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A B S T R A C T

Enzymatic browning (EB) substantially affects the visual quality and marketability of fresh-cut apples. This study 
aimed to develop an affordable high-throughput imaging system for phenotyping EB in apples. Browning was 
quantified using four CIELab-derived indices; a browning Index (BI), the difference in BI (ΔBI), a normalized CIE 
color difference (ΔE*); and a CIEDE2000 color difference (ΔE00) at multiple time points post-cutting to evaluate 
browning speed (SEB) and intensity (IEB) in 142 apple cultivars, including commercial and traditional Spanish 
cultivars from germplasm collections. The image-based system has demonstrated high accuracy and practical 
relevance, overcoming limitations associated with traditional colorimeter-based approaches. A wide phenotypic 
range was observed, in which elite reference cultivars fell within a narrow band at the lower end of the range. 
Measurements taken at 30 min post-cutting were found to be nearly equivalent to those at 60 min, allowing to 
optimize the phenotyping protocol without compromising precision. EB has been shown to be an inherently 
stable trait, though different year effects were noted, particularly for BI and ΔBI. Among the indices evaluated, 
ΔE00 proved less effective for cultivar differentiation, whereas ΔBI showed the highest discriminant capacity and 
strongest correlation with visual browning, making it the most suitable index for phenotyping purposes. These 
findings provide a robust methodological basis for screening low-browning apple genotypes, establish a classi
fication framework for EB expression levels, and highlight the potential of underutilized traditional cultivars in 
developing improved fresh-cut apple products.

1. Introduction

The demand for fresh-cut apples, sold as a snack or included in ready- 
to-eat salads, has increased in recent years due to shifts in consumer 
preferences, as there is a growing demand for fresh products that are 
convenient to consume and offer high nutritional value (Nicola et al., 
2022). The development of this kind of fresh-cut or minimally processed 
fruit involves peeling, slicing, or chopping, which results in a range of 
degradative changes. These changes present additional challenges to the 
fresh-cut industry, as maintaining quality for an acceptable marketing 

period is crucial. One substantial factor that contributes to the deterio
ration of apple quality is the development of browning in cut surfaces, 
which results in unfavorable alterations in the visual appeal and 
organoleptic characteristics of the food. Browning negatively impacts 
the product’s market value and, therefore, its exclusion from certain 
markets (Jaeger et al., 2018).

The browning observed in freshly cut apples has an enzymatic origin, 
and is mainly attributed to the action of two enzymes, namely poly
phenol oxidase (PPO) and peroxidase (POD) (Zhu et al., 2023) that cause 
the oxidation of apple phenolics when they are released from the 
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vacuoles. These are released after the occurrence of physical stresses 
such as cutting, peeling, and other forms of mechanical damage, and 
interact with PPO (in the presence of oxygen) and POD (in the presence 
of H₂O₂), with subsequent reactions leading to the formation of melanin, 
the brown color pigment. The synthesis of polyphenols as a substrate of 
browning relies on the activity of phenylalanine ammonia lyase (PAL), 
whereas superoxide dismutase (SOD), a key enzyme in the cell mem
brane protection system, can limit the occurrence of browning reducing 
the accumulation of intracellular reactive oxygen species (ROS) (Wang 
et al., 2024).

Common strategies to prevent EB include processing and packaging 
under modified atmospheres and low temperatures, thermal processes, 
dipping the cuts in anti-browning agents such as organic acids (ascorbic 
or citric, mainly) and their derivatives, or applying edible coatings, 
among other methods (Altisent et al., 2014; Arnold and Gramza-
Michałowska, 2022; Kumar et al., 2018; Pignata et al., 2018). An 
alternative approach to control EB is to use or breed apples which are 
low or non-browning, as apple cultivars show differences in their sus
ceptibility to fresh-cut browning (Burke, 2010; Kalinowska et al., 2014; 
Toivonen, 2006). This approach prevents the drawbacks of 
anti-browning formulations and processes that are banned from 
commercialization for safety reasons or increase production costs in 
fresh-cut apple slices. The relevance of this issue is exemplified by the 
fact that even a few gene-modified (GM cultivars (Artic™ apples), which 
do not turn brown when cut, have been allowed to be marketed in both 
Canada and the USA (Xu, 2015). However, public concerns about the use 
of GMOs and the current legal constraints on their use, particularly in 
the European Union, make it not feasible to extend this approach to a 
broader context. As a result, alternative solutions are required. Among 
these potential solutions, exploitation of traditional cultivars can play a 
great role, through either the direct use of some cultivars or by their use 
in breeding programs, for the development of non-browning apple se
lections (Cebulj et al., 2023, 2021).

