000164152 001__ 164152
000164152 005__ 20251204145007.0
000164152 0247_ $$2doi$$a10.1016/j.mrgentox.2020.503217
000164152 0248_ $$2sideral$$a119136
000164152 037__ $$aART-2020-119136
000164152 041__ $$aeng
000164152 100__ $$aSiivola, K.M.
000164152 245__ $$aGenotoxicity and cellular uptake of nanosized and fine copper oxide particles in human bronchial epithelial cells in vitro
000164152 260__ $$c2020
000164152 5203_ $$aWe studied the genotoxicity and cellular uptake of nanosized (<50 nm) and fine (<10 μm) copper oxide (CuO) particles in vitro in human bronchial epithelial (BEAS-2B) cells. In addition, the effect of dispersing the particles using bovine serum albumin (BSA) on DNA damage induction was investigated. DNA damage was assessed by the alkaline comet (single cell gel electrophoresis) assay after 3-h, 6-h and 24-h exposures. The cytokinesis-block micronucleus assay was applied to study chromosome damage. Both fine- and nanosized CuO particles induced a dose-dependent increase in DNA damage at all timepoints tested. However, nanosized CuO damaged DNA at lower doses and higher levels compared with fine CuO. Dispersing the nanoparticles in the presence of BSA (0.6 mg/mL) resulted in a small and inconsistent decrease in DNA damage compared with dispersions in serum-free cell culture medium only. CuO nanoparticles induced a clear dose-dependent increase in micronucleated cells at doses that strongly increased cytostasis and were markedly cytotoxic at 24 and 48 h. Fine CuO showed a slight induction of micronuclei. Hyperspectral microscopy indicated a substantial cellular uptake of both types of particles after a 3-h exposure to a dose of 20 μg/cm2. The number of particles internalized by the cells was higher for nanosized than fine CuO, as quantified by the frequency of spectral matches in the total cell area and by the number of spectrally matched visible particles or agglomerates per cell. The particle uptake was limited by particle size. The stronger genotoxic activity of nanosized than fine CuO particles is likely to derive from the higher cellular uptake and more effective intracellular dissolution of nanoparticles.
000164152 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000164152 590__ $$a2.873$$b2020
000164152 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b91 / 158 = 0.576$$c2020$$dQ3$$eT2
000164152 591__ $$aTOXICOLOGY$$b65 / 93 = 0.699$$c2020$$dQ3$$eT3
000164152 591__ $$aGENETICS & HEREDITY$$b100 / 175 = 0.571$$c2020$$dQ3$$eT2
000164152 592__ $$a0.654$$b2020
000164152 593__ $$aHealth, Toxicology and Mutagenesis$$c2020$$dQ2
000164152 593__ $$aGenetics$$c2020$$dQ2
000164152 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000164152 700__ $$aSuhonen, S.
000164152 700__ $$aHartikainen, M.
000164152 700__ $$0(orcid)0000-0003-2936-242X$$aCatalán, Julia$$uUniversidad de Zaragoza
000164152 700__ $$aNorppa, H.
000164152 7102_ $$11001$$2420$$aUniversidad de Zaragoza$$bDpto. Anatom.,Embri.Genét.Ani.$$cÁrea Genética
000164152 773__ $$g856-857 (2020), 503217 [9 pp.]$$pMutat. res., Genet. toxicol. environ. mutagen.$$tMUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS$$x1383-5718
000164152 8564_ $$s2285243$$uhttps://zaguan.unizar.es/record/164152/files/texto_completo.pdf$$yVersión publicada
000164152 8564_ $$s2612726$$uhttps://zaguan.unizar.es/record/164152/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000164152 909CO $$ooai:zaguan.unizar.es:164152$$particulos$$pdriver
000164152 951__ $$a2025-12-04-14:45:24
000164152 980__ $$aARTICLE