000164023 001__ 164023
000164023 005__ 20251121161350.0
000164023 0247_ $$2doi$$a10.1002/smll.202511176
000164023 0248_ $$2sideral$$a146274
000164023 037__ $$aART-2025-146274
000164023 041__ $$aeng
000164023 100__ $$aRossi, Ruggero
000164023 245__ $$aLight‐mediated supramolecular functionalization of polymerization‐induced self‐assembled micelles
000164023 260__ $$c2025
000164023 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164023 5203_ $$aPrecise, remote control of polymeric nanoparticles via external stimuli is a key aim for the next-generation drug delivery. As a versatile, one-pot method, polymerization-induced self-assembly (PISA) produces dispersions of block-copolymer micelles at high solids content with tunable core–corona architectures. Light is an ideal trigger to control the uptake and delivery of specific molecules inside such micelles since it can be localized, and easily tuned in intensity and wavelength. In this study, PISA is employed in water to obtain micelles containing diacylaminopyridine units functionalizable thanks to supramolecular interaction by a light-mediated process. Indeed, only if UV irradiation is used to convert thymine-based azo photoswitches into the cis form, these molecules permeate the hydrophilic corona and anchor via hydrogen bonds to the hydrophobic core of the micelles. Subsequent visible‑light exposure regenerates their trans state without micelle disassembling. The photoswitch loading boosts the encapsulation of Nile Red, studied here as a model of hydrophobic cargo, while a subsequent UV light stimulus accelerates the dye release; moreover, the selected photoswitch sustains release over days without further irradiation. By marrying advanced polymerization techniques with reversible photochemistry, dynamic micelles are prepared whose structure and cargo release can be fully controlled by light.
000164023 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-126132NB-I00$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S
000164023 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000164023 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000164023 700__ $$0(orcid)0000-0002-8677-3316$$aAbad, Miriam$$uUniversidad de Zaragoza
000164023 700__ $$0(orcid)0000-0002-0922-5615$$aOriol, Luis$$uUniversidad de Zaragoza
000164023 700__ $$aMartella, Daniele
000164023 700__ $$aParmeggiani, Camilla
000164023 700__ $$0(orcid)0000-0001-5556-2172$$aPiñol, Milagros$$uUniversidad de Zaragoza
000164023 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000164023 773__ $$ge11176 (2025), [10 pp.]$$pSmall$$tSmall$$x1613-6810
000164023 8564_ $$s2731362$$uhttps://zaguan.unizar.es/record/164023/files/texto_completo.pdf$$yVersión publicada
000164023 8564_ $$s2697134$$uhttps://zaguan.unizar.es/record/164023/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000164023 909CO $$ooai:zaguan.unizar.es:164023$$particulos$$pdriver
000164023 951__ $$a2025-11-21-14:24:58
000164023 980__ $$aARTICLE