The physical characteristics of fruit browning are generally assessed 
by evaluating the color of the cut surface and the subsequent color 
change over time, typically in the CIELab 1976 space (Carter et al., 
2018). This is achieved through the calculation of indices derived from 
the values of L* (lightness), a* (greenness to redness), and b* (yellow
ness to blueness) (Shimizu et al., 2021). The most commonly utilized 
indices in apples are the browning index (BI) or brown color purity, and 
ΔE* or normalized CIE color difference (Arnold and Gramza-Micha
łowska, 2022). However, other indices have also been proposed 
(Shimizu et al., 2021), including ΔBI or BI difference, ΔE00 or 
CIEDE2000 color difference (Sharma et al., 2005), which is an adjusted 
index of ΔE* that is more accurately calibrated to human perception, 
among others. Nevertheless, little information is available regarding the 
comparative performance or suitability of these indices for phenotyping 
and assessing variability in EB in apples, as few formal comparisons have 
been conducted. It has been demonstrated (Shimizu et al., 2021) that a 
BI enables a more precise evaluation of color tone, while the ΔBI is more 
closely associated with visual distinctions between cultivars than ΔE00. 
Additionally, flesh tone (yellowish, reddish) may impact the capacity to 
assess variations in EB evolution over time in high-oxidation cultivars. In 
other studies, although no formal comparison was performed, the results 
suggest that different indices generally tend to agree but there may be 
more or less severe discrepancies in the relative ranking of cultivars 
(Serra et al., 2021). In any case, pre-existing research has been con
ducted with a limited number of cultivars, generally ranging from two to 
six (Arnold and Gramza-Michałowska, 2022; Shimizu et al., 2021), and, 
at most, between 14 and 17 (Burke, 2010; Serra et al., 2021). These 
studies have predominantly emphasized major elite table cultivars, 
representing a narrow spectrum of browning potential, often biased 
towards those with low oxidation. Consequently, the actual range of 
quantifiable variation in EB in apples remains undetermined, and there 
is currently no established scale or guideline for determining the relative 
browning potential of a given variety. Additionally, there is a lack of 

pertinent information regarding phenotyping, such as the extent to 
which the recorded values and the ranking of cultivars may vary across 
different years or even among fruits from the same season.

In the majority of studies (as reviewed by Arnold and Gramza-
Michałowska, 2022), EB is characterized through the use of colorime
ters, which facilitate precise control over the illumination of the surface 
under examination and yield highly accurate results. To obtain accurate 
phenotyping of EB, it is essential to measure the entire surface of the 
fruit portion. This is because PPO and phenolics are distributed unevenly 
in the flesh, which causes browning patterns to form (Duangmal et al., 
2017; Quevedo et al., 2014). In this regard, colorimeters present a sig
nificant limitation, as the measurement area is restricted (circles of 
8–11 mm in diameter), requiring the acquisition of multiple measure
ments per fruit with an appropriate sampling strategy (Burke, 2010). 
This also constrains the speed and volume of samples that can be pro
cessed per session, rendering the cost-effective phenotyping of large 
batches challenging (Shimizu et al., 2021). In this regard, the combi
nation of a digital camera or flatbed scanner with image processing 
software has been demonstrated to offer a cost-effective and highly 
versatile alternative for the phenotyping of traits related to flesh color 
(Bouillon et al., 2024; Shimizu et al., 2021; Subhashree et al., 2017). 
Nevertheless, these systems have yet to advance beyond the 
proof-of-concept stage, and, to the best of our knowledge, have not been 
employed for the high throughput (HT) phenotyping of EB in apple 
collections.

The objective of this study was to apply an affordable, high- 
throughput image analysis system to digitally phenotype apple brown
ing in a large and diverse set of traditional Spanish and reference cul
tivars. The specific aims were to quantify the range of expression of 
enzymatic browning in fresh-cut apple halves using the most common 
EB indices, and to compare the performance of these indices in terms of 
uniformity of measurements, and classification and discriminant 
capabilities.

2. Materials and methods

2.1. Plant material

The study has been conducted in 2020 and 2021 on 142 apple cul
tivars from 104 genotypes (Table S1), including international references 
(15 cvs.), and traditional Spanish cultivars from the germplasm collec
tions in Universidad Pública de Navarra (UPNA) (67 cvs.), and Centro de 
Investigación y Tecnología Agroalimentaria de Aragón (CITA) (60 cvs.). 
The germplasm collections are located, respectively, in Pamplona, 
Navarra (42.79038, − 1.63036) and in Zaragoza, Aragón (41.72345, 
− 0.80986) and Bescós de Garcipollera, Aragón (42.62526, − 0.49778). 
The set contains M. domestica cultivars including cider, dessert, pro
cessing, and heritage cultivars that are part of a core collection which 
optimizes the representativeness of the genetic variation of the Spanish 
germplasm collections (Miranda et al., 2018). In order to determine EB 
related traits, cultivars were harvested at full ripening stage. The 
optimal harvest time was determined by monitoring the ripeness level of 
all cultivars on a weekly basis. This monitoring process involved the use 
of several maturity indicators, combined with expert knowledge. Fruits 
were cut in half to check the browning of seeds and that the starch iodine 
index exceeded value 6, according to (CTIFL, 2002) scale. Changes in 
background skin color and dropped apples were additional indicators of 
ripeness (Watkins, 2003). The sample size for determining the ripening 
stage was five apples, uniform in size and appearance, and positioned at 
mid-height in the outer part of the canopy. The process of monitoring 
and harvesting was particularly challenging due to the broad range of 
maturity dates, and commenced in early July, concluding in early 
November for the later ripening cultivars. At harvest, a sample of ten 
fruits per cultivar was collected, employing the same sampling criteria 
established for monitoring ripeness, and stored at 5ºC for a week before 
phenotyping.
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2.2. Phenotyping of enzymatic browning (EB)

2.2.1. Image acquisition
The determination of the EB was made by image analysis from 

photographs taken under standardized conditions using an affordable 
approach. The image acquisition system (Fig. 1) consisted of an 
Olympus OM-D MKII (Olympus, Tokyo, Japan) digital camera with a 
Zuiko ED 30 mm 1:3.5 macro lens (Olympus). Batches of 10 lower halves 
of fruit were placed in matte-black plastic packing alveoli trays to pre
vent them from tumbling over and placed under the camera. The batches 
were illuminated with two NanGuang CN-576C LED panels (Guangdong 
NanGuang Ltd, Shantou, China) set at 5500 K and arranged to provide 
uniform illumination and avoid shadows in a room without any external 
light. A grey check card (Kaavie GC-2 Pocket) was used to determine 
optimum exposure and white balance settings, and it was included in 
each photograph to facilitate white balance and color corrections. The 
following parameters were adjusted in the camera: sRBG color space, 
RAW mode, exposure mode, manual; white balance, preset manual; 
metering, ESP matrix; focal length, 30 mm; ISO speed, ISO-200; aper
ture, f4.5; exposure time, 1/100 s.

