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Resumen  

Los incendios forestales dejan una "cicatriz térmica" duradera en el paisaje, alterando significati-

vamente la Temperatura Superficial Terrestre (LST). Este Trabajo de fin de máster investiga la 

dinámica de esta cicatriz en los ecosistemas mediterráneos de Aragón, analizando cómo se recu-

pera en el tiempo y qué factores controlan su persistencia. Para ello, se implementa un flujo de 

trabajo que, mediante un enfoque de controles pareados ("puntos gemelos"), permitió analizar las 

series temporales de imágenes Landsat para un extenso grupo de 95 incendios que datan de 1985 

a 2019. 

El estudio revela que la recuperación térmica sigue un patrón no lineal, con una rápida atenuación 

inicial seguida de una estabilización a largo plazo, fuertemente influenciada por los ciclos estacio-

nales. A través de modelos estadísticos, se confirma que la persistencia de la cicatriz depende tanto 

de la magnitud del daño inicial (severidad) como de factores del paisaje como la elevación. 

Adicionalmente, se realizó una comparación multiescala entre los datos satelitales y mediciones de 

un vehículo no tripulado de muy alta resolución (3 cm). Los resultados demuestran un profundo 

desacoplamiento entre las escalas: el satélite captura una visión promediada y homogénea, mien-

tras que el dron revela una heterogeneidad térmica extrema a microescala que es enmascarada 

desde el espacio. Se descubrió que las condiciones del paisaje previas al fuego son un mejor pre-

dictor de la micro-temperatura actual que la propia medición térmica del satélite, subrayando la 

existencia de una "memoria ecológica" que condiciona la respuesta del ecosistema décadas después 

de la perturbación. 

Palabras Clave: cicatriz térmica, LST, teledetección, Landsat, incendios forestales, recuperación 

posfuego, multiescala, dron, ecología del paisaje. 

Abstract 

Forest fires leave a lasting "thermal scar" on the landscape, significantly altering the Land Surface 

Temperature (LST). This Master's thesis investigates the dynamics of this scar in the Mediterranean 

ecosystems of Aragon (Spain), analyzing how it recovers over time and which factors control its 

persistence. To this end, a workflow was implemented that, through a paired-control approach 

("twin points"), allowed for the analysis of Landsat image time series for an extensive group of 95 

wildfires dating from 1985 to 2019. 

The study reveals that thermal recovery follows a non-linear pattern, with a rapid initial attenuation 

followed by long-term stabilization, strongly influenced by seasonal cycles. Through statistical mod-

els, it is confirmed that the scar's persistence depends on both the magnitude of the initial damage 

(severity) and landscape factors such as elevation. 

Additionally, a multiscale comparison was conducted between satellite data and very high-resolu-

tion (3 cm) measurements from an unmanned aerial vehicle (UAV). The results demonstrate a 

profound decoupling between scales: the satellite captures an averaged, homogeneous view, 

whereas the UAV reveals extreme thermal heterogeneity at the microscale that is masked from 

space. It was discovered that pre-fire landscape conditions are a better predictor of current micro-

temperature than the satellite's own thermal measurement, highlighting an "ecological memory" 

that shapes the ecosystem's response decades after the disturbance. 

Key Words: thermal scar, LST, remote sensing, Landsat, forest fires, post-fire recovery, mul-

tiscale, UAV, landscape ecology. 
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1. INTRODUCCIÓN 

1.1. Marco teórico y justificación. 

Los incendios forestales constituyen una de las perturbaciones más importantes que afectan a los 

ecosistemas a nivel global. Estos eventos no solo alteran la estructura y la biodiversidad de los bosques, 

sino que también ejercen un profundo impacto en el ciclo global del carbono y, en consecuencia, en el 

cambio climático (Kurbanov et al., 2022; Li et al., 2023). La problemática de los incendios es especial-

mente significativa en ecosistemas como el Mediterráneo, donde la recurrencia e intensidad de los fue-

gos no son considerados un simple desastre, sino que modelan el paisaje y la dinámica ecológica a lo 

largo de milenios (Vlassova et al., 2014). En este contexto, evaluar la magnitud de los daños (severidad 

del fuego) y monitorizar la posterior recuperación de la vegetación son tareas fundamentales. Estas eva-

luaciones son cruciales para comprender el impacto ecológico de las perturbaciones y para diseñar es-

trategias de gestión y restauración efectivas tras el paso del fuego (Quintano et al., 2019). 

