000164046 001__ 164046
000164046 005__ 20251121161351.0
000164046 0247_ $$2doi$$a10.1021/acs.biomac.5c01603
000164046 0248_ $$2sideral$$a146312
000164046 037__ $$aART-2025-146312
000164046 041__ $$aeng
000164046 100__ $$0(orcid)0009-0002-8507-3315$$aGarcía-Maestre, María$$uUniversidad de Zaragoza
000164046 245__ $$aUncrosslinked Thermoresponsive Hybrid Magnetic Nanospheres Directly Prepared from Poly(                    <i>N</i>                    -isopropylacrylamide) that Behave as Heating Rate Nanosensors
000164046 260__ $$c2025
000164046 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164046 5203_ $$aPoly(N-isopropylacrylamide) (PNIPAM) provides thermoresponsiveness to nanoobjects containing magnetic/plasmonic nanoparticles (NPs) for biosensing and biomedicine. Conjugation methods include the grafting of PNIPAM onto NPs or the embedding of NPs in PNIPAM nanogels. Nanoobjects are often obtained simultaneously with monomer (NIPAM) polymerization, and the cytotoxicity of unreacted NIPAM represents a non-negligible concern. Herein, a facile and versatile miniemulsion method employing already polymerized PNIPAM is developed. Miniemulsion is achieved through PNIPAM globulization above the lower critical solution temperature (LCST) and stabilized by poly(vinyl alcohol) (PVA). Aqueous decants, obtained after solvent evaporation, contain thermoresponsive nanospheres with PNIPAM/PVA blends, stable in water for months, monomodal in size at high magnetic NP contents, biocompatible and with hyperthermia capability. Unlike the shrinking/swelling displayed by PNIPAM-based nanogels, these uncrosslinked nanospheres disintegrate/rebuild, with a size after disintegration undoubtedly related to their heating rate across LCST, behaving as unprecedented dual hyperthermia agents and heating rate nanosensors without further sensing molecules.
000164046 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-20R-PLATON$$9info:eu-repo/grantAgreement/ES/DGA/E31-23R-PLATON$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-1183294RB-I00$$9info:eu-repo/grantAgreement/EUR/MICIU/PID2023-150767OB-I00$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2014-53961-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-86826-R$$9info:eu-repo/grantAgreement/ES/NextGenerationEU/INVESTIGO-007–23
000164046 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000164046 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000164046 700__ $$aCervera-Gabalda, Laura
000164046 700__ $$0(orcid)0000-0003-2553-0633$$aNatividad, Eva$$uUniversidad de Zaragoza
000164046 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000164046 773__ $$g26, 11 (2025), 8184-8199$$pBiomacromolecules$$tBIOMACROMOLECULES$$x1525-7797
000164046 8564_ $$s8352647$$uhttps://zaguan.unizar.es/record/164046/files/texto_completo.pdf$$yVersión publicada
000164046 8564_ $$s3397360$$uhttps://zaguan.unizar.es/record/164046/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000164046 909CO $$ooai:zaguan.unizar.es:164046$$particulos$$pdriver
000164046 951__ $$a2025-11-21-14:25:26
000164046 980__ $$aARTICLE