For each batch, the first measurement was taken within 1 min after 
the start of the preparation, and then photographs were taken approx
imately at 5, 10, 15, 20, 25, 30, 45, and 60 min after the start of batch 
preparation. The exact time after cutting corresponding to each photo
graph was obtained from their timestamps and used for subsequent 
calculations.

2.2.2. Image processing and browning index calculation
Images were processed using a custom color evaluation script 

(Miranda, 2024a) for the open-source image analysis software Fiji 
(Schindelin et al., 2012), available at GitHub (https://github.com/ 
Carm1r/Pheno_ImageJ). The script automated the process of obtaining 
the average color of the entire fruit surface (Fig. 2). Firstly, the script 
performs background extraction and identification of individual fruit 
halves. Then, it transforms the original RGB image into three images 
containing each L*, a*, and b* color values, and lastly obtains the 
average of the CIEL*a*b* color values of the entire fruit surface.

Browning for each fruit at each photography acquisition time was 
evaluated from the values obtained for L*, a* and b* through four 
indices: 

• Browning Index (BI), according to the method of Palou et al. (1999): 

BI = [100(x − 0.310) ]/0.172 (1) 

wherex = (a∗ +1.75L∗)/(5.645L∗ + a∗ − 3.012b∗) (2) 

• Difference in BI (ΔBI) from the time of cutting as 

ΔBI = BI0 − BIt (3) 

• Normalized CIE color difference (ΔE*) from the time of cutting as 

ΔE∗ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
L∗

t − L∗
0
)2

+
(
a∗

t − a∗
0
)2

+
(
b∗

t − b∗

0
)2

√

(4) 

• CIEDE2000 (Luo et al., 2001) color difference (ΔE00) from the time 
of cutting defined as 

ΔE00 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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)(
ΔH́
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(5) 

and calculated according to expressions described in Sharma et al. 
(2005), by means of the package ColorNameR (Sanchez-Beekman, 
2021). 

For each fruit analyzed, logarithmic regressions were fitted with 
the time after cutting as the independent variable and the values of 
each of the four EB indices (BI, ΔBI, ΔE* and ΔE00) as the dependent 
variable, in order to obtain the fitted EB values for each index at 5, 30 
and 60 min after fruit cutting. The values obtained were then used to 
characterize the dynamics of each browning index in terms of speed 
and intensity, as follows:

• Initial browning speed (SEB): Defined as the angle (rad) formed by the 
slope of the line connecting the EB values at 0 min (EB0) and 5 min 
(EB5) after cutting: 

SEB = tan− 1((EB5 − EB0)/5 ) (6) 

• Browning intensity (IEB): Defined as the EB values at 60 min after 
cutting (I60). Additionally, the EB values at 30 min (I30) were also 
evaluated to assess if they could accelerate the phenotyping data 
collection process without significant loss of precision.

2.3. Evaluation of index performance

2.3.1. Evaluation of the uniformity of the measurements
The uniformity of the measurements was evaluated within and be

tween years; within the same year by the coefficient of variation (CV) of 
the 10-fruit values measured per cultivar and EB index, while for the 
between-years, one-way analysis of variance with year as a factor was 
conducted on the EB values for each index, for each cultivar and for all 
cultivars pooled.

2.3.2. Consistency of classifications in EB levels
To assess the consistency of cultivar classifications in EB levels across 

the indices, Pearson’s pairwise correlation coefficients were calculated 
with the R package GGally (Schloerke et al., 2024), as well as the pro
portion of cultivars classified into the same EB level. To that end, cul
tivars were classified in SEB and IEB levels at 30 min and 60 min after 
cutting using the methodology described in Miranda et al. (2017) and 
Royo et al. (2017), which allows defining the states of expression for a 
phenotypical trait in a clear and unambiguous way. Briefly, the number 
of expression states is determined according to the range and the vari
ability (standard deviation, SD) of the fitted SEB and IEB values observed 
between and within the cultivars. Consequently, a wider expression 
range between cultivars and lower variability within them would result 
in a greater number of states. Thus, the discrimination unit (DU), used to 
define the size of the trait states was calculated as: 

Fig. 1. Depiction of the image acquisition system used in this study consisting 
of a digital DLSR camera mounted in an adjustable camera arm and two LED 
panels. Photographs were taken with the LED panels as the sole light source in 
the room.
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DU = Rgset + SDset (7) 

where Rgset is the mean intra-cultivar range (that is, the difference be
tween the max and min trait values within each cultivar) and SDset is the 
SD of Rgset in the set of cultivars. Once the DU was obtained, the number 
of expression levels for the trait was calculated using the frequency 
distribution of trait values measured on the set of cultivars. The central 
level was centered on the median of the distribution and the rest of levels 
placed at increases/decreases of 1 DU with respect to the central level. 
The R package phenoclass (Miranda, 2024b), available at GitHub (http 
s://github.com/Carm1r/phenoclass) was created to facilitate the defi
nition process of DUs and states of expression.