Un parámetro biofísico clave que puede ser medido desde el espacio para llevar a cabo esta moni-

torización es la Temperatura de la Superficie Terrestre (LST, por sus siglas en inglés). La LST es un 

indicador fundamental de los procesos de intercambio de energía y agua en la interfaz superficie-atmós-

fera y juega un papel crucial en el estudio del clima a escala local y global (Li et al., 2013). Tras un 

incendio, la eliminación de la cubierta vegetal altera drásticamente el balance energético de la superficie. 

Por un lado, disminuye el enfriamiento latente asociado a la evapotranspiración; por otro, el oscureci-

miento del suelo por la presencia de cenizas y carbón puede reducir su albedo, aumentando la absorción 

de radiación solar. Ambos factores provocan un incremento significativo y persistente de la LST en las 

zonas quemadas (Vlassova et al., 2014; Ezzaher et al., 2024). Este fenómeno, conocido como "cicatriz 

térmica", convierte a la LST en un efectivo indicador para evaluar tanto la severidad del fuego como el 

estado de la recuperación del ecosistema post-incendio. Sin embargo, su correcta estimación desde sa-

télite es un desafío, ya que requiere de complejas correcciones atmosféricas y un conocimiento preciso 

de la emisividad de la superficie (Li et al., 2023). 

En las últimas décadas, la teledetección se ha consolidado como una herramienta indispensable para 

el estudio de estas dinámicas. Su capacidad para proporcionar una visión sinóptica, multitemporal y 

rentable de grandes extensiones de terreno la convierte en una alternativa de gran valor frente a los 

costosos y espacialmente limitados trabajos de campo (Kurbanov et al., 2022; Morante-Carballo et al., 

2022). La disponibilidad de archivos históricos de imágenes satelitales, como el proporcionado por la 

serie de satélites Landsat, ha permitido generar series temporales de datos cruciales para analizar no solo 

los efectos inmediatos del fuego, sino también los patrones de recuperación a largo plazo. El análisis de 

estas grandes cantidades de datos se ha visto, a su vez, revolucionado por la llegada de plataformas de 

procesamiento como Google Earth Engine (GEE). Estas plataformas han permitido el acceso y el aná-

lisis de archivos de datos geoespaciales a escala planetaria, facilitando la ejecución de estudios comple-

jos sobre la dinámica post-incendio que antes eran computacionalmente inaccesibles (Koutsias et al., 

2023). 

En este marco, el presente Trabajo de Fin de Máster explora la dinámica de la cicatriz térmica en 

los ecosistemas mediterráneos de Aragón. Aprovechando las herramientas mencionadas, se ha desarro-

llado un flujo de trabajo para analizar un grupo extenso de 95 incendios (1984-2019), lo que permite 

caracterizar las trayectorias de normalización de la LST y explorar la heterogeneidad de las respuestas 

en un conjunto de datos más amplio que un estudio de caso único. De forma simultánea, el trabajo aborda 

una reflexión metodológica sobre la influencia de la escala de observación, para lo cual incorpora un 

componente multiescala que contrasta las mediciones satelitales a escala métrica, con datos de alta re-

solución centimétrica obtenidos por dron, para un subconjunto de los incendios analizados. 
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1.2. Hipótesis. 

A partir del marco teórico expuesto, la presente investigación se guía por una serie de hipótesis 

fundamentales sobre la dinámica de la cicatriz térmica posfuego. En primer lugar, partiendo de la cono-

cida interacción entre la vegetación y el balance energético, se postula que la anomalía térmica entre las 

zonas quemadas y las de control no es un fenómeno estático. Se espera que esta Diferencia de Tempe-

ratura Superficial Terrestre muestre una clara tendencia de recuperación a lo largo del tiempo, y que esta 

normalización térmica esté fuertemente acoplada a la progresiva regeneración de la cubierta vegetal, 

actuando esta última como el principal motor del enfriamiento de la superficie. 

Sin embargo, dado que los incendios ocurren en paisajes heterogéneos, se hipotetiza que esta tra-

yectoria de recuperación no será uniforme en todos los casos. Se prevé que la magnitud de la anomalía 

térmica y la velocidad de su recuperación estén significativamente influenciadas por las características 

morfo-estructurales y biofísicas de cada sitio, así como por la severidad del fuego. 

