000164136 001__ 164136
000164136 005__ 20251121161352.0
000164136 0247_ $$2doi$$a10.1021/acs.inorgchem.5c03268
000164136 0248_ $$2sideral$$a146301
000164136 037__ $$aART-2025-146301
000164136 041__ $$aeng
000164136 100__ $$aBarrena-Espés, Daniel
000164136 245__ $$aMetal–Ligand Cooperation in N–H Activation: Bridging Electron-Pushing Formalism and Energy Descriptors
000164136 260__ $$c2025
000164136 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164136 5203_ $$aThe activation of N–H bonds is a fundamental step in the synthesis of industrially relevant compounds but remains a challenging process. A promising strategy to address it, introduced by Milstein and co-workers, relies on metal–ligand cooperation, in which N–H activation is coupled with an aromatization–dearomatization process of a pincer ligand. In this work, we employ state-of-the-art theoretical methods grounded in quantum chemical topology (QCT) to gain deeper insights into this process. Using the archetypal PNP–Ru(II) complex reported by Milstein (JACS 2010, 132, 8542), we analyze the electron density rearrangements during N–H activation through the electron localization function and bonding evolution theory. Interacting quantum atoms energy decomposition is further applied to quantify interactions between key groups. The study covers substrates from ammonia to primary amines, revealing that hydrogen transfer occurs as a quasi-protonic species, yielding a Ru–amido complex. The mechanism remains consistent across substrates, with electron-withdrawing groups facilitating the process by stabilizing the NH–R interaction. Additionally, modifying the ligand scaffold with electron-donating substituents enhances charge accumulation at the reactive carbon, improving both kinetics and thermodynamics. Overall, our findings highlight QCT as a powerful framework for guiding the rational design of improved systems.
000164136 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-140244NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E42-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-122763NB-I00$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ2023-CIE-10$$9info:eu-repo/grantAgreement/ES/UZ/PA-23-BP22-168
000164136 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000164136 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000164136 700__ $$0(orcid)0000-0001-5823-7965$$aPolo, Victor$$uUniversidad de Zaragoza
000164136 700__ $$aEcheverría, Jorge
000164136 700__ $$aMartín Pendás, Ángel
000164136 700__ $$0(orcid)0000-0001-6089-6126$$aMunárriz, Julen$$uUniversidad de Zaragoza
000164136 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000164136 773__ $$g64, 43 (2025), 21452-21464$$pInorg. chem.$$tInorganic Chemistry$$x0020-1669
000164136 8564_ $$s3447638$$uhttps://zaguan.unizar.es/record/164136/files/texto_completo.pdf$$yVersión publicada
000164136 8564_ $$s3146817$$uhttps://zaguan.unizar.es/record/164136/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000164136 909CO $$ooai:zaguan.unizar.es:164136$$particulos$$pdriver
000164136 951__ $$a2025-11-21-14:27:14
000164136 980__ $$aARTICLE