2.3.3. Discriminant ability of the EB indices
The discriminating ability of each EB index was evaluated using the 

discriminating ratio (DR) according to Levy et al. (1999) and Browning 
et al. (2004). Briefly, for each EB index, the mean SD of the measure
ments obtained for each cultivar (SDW) and the SD of the mean values 
measured from different cultivars (SDB) were calculated. SDB was cor
rected using SDW to estimate underlying SD (SDU, SDU =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SD2
B − SD2

W/k
√

), which represents an unbiased estimate of the SD, 
where k is the number of measurements per cultivar (k = 10). Finally, 
DR is calculated as SDU/SDW. In addition, confidence intervals were 
calculated using non-central F distributions for each DR, and the sta
tistical independence of the DRs obtained for the four EB index, in SEB, 
I30 and I60, was evaluated using Q-statistic, according to Levy et al. 
(1999).

2.4. Data curation, handling and analysis

Data curation, handling and analysis were performed in RStudio 
2023.06.0 (RStudio Team, 2020) environment of R 4.4.0 (R Core Team, 
2022). Graphical display of EB values, correlations and repeatability of 
the measurements was performed using the R package ggplot2 
(Wickham, 2016).

3. Results and discussion

3.1. Browning patterns in apple germplasm collections after fresh cutting

Apple halves are typically browned rapidly during the first 
5–20 mins after cutting, the increase slowing significantly after that. 
Fig. 3 shows a selection of representative EB patterns found within the 
set of cultivars. Those patterns have been adequately fitted by loga
rithmic equations in order to obtain the EB values at the precise desired 
moments. The patterns found among the cultivars and illustrated in 
Fig. 3 closely match previous reports (Burke, 2010; Shimizu et al., 2021; 
Subhashree et al., 2017), in which the most rapid initial EB typically 
occurs within the first 10–20 mins but in highly sensitive cultivars may 
occur even in the first 5 mins (Burke, 2010; Shimizu et al., 2021). The 
rate of browning has been reported to decline exponentially so that most 
of the browning potential is achieved within 60 mins (López-Nicolás 
et al., 2007; Lozano et al., 1994; Shimizu et al., 2021; Subhashree et al., 
2017). In this study, only the first 60 mins after cutting have been 
investigated for practical reasons, as it allows to phenotype large sets in 
reasonable periods of time. Although the EB process may continue for at 
least 24 h after cutting (Serra et al., 2021; Shimizu et al., 2021).

3.2. Range of value differences between cultivars

A wide range of EB intensities were observed in the cultivars (Fig. 4a, 
e), with up to 6-fold (ΔBI), 15-fold (ΔE*, ΔE00) or even 60-fold (BI) 
differences between the cultivars with the lowest EB and those with 
highest. However, as shown by the interquartile range in the boxplots, 
most cultivars were typically within a 2-fold range regardless of the 
index used. Most of the IEB occurred in the first 30 mins after the fruit 
was cut, as typically IEB values increased up to 30 % afterwards, but the 
extent of the increase was different depending on the index used. Thus, 
IEB for BI at 30 mins was very close to the final one (average increase of 
9 %±3 %), whereas ΔBI showed the highest increases (23 %±9 %). 
Finally, ΔE* and ΔE00 showed similar increases and intermediate to the 
other two (17 %±7 %). Concerning SEB (Fig. 4e), the range of values was 
also very wide (between 5- and 130-fold), although, as was also the case 
in IEB, the accessions were generally within a much narrower range 

Fig. 2. Image processing workflow followed the custom script Pheno_ImageJ. 1: The script extracts the background of the image and identifies and numbers 
(highlighted in yellow) individual surfaces greater than a user-defined size. 2: The original image is transformed into three images in which each pixel contains only 
the L*, a* or b* color information, and the boundaries of the surfaces are superimposed. 3: The script obtains the average value of L*, a* and b*, respectively, of the 
pixels enclosed on each surface.
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Fig. 3. Selection of representative patterns of enzymatic browning found within the cultivars evaluated in this study, evaluated by four indices. Each dot corresponds 
to the average value for ten bottom halves of apples, cut at the maximum diameter.

Fig. 4. Range of values for the enzymatic browning intensity found in the set of 142 traditional and reference cultivars, using the indices a) normalized CIE color 
difference (ΔE*), b) CIEDE2000 color difference (ΔE00), c) difference in browning index (ΔBI) and d) browning index (BI) at 30 min and 60 min after cutting; and e) 
range of values for the initial browning speed using the same indices.
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(1.5x).
The reference cultivars (Table 1) showed mostly low levels of IEB and 

were placed mostly around or below the first quartile (ΔE*, ΔE00) or 
between the first quartile and the median (BI, ΔBI), thereby resulting in 
the remaining range of expression populated almost exclusively by the 
traditional cultivars. The relative order among cultivars varied 
depending on the index used, but in general ‘Golden Supreme’ and 
‘Verde Doncella’ were the least sensitive, while both ‘Reinettes’ and 
‘Pinkgold’ were the most sensitive. The ‘Gala’ cultivars evaluated 
showed low sensitivity to browning (except for BI) and were similar to 
each other. In contrast, within the ‘Golden’ group, ‘Golden Delicious’ 
displayed a similar browning tendency comparable to that of ‘Gala’, 
whereas ‘Pinkgold’, ranked among the most sensitive cultivars tested. In 
terms of SEB, the reference cultivars showed moderate or high browning 
speeds, mostly falling within the first quartile (BI) or the interquartile 
range (ΔE*, ΔE00, ΔBI).