Finalmente, se aborda la cuestión metodológica de la escala. Se plantean dos hipótesis interrelacio-

nadas sobre el efecto de la escala espacial de observación. Primero, se hipotetiza que las mediciones de 

alta resolución (dron, 3 cm), al capturar la heterogeneidad a microescala, presentarán una variabilidad 

estadística significativamente mayor que las mediciones de resolución media (satélite, 30 m), las cuales 

promedian dicha variabilidad. Segundo, y como consecuencia de lo anterior, se postula que existirá un 

profundo desacoplamiento predictivo entre ambas escalas, de tal forma que la medición de LST del 

satélite no será un predictor significativo de la LST a nivel de punto, anticipando una considerable pér-

dida de información al pasar de una escala métrica a una fina. 

1.3. Objetivos. 

En consonancia con el marco de investigación y las hipótesis planteadas, los objetivos principales 

de este Trabajo de Fin de Máster son los siguientes: 

▪ Desarrollar y documentar un flujo de trabajo metodológico en R, diseñado para el análisis replicable 

y escalable de múltiples áreas de estudio, que implementa un algoritmo flexible de emparejamiento 

para la generación de zonas de control basadas en cualquier conjunto de variables geoespaciales. 

▪ Caracterizar la dinámica temporal de la anomalía térmica post-incendio en un grupo extenso de 

incendios forestales en Aragón, analizando su evolución a escalas diaria, mensual y anual y su re-

lación con la recuperación de la vegetación. 

▪ Evaluar la influencia de factores biofísicos, morfo-topográficos y relacionados con la severidad del 

fuego en la heterogeneidad de las trayectorias de normalización térmica, mediante la aplicación de 

modelos estadísticos de efectos mixtos. 

▪ Realizar un análisis comparativo multiescala de la Diferencia de Temperatura Superficial Terrestre, 

contrastando las mediciones obtenidas a partir de datos satelitales de resolución media (Landsat, 30 

m) con las obtenidas mediante datos de alta resolución centimétrica (dron, 3 cm) para cuantificar el 

efecto de la escala de observación. 

2. ÁREA DE ESTUDIO Y DATOS 

2.1. Descripción del área de estudio. 

El área de estudio para esta investigación comprende la totalidad de la Comunidad Autónoma de 

Aragón, situada en el noreste de España, con una superficie de 47,720 km². Orográficamente, el territorio 

aragonés se encuentra estructurado por tres grandes unidades. Al norte, se origina las sierras y depresio-

nes pirenaicas, que alcanzan altitudes superiores a los 3,000 metros y alberga ecosistemas de alta y 

media montaña. En el extremo sur y oeste se desarrolla el Sistema Ibérico, una cordillera de altitudes 

más moderadas, pero de gran complejidad topográfica. Entre ambas formaciones montañosas se ex-

tiende la Depresión del Valle del Ebro, una extensa cuenca sedimentaria de baja altitud que constituye 

el eje central de la región. Esta diversidad de relieves genera un gradiente altitudinal y topográfico muy 

marcado, que influye directamente en los patrones climáticos y en la distribución de la vegetación. 
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Desde el punto de vista climático, aunque predomina el clima Mediterráneo continentalizado, ca-

racterizado por una fuerte aridez estival, inviernos fríos y una notable amplitud térmica anual, que in-

troducen importantes variaciones locales. Se encuentran desde climas de alta montaña en los Pirineos, 

con abundantes precipitaciones, hasta condiciones de semiaridez del Valle del Ebro y climas mediterrá-

neos continentalizados de montaña media.  

Esta matriz físico-geográfica sustenta una diversidad de formaciones vegetales. Las masas foresta-

les están dominadas por diversas especies de coníferas, principalmente pinares de Pinus halepensis, 

Pinus nigra y Pinus sylvestris, adaptados a diferentes condiciones de altitud y suelo. Junto a ellas, se 

desarrollan bosques de quercíneas como encinares (Quercus ilex) y quejigares (Quercus faginea), ade-

más de extensas áreas de matorral y maquia mediterránea, cuya distribución se detalla en el Mapa Fo-

restal de España (Ministerio de Agricultura, Pesca y Alimentación, 2017). La combinación de estas 

condiciones climáticas y la abundancia de vegetación propensa al fuego hacen de Aragón un escenario 

recurrente de incendios forestales, lo que lo convierte en un área idónea para el análisis regional de sus 

cicatrices térmicas (Figura 1). 

 

Figura 1. Localización de Aragón en el contexto del estado español.  

2.2. Datos de partida y selección de incendios. 

La base conceptual, metodológica y cartográfica de esta investigación se incluye en el proyecto 

titulado: “Análisis dinámico de la resiliencia de los paisajes forestales afectados por el fuego mediante 

indicadores espectrales multisensor (PaF)” (Proyectos de I+D+i Retos Investigación; PID2020-

118886RB-I00), centrado en el estudio histórico de los incendios forestales en Aragón. Este conjunto 

de datos original consta de una capa de información geográfica en formato vectorial que contiene los 

perímetros de 159 incendios ocurridos en la región desde el año 1967. Cada polígono cuenta con atribu-

tos fundamentales para el análisis, incluyendo un identificador único para cada evento de fuego (IDPAF) 

y la fecha exacta de su ocurrencia. 

