000164044 001__ 164044 000164044 005__ 20251121161351.0 000164044 0247_ $$2doi$$a10.1002/adma.202511061 000164044 0248_ $$2sideral$$a146307 000164044 037__ $$aART-2025-146307 000164044 041__ $$aeng 000164044 100__ $$0(orcid)0000-0003-3567-7030$$aPalacios, Elías 000164044 245__ $$aSelf‐Cooling Molecular Spin Qudits 000164044 260__ $$c2025 000164044 5060_ $$aAccess copy available to the general public$$fUnrestricted 000164044 5203_ $$aThe need of operating molecular spin qubits at very low temperatures constitutes a technological limitation. This challenge is addressed by integrating, in the same material and at the molecular scale, quantum processing and magnetic refrigeration capabilities. The molecular unit is a [GdEr] heterolanthanide coordination complex, where Er(III) encodes a qubit while Gd(III) provides a large magnetocaloric effect. The properties of each component are separately studied in isostructural [LaEr] and [GdLu] complexes, where each functional ion lies next to a diamagnetic metal. All complexes are characterized by magnetic, heat capacity, and EPR measurements. The results show that the presence of both ions in the same molecule has a synergic effect on both functionalities. Thus, the coupling between Er(III) and Gd(III) spins lifts any level degeneracies even close to zero magnetic field, leading to a d = 16 set of spin states that, as revealed by pulse EPR measurements, can be coherently manipulated. In turn, Er(III) enhances the magnetocaloric effect compared to [GdLu], extending it to lower temperatures. This is corroborated by direct magnetocaloric measurements, which show the ability of this material to cool itself, and a device, down to temperatures as low as 0.4 K. 000164044 536__ $$9info:eu-repo/grantAgreement/ES/AEI/AEI PID2022-140923NB-C21$$9info:eu-repo/grantAgreement/ES/DGA/E09-23R-QMAD$$9info:eu-repo/grantAgreement/ES/DGA/E11-23R-M4$$9info:eu-repo/grantAgreement/ES/DGA/E31-23R-PLATON$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133184-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-1183294RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-124734OB-C21$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-137764OB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-129214B-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C21 000164044 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es 000164044 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000164044 700__ $$aAguilà, David 000164044 700__ $$aGracia, David 000164044 700__ $$aManiaki, Diamatoula 000164044 700__ $$aBarrios, Leoní A. 000164044 700__ $$aChiesa, Alessandro 000164044 700__ $$0(orcid)0000-0002-5406-3280$$aMartínez, Jesús I.$$uUniversidad de Zaragoza 000164044 700__ $$aNovikov, Valentin 000164044 700__ $$0(orcid)0000-0003-2095-5843$$aRoubeau, Olivier 000164044 700__ $$aCarretta, Stefano 000164044 700__ $$0(orcid)0000-0002-8028-9064$$aEvangelisti, Marco 000164044 700__ $$aAromí, Guillem 000164044 700__ $$0(orcid)0000-0001-6284-0521$$aLuis, Fernando 000164044 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000164044 773__ $$g(2025), e11061 [7 pp.]$$pAdv. mater.$$tAdvanced materials$$x0935-9648 000164044 8564_ $$s2160142$$uhttps://zaguan.unizar.es/record/164044/files/texto_completo.pdf$$yVersión publicada 000164044 8564_ $$s2961858$$uhttps://zaguan.unizar.es/record/164044/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000164044 909CO $$ooai:zaguan.unizar.es:164044$$particulos$$pdriver 000164044 951__ $$a2025-11-21-14:25:23 000164044 980__ $$aARTICLE