The values and ranking orders obtained in this study for IEB and SEB 
in the reference cultivars agree with findings reported in the available 
literature using either colorimeters (Arnold and Gramza-Michałowska, 
2022; Burke, 2010; Putnik et al., 2017; Serra et al., 2021) or similar 
photography booth setups (Shimizu et al., 2021; Subhashree et al., 
2017). Until now, research in EB has been focused on a few major dessert 
cultivars (Arnold and Gramza-Michalowska, 2022; Burke, 2010; Putnik 
et al., 2017), which represent a narrow fraction of the genetic diversity 
within the species. Given that consumer satisfaction with fresh cultivars 
is strongly influenced by visual aspects (Jaeger et al., 2018; Musacchi 
and Serra, 2018), it is not surprising that those elite cultivars fall within 
a narrow band at the lower end of the total EB variability when analyzed 
alongside a core collection that maximizes the genetic diversity of the 
species, which includes cider, table, processing, and heritage cultivars.

3.3. Uniformity of EB measurements within fruits in the same season and 
between years

The uniformity of measurements was assessed both within and be
tween years. For within-year uniformity, the differences in EB within the 
10 fruits measured per cultivar and year were evaluated by the CV. This 
is a statistic often used as a measure of experimental quality, considering 
that lower CV values indicate greater accuracy measurements. CV values 
vary according to the type of trial, the crop and, in particular, the trait 
under study (Ferreira et al., 2016) but, in agronomy, is quite frequent 
the general classification proposed by Pimentel-Gomes (2009): low 
(<10 %), average (10 %-20 %), high (20 %-30 %) and very high 
(>30 %). In this work, the uniformity in IEB (Fig. 5a) was similar at 30 
and 60 mins after cutting. IEB proved to be a fundamentally stable 
character, i.e., with low levels of CV, which were classified as typically 
moderate-low (CV<16 % in ΔE*, ΔE00 and BI) or moderate (CV<21 % 
in ΔBI) and within the 2-fold range. For SEB (Fig. 5b), similar differences 
between indices were observed, but with broader differences between 
cultivars (typically up to 4-fold) and in the moderate-high CV levels 
(typically up to 32 %).

For between-year uniformity (Fig. 6, Table S.2), differences in IEB 
were observed in all indices, although the intensity of the effect differed 
according to the index. The mean variations for ΔE* and ΔE00 were 
moderate, ranging from 20 % to 30 %. In contrast, the variations for ΔBI 
and BI were considerably more pronounced, reaching 80 % and 95 %, 
respectively. Indeed, the year effect was significant for both ΔBI and BI 
in most cultivars (90 %), whereas it was only significant for ΔE* and 
ΔE00 in approximately half of them. Similar results were observed for 
SEB (Fig. 6e), although the intensity of the year effect was considerably 
lower, ranging from 2 % (non significant) of ΔE* to 15 % of BI. The 
impact of the time after cutting on IEB was also assessed. No differences 
in uniformity were observed between measurements taken at 30 and 
60 min for any of the indices.

Table 1 
Enzymatic browning (EB) values for intensity (IEB) and speed (SEB) found in the reference cultivars using four indices over the two years of study. EB intensity has been 
evaluated at 30 (T30) and 60 (T60) min after cutting.

Intensity of EB (IEB) values Speed of EB (SEB) values

​ ​ ΔE* ​ ΔE00 ​ ΔBI ​ BI ​
Type Cultivar T30 T60 ​ T30 T60 ​ T30 T60 ​ T30 T60 ΔE* ΔE00 ΔBI BI
Gala group Gala 8.3 10.3 ​ 4.5

