000164214 001__ 164214
000164214 005__ 20251127172931.0
000164214 0247_ $$2doi$$a10.1016/j.jcou.2025.103270
000164214 0248_ $$2sideral$$a146414
000164214 037__ $$aART-2025-146414
000164214 041__ $$aeng
000164214 100__ $$aMbuya, Christel Olivier Lenge
000164214 245__ $$aTuning catalyst performance in methane dry reforming via microwave irradiation of Nickel-Silicon carbide systems
000164214 260__ $$c2025
000164214 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164214 5203_ $$aThe dry reforming of methane (DRM) is a promising route for converting greenhouse gases such as methane (CH4) and carbon dioxide (CO2) into valuable syngas, hydrogen (H2) and carbon monoxide (CO). However, traditional nickel (Ni)-based catalysts suffer from rapid deactivation due to carbon deposition and sintering, especially when supported on low thermal conductivity materials. In this work, a novel post-synthesis microwave irradiation (MIR) treatment is introduced to systematically optimize the performance of Ni – β – SiC and Ni – Ti – Cβ – SiC catalysts for DRM. Unlike previous studies that have used MIR during reaction or with different supports, this approach tunes the metal – support interactions and textural properties of Ni – β – SiC and Ni – Ti – Cβ – SiC catalysts by varying the MIR exposure time after catalyst synthesis. MIR post-treatment (10–25 s) increased the CH4 conversion to 65 % and the CO2 conversions to 62 % for Ni–β–SiC catalysts and improved the H₂/CO ratio to 0.80, with stable performance over 20 h. For Ni–Ti–Cβ–SiC, MIR (10–20 s) maintained CH4 conversion up to 60 % and CO2 conversion to 58 % over 20 h, while the untreated catalyst, though initially higher, deactivated rapidly. Excessive MIR (30 s) reduced performance for both catalyst types, underscoring the need for optimal exposure time. These findings demonstrate post-synthesis MIR provides a tuneable approach for enhancing both the activity and durability of Ni/SiC – based DRM catalysts through controlled modification of metal – support interactions. This work offers new insights for the design of robust catalysts aimed at greenhouse gas utilization and sustainable syngas production, with activity and stability enhancements linked to controlled changes in metal – support interactions.
000164214 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000164214 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000164214 700__ $$aPawar, Kunal
000164214 700__ $$aJafari, Mitra
000164214 700__ $$aShafiee, Parisa
000164214 700__ $$aChine, Chike George Okoye
000164214 700__ $$aTarifa, Pilar$$uUniversidad de Zaragoza
000164214 700__ $$aDorneanu, Bogdan
000164214 700__ $$aArellano-Garcia, Harvey
000164214 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000164214 773__ $$g102 (2025), 103270 [9 pp.]$$pJ. CO2 util.$$tJournal of CO2 Utilization$$x2212-9820
000164214 8564_ $$s9766260$$uhttps://zaguan.unizar.es/record/164214/files/texto_completo.pdf$$yVersión publicada
000164214 8564_ $$s2464455$$uhttps://zaguan.unizar.es/record/164214/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000164214 909CO $$ooai:zaguan.unizar.es:164214$$particulos$$pdriver
000164214 951__ $$a2025-11-27-15:17:13
000164214 980__ $$aARTICLE