 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000164022 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000164022 700__ $$aCalvo, Víctor
000164022 700__ $$aGonzález-Domínguez, José Miguel
000164022 700__ $$aMaser, Wolfgang K.
000164022 700__ $$aBenito, Ana M.
000164022 700__ $$0(orcid)0000-0001-6013-3399$$aSalvador, María Luisa$$uUniversidad de Zaragoza
000164022 700__ $$0(orcid)0000-0003-4147-3616$$aGonzález-Buesa, Jaime
000164022 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000164022 773__ $$g17, 18 (2025), 2538 [19 pp.]$$pPolymers (Basel)$$tPolymers$$x2073-4360
000164022 8564_ $$s3944385$$uhttps://zaguan.unizar.es/record/164022/files/texto_completo.pdf$$yVersión publicada
000164022 8564_ $$s2629387$$uhttps://zaguan.unizar.es/record/164022/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000164022 909CO $$ooai:zaguan.unizar.es:164022$$particulos$$pdriver
000164022 951__ $$a2025-11-21-14:24:56
000164022 980__ $$aARTICLE