5.4
​ 13.9 17.4 ​ 52.1 56.8 0.71 0.38 0.85 0.50

​ Mondial Gala 8.3 9.6 ​ 4.4
4.9

​ 10.4 12.3 ​ 56.2 58.3 0.77 0.55 0.57 0.22

​ Royal Gala 8.6 10.6 ​ 4.5
5.6

​ 13.4 17.5 ​ 55.2 57.5 0.57 0.34 0.72 0.39

​ Galaxy 9.5 12.4 ​ 4.9
6.1

​ 17.2 23.3 ​ 63.3 68.8 0.34 0.28 0.07 0.44

​ Gala Must 7.9 9.8 ​ 4.3
4.5

​ 14.6 18.2 ​ 47.7 52.3 0.65 0.41 0.94 0.39

Fuji ​ 11.3 13.2 ​ 5.4
5.9

​ 16.1 19.9 ​ 50.1 52.1 0.97 0.64 0.98 0.51

Golden Supreme ​ 4.4 5.4 ​ 2.2
2.7

​ 5.2 6.8 ​ 27.6 29.4 0.35 0.20 0.21 0.15

Golden group Golden Delicious 8.6 11.3 ​ 4.1
5.8

​ 12.2 17.1 ​ 49.8 56.6 0.64 0.41 0.29 0.26

​ Pinkgolden 17.5 19.9 ​ 6.2
6.9

​ 25.5 30.7 ​ 49.1 53.3 1.11 0.81 1.15 0.58

Cripps Pink ​ 10.9 12.6 ​ 4.6
5.3

​ 12.2 14.6 ​ 42.5 45.2 0.93 0.55 0.92 0.47

Pinova ​ 11.6 13.4 ​ 5.1
5.8

​ 17.9 21.6 ​ 53.7 57.8 0.94 0.59 1.05 0.55

Traditional Esperiega 10.8 12.0 ​ 6.1
6.3

​ 12.7 14.1 ​ 32.4 33.9 1.02 0.73 1.05 0.42

​ Reinette Blanche 11.5 13.5 ​ 6.2
7.4

​ 17.9 21.1 ​ 50.0 53.1 0.88 0.56 1.07 0.53

​ Reinette Gris 14.7 17.3 ​ 7.4
8.7

​ 20.9 25.0 ​ 39.6 44.6 1.01 0.69 1.11 0.53

​ Verde Doncella 7.7 9.3 ​ 4.2
5.2

​ 9.2 12.1 ​ 37.4 39.5 0.68 0.48 0.61 0.35
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Little information is available in the literature on the uniformity of 
EB measurements. To the best of our knowledge, only Burke (2010) has 
reported this kind of information on EB performed with a colorimeter, 
focused on sample size (n), and measuring a pool of 17 commercial 
cultivars and advanced breeding selections. In that research, IEB was 
found to be a relatively uniform trait, with a pooled variance of 
s2= 4.43. This indicated that using n = 15 fruits per variety allowed to 
detect differences of d= 2.5 units in ΔE* at 60 min for a significance 
level of α= 0.05 and a power (1-β) = 0.9 using the Snedecor and 
Cochran (1989) approximation for sample size. It is noteworthy that this 

value falls within the range of color differences that the untrained eye 
can distinguish between 2.5 and 3.0 units of ΔE* (Arnold and 
Gramza-Michalowska, 2022). That sample size was considered enough 
to separate the high, intermediate and low browning fruits from one 
another (the range of EB values evaluated was narrower as the most 
sensitive variety showed maximum IEB values of ΔE*≈12, below the 1st 
quartile in our study). Using Burke’s approach to evaluate uniformity, 
virtually the same results were obtained in this study, as pooled variance 
was s2= 4.04, which translates into the same sample sizes and differ
ences detected (d≈3 units in ΔE* at 60 min for the 10-fruit sample size). 

Fig. 5. Within-year uniformity of measurements by means of the coefficient of variation (CV,%) within the 10-fruit samples taken on each cultivar for a) browning 
intensity and b) browning speed found in the142 traditional and reference cultivars, using the indices normalized CIE color difference (ΔE*), CIEDE2000 color 
difference (ΔE00), difference in browning index (ΔBI) and browning index (BI) at 30 min and 60 min after cutting.

Fig. 6. Between-years uniformity of the measurements of browning intensity (a,d) and speed (e) in a pooled subset of 39 traditional and reference cultivars, using the 
indices: normalized CIE color difference (ΔE*), CIEDE2000 color difference (ΔE00), difference in browning index (ΔBI) and browning index (BI) at 30 min and 
60 min after cutting. Significances correspond to the results of ANOVA analysis (ns, non significant; *, p < 0.05; **, p < 0.01; **** p < 0.0001).
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All in all, our results expressed as CVs or sample sizes confirm that EB is 
generally a uniform trait in apples.

3.4. Classification of cultivars in EB levels

The wide range of values observed permitted the delineation of five 
distinct categories of IEB for the four indices and two times after cutting 
(30 and 60 min) evaluated (Table 2). The majority (≈95 %) of cultivars 
were always classified within the lower three categories (low, moderate 
and high), while only some cultivars were included in the upper two 
(very high and extremely high).

The reference cultivars were consistently classified at the "low" or 
"moderate" levels, except ’Pinkgold,’ which was classified as "high" using 
ΔE*. Only three reference cultivars (Golden Supreme’, ‘Reinette Blan
che’ and ‘Verde Doncella’) were consistently classified at the same level. 
The remaining reference cultivars tended to be classified similarly in 
terms of ΔE*, ΔE00, and ΔBI, while displaying a different level of clas
sification in BI. About traditional cultivars, it is noteworthy that 
approximately 15–25 belonged to the "low" level of IEB, depending on 
the index utilized. Moreover, the IEB levels from “high” and above were 
exclusively comprised of traditional cultivars.

In the case of SEB, it was possible to delineate four categories 
(Table 3) for each of the four indices; in contrast to what was observed in 
IEB, a majority of cultivars (50 %-60 %) were classified in the “high” 
level, except for BI, where they were mainly in the “moderate” level. The 
rest of the cultivars were distributed relatively evenly among the other 
categories. ‘Golden Supreme’ was the only reference cultivar that 
exhibited a “low” browning speed. ‘Golden Delicious’, ‘Verde Doncella’ 
and the five ‘Gala’ cultivars were classified as “moderate”, whereas the 
rest were generally “high speed” browning cultivars. As with IEB, the 
reference cultivars were ranked similarly across all indices, except for 
BI, where most references were classified as “moderate” and the rest as 
“low”.

3.5. Relationships among EB indices

As indicated in the references, cultivars were not classified and or
dered uniformly for the indices and times after cutting evaluated. Fig. 7
illustrates the bivariate correlations between them, demonstrating a 
high degree of correspondence (p < 0.001) between the two post-cutting 
periods 30 and 60 min (correlation coefficient r between 0.984 and 
0.986), which means that approximately 90 % of the accessions were 
classified in the same level, while the changes were largely due to the 
proximity of their IEB values to the boundaries (lower or upper) of the 
level assigned at that time. Nevertheless, the discrepancies between the 
indices were more pronounced, with the r ranging from 0.399 to 0.941 
(always significant). The indices that exhibited the strongest correlation 
with one another were the ΔE*-ΔE00 (0.941) and ΔBI-BI (0.889) pairs. 
Conversely, the weakest relationships (<0.500) were observed between 
BI and both ΔE* and ΔE00. Consequently, the proportion of cultivars 
classified at the same level ranged from 40 % (ΔE*-BI) to 94 % (ΔE*- 
ΔE00). These discrepancies in classification were predominantly not due 

to values being proximate to level limits. Moreover, in up to 6 % of cases 
(ΔE*-BI), the differences spanned two levels. With regard to SEB, anal
ogous considerations may be drawn, although the correlation and sim
ilarity of classifications were, in general, notably lower.

The relationship between SEB and IEB was subsequently investigated, 
finding that, although statistically significant, the correlations ranged 
from moderate (r ≈ 0.8 for ΔE00) to low (r ≈ 0.4 for BI). An examination 
of the shape of the relationships (Fig. S1) reveals that, except for BI, 
where there is considerable variability, the relationship is of a loga
rithmic type with a markedly steep slope. This implies that while “low” 
IEB cultivars generally exhibit a “low” rate of oxidation, from “moderate” 
IEB up, the browning speed is consistently at least “high”.

The discriminant capacity of the EB indices was ultimately assessed 
through their DR values (Fig. 8). For IEB at 60 min after cutting (Fig. 8a), 
the differences between indices in DR were moderate (7–13 %) and 
statistically significant (p < 0.05), with ΔBI demonstrating the highest 
discriminant capacity, followed by ΔE* and BI, which exhibited similar 
DRs. The results for 30 min after cutting exhibited a similar trend, albeit 
with diminished differentiation between indices (relative differences of 
4–10 %). Overall, no difference was identified in evaluating IEB at either 
30 or 60 min after cutting with any of the indices. In contrast, for SEB 
(Fig. 8b), the discrepancies in index performance were more pronounced 
(8–25 %), with ΔBI once again exhibiting the highest DR, while ΔE00 
(along with BI) demonstrated the lowest discriminatory capability.

There is a lack of consensus in the literature regarding the index to be 
employed when evaluating EB by fruit surface color change. The most 
commonly utilized are derived from CIELAB space, such as ΔE* and BI 
(Arnold and Gramza-Michalowska, 2022). Nevertheless, other indices, 
such as ΔC, ΔBI, and ΔE00, are also employed with some frequency. The 
measurement of PPO activity and the evaluation of surface color are the 
most commonly used methods for quantifying EB in apples. Color is 
generally evaluated using indices derived from the CIELab space, which 
can be obtained directly using colorimeters or by converting RGB images 
from cameras. The most frequently utilized indices are ΔE* and BI 
(Arnold and Gramza-Michalowska, 2022), although other indices, such 
as ΔC, ΔBI, and ΔE00, are also commonly employed. Information is 
scarce regarding the suitability of these indices or formal comparisons of 
their relative efficiency. This is due to a tendency to select a single index, 
and when multiple indices are employed, the number of cultivars 
analyzed is typically limited (between three and five in the majority of 
studies). Subhashree et al. (2017) characterized three cultivars with BI 
and ΔE*, identifying notable ordination differences in susceptibility to 
EB contingent on the index. In a study conducted by Serra et al. (2021), 
the authors assessed ΔD and ΔE* in 14 cultivars. Their findings revealed 
that, while both indices demonstrated a strong correlation in general, 
there were slight discrepancies in the ordination of some cultivars. 
Finally, Shimizu et al. (2021) compared ΔE00, ΔBI, and BI in six 
yellow-fleshed cultivars, finding that the sorting by ΔE00 and ΔBI was 
highly similar, but that by BI differed significantly. They also found 
notable sorting differences between the three indices when evaluating 
red-fleshed cultivars. They concluded that BI allowed for a more 
appropriate evaluation of color tone and that ΔBI was better related to 

Table 2 
Enzymatic browning levels for the intensity of browning (EBI) using the indices normalized CIE color difference (ΔE*), CIEDE2000 color difference (ΔE00), difference 
in browning index (ΔBI) and browning index (BI) at 30 min and 60 min after cutting, and the number of cultivars classified on each level.

Time (min) Threshold values for EBI level Nº of accessions on each level

Index Low (L) Moderate (M) High (H) Very high (VH) Extremely High (EH) L M H VH EH

ΔE* 30 < 9.7 9.7–15.5 15.5–21.4 21.4–27.2 > 27.2 25 79 29 8 1
​ 60 < 11.3 11.3–18.2 18.2–25.0 25.0–31.9 > 31.9 21 81 31 8 1
ΔE00 30 < 5.1 5.1–8.3 8.3–11.4 11.4–14.5 > 14.5 29 84 25 3 1
​ 60 < 6.1 6.1–9.7 9.7–13.2 13.2–16.8 > 16.8 36 75 27 3 1
ΔBI 30 < 16.0 16.1–30.3 30.3–44.6 44.6–58.8 > 58.8 33 71 31 4 3
​ 60 < 19.7 19.7–36.4 36.4–53.1 53.1–69.8 > 69.8 33 66 34 6 3
BI 30 < 42.8 42.8–67.5 67.5–92.2 92.2–117.0 > 117.0 25 70 39 5 3
​ 60 < 46.4 46.4–73.0 73.0–99.7 99.7–126.3 > 126.3 28 67 38 6 3
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visual differences between cultivars than ΔE00. Additionally, the latter 
index was deemed unsuitable for evaluating differences in EB evolution 
in cultivars with a high degree of browning. In this study, the correlation 
between ΔBI and ΔE00 (Fig.S1) shows a logarithmic pattern flattening at 
moderate values of ΔBI, agreeing with the findings of Shimizu et al. 
(2021).

In our study, a formal evaluation of the efficiency of the most 
commonly used EB indices has been carried out for the first time through 
correlation and discriminant capacity analyses. It was determined that, 
despite the high correlations found, each index produces a distinct 
ranking and classification, rendering them essentially non- 
interchangeable. Furthermore, the discriminant capacity was evalu
ated using the DR. This is an instrument developed in the field of clinical 
research and widely used in the comparison of indices or measurement 
scales. In agronomy, it has been used to compare the efficiency of water 
potential measurements (Cole and Pagay, 2015; Santesteban et al., 
2019, 2011) as well as fruit sensory preference scales (Yeung et al., 
2021). The results of this formal analysis, conducted on a wide dataset, 
corroborate the findings of prior studies performed more limited data
sets. They confirm the superiority of ΔBI for detecting visual differences 
concerning other indices, particularly ΔE00, as highlighted by Shimizu 
et al. (2021). ΔE00 is an improved index representing color differences 

that approximate human vision, and its values are adjusted to the visual 
experience, such that the deeper the color, the lower the difference 
perception (Luo et al., 2001), therefore rendering ΔE00 unsuitable for 
phenotyping purposes. Consequently, in light of the aforementioned 
results, ΔBI would be the most recommendable index.

4. Concluding remarks

A phenotyping system developed to determine enzymatic browning 
in large fruit samples (~10–15 fruit halves) has been successfully 
applied for the first time on a large scale. This method adequately 
accounted for any surface heterogeneity typical of EB. The procedure is 
fast, and the time required to prepare each batch of 10 fruits could be 
considered negligible, since an operator with some training needed less 
than 1 min to cut by knife and arrange the fruits on the alveoli trays. This 
makes it possible to adequately evaluate EB even in cultivars with a high 
oxidation rate. Moreover, it has been shown that the phenotyping pro
cess could be substantially shortened, given that the differences between 
the determinations at 30 and 60 min after cutting are negligible.

The system therefore shows the advantages already referred to by 
previous researchers in terms of allowing high-throughput, high preci
sion and affordable phenotyping (Bouillon et al., 2024; Shimizu et al., 

Table 3 
Enzymatic browning levels for the speed of browning (EBS) using the indices normalized CIE color difference (ΔE*), CIEDE2000 color difference (ΔE00), difference in 
browning index (ΔBI) and browning index (BI), and the number of cultivars classified on each level.

Threshold values for EBS level Nº of accessions on each level

Index Low (L) Moderate (M) High (H) Very high (VH) L M H VH

ΔE* < 0.47 0.47–0.79 0.79–1.11 > 1.11 15 24 80 23
ΔE00 < 0.20 0.20–0.50 0.50–0.80 > 0.80 5 35 71 31
ΔBI < 0.48 0.48–0.89 0.89–1.30 > 1.30 21 18 85 18
BI < 0.40 0.40–0.60 0.60–0.80 > 0.80 24 89 26 3

Fig. 7. Pairwise relationships among enzymatic browning (EB) indices. Below the diagonal (green tones): Pearson correlation matrix of the values obtained for the 
indices in the set of cultivars. All correlations are significant (p < 0.001). Above the diagonal (blue tones): proportion (%) of accessions that were classified in the 
same EB level for the pair of indices.
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2021; Subhashree et al., 2017). The work scale that can be achieved with 
the methodology developed has made possible to go beyond a 
proof-of-concept phase and apply it on a large scale to a very diverse 
collection of 142 apple cultivars including commercial (cider, dessert, 
processing), and heritage cultivars. From a practical point of view, the 
methodology developed can be also easily applied to the evaluation of 
fruit pieces identical to those of final products (slices, strips, etc.) as it 
can handle irregular shapes, avoiding the sampling problems inherent 
with the use of colorimeters.

The considerable number of samples used in the study has allowed us 
to demonstrate that EB is an inherently stable trait for a given cultivar in 
each year of observation, although notable differences between years 
can be observed. This can be associated to the fact it is a feature influ
enced by weather and management circumstances. Thus, EB pheno
typing of a cultivar requires determinations over a sufficient number of 
seasons, which adds value to the low-cost high-throughput imaging 
system developed.

The indices evaluated in this study have demonstrated a comparable 
efficacy for the classification and ranking of cultivars according to their 
EB speed and intensity. However, the differences in performance among 
them are substantial enough to render some more suitable for pheno
typing. Thus, ΔBI showed a stronger correlation with visual inspection 
and demonstrates a higher discriminant capacity than the others, 

making it the most appropriate index for this type of assessment.
All in all, the findings of this study provide a robust methodological 

basis that can be easily implemented germplasm collection and breeding 
programs for screening low-browning genotypes, highlighting the po
tential of underutilized traditional cultivars in developing improved 
fresh-cut apple products.
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