A partir de esta base de datos, se aplicó un proceso de filtrado para conformar el grupo de incendios 

final para el estudio. En una primera etapa, se descartaron todos los incendios anteriores al año 1984, 

fecha de inicio de operaciones del satélite Landsat 4, ya que no se dispone de datos de Temperatura 

Superficial Terrestre (LST) fiables para fechas previas. Este filtro redujo el número de incendios candi-

datos a 124. 

En una segunda etapa, la selección final se condicionó a la disponibilidad de datos cartográficos de 

las condiciones de la vegetación pre-incendio. Para este fin, se utilizó el Índice Normalizado de Quema-

dura (NBR) del periodo previo a cada fuego, un producto derivado y facilitado por el mismo proyecto 

de investigación. Tras verificar la disponibilidad de esta capa PRE-NBR para cada uno de los 124 in-

cendios candidatos, el número de eventos que contaban con todos los datos necesarios para el estudio 
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se estableció finalmente en 95. Este grupo final, cuya distribución geográfica se muestra en la Figura 2, 

constituye el universo de estudio sobre el cual se han desarrollado todos los análisis posteriores. 

 

Figura 2. Distribución espacial de los incendios forestales incluidos en el análisis. 

2.3. Datos satelitales: Colecciones del programa Landsat. 

El principal conjunto de datos para el análisis de series temporales se obtuvo del archivo del pro-

grama Landsat, gestionado por el Servicio Geológico de los Estados Unidos (USGS). Se utilizaron las 

colecciones de Nivel 2, que proporcionan datos de Reflectancia de Superficie (SR) y Temperatura de 

Superficie (ST) ya corregidos desde el punto de vista radiométricos y atmosférico. Para cubrir el extenso 

periodo de análisis, se emplearon de forma combinada los datos de los sensores Thematic Mapper (TM) 

a bordo de Landsat 5, Enhanced Thematic Mapper Plus (ETM+) de Landsat 7, y Operational Land 

Imager (OLI) y Thermal Infrared Sensor (TIRS) de Landsat 8 y 9. Todos los datos ópticos presentan 

una resolución espacial de 30 metros. 

2.4. Datos de alta resolución: orto mosaicos térmicos de dron. 

Para el análisis comparativo a escala detalle, se utilizó un conjunto de datos de alta resolución para 

un subconjunto de 12 eventos representativos de los incendios estudiados. Estos datos, proporcionados 

por el proyecto, consisten en ortomosaicos de Temperatura Superficial Terrestre generados a partir de 

vuelos de vehículos aéreos no tripulados (dron) equipados con sensores térmicos, ofreciendo un nivel 

de detalle que permite el análisis de la heterogeneidad térmica a microescala espacial. 
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Específicamente, se empleó un Parrot Anafi Thermal, un dron multirrotor equipado con cámaras 

TIR y RGB que operan de forma conjunta. La estimación de la LST se realizó con el sensor térmico, un 

radiómetro FLIR Lepton 3.5 con una resolución de 160 × 120 píxeles que opera en la región del infra-

rrojo térmico (TIR), entre 8 y 14 μm. Para la adquisición de datos, el UAV voló a una altitud aproximada 

de 80 metros sobre el terreno, con un ángulo de incidencia nadiral (90°). Esta configuración de vuelo 

permitió obtener datos de LST con una resolución espacial final de 3 cm/px. El procesamiento de los 

datos brutos TIR para generar los ortomosaicos térmicos se llevó a cabo mediante el software 

PIX4Dmapper. La Figura 3 muestra un ejemplo de la cobertura de estos datos para uno de los incendios 

analizados. 

 

Figura 3. Localización de los footprints (perímetros en blanco) correspondientes a los vuelos UAV adquiridos 

en el incendio de Lasaosa 1986 (Municipios de Sabiñanigo y Nueno –Prepirineo oscense) (línea roja intermi-

tente). 

2.5. Datos auxiliares. 

Para el desarrollo de la metodología, se emplearon dos conjuntos de datos auxiliares fundamentales 

que sirvieron como variables de control en el proceso de emparejamiento de puntos. 
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2.5.1.  Modelo Digital del Terreno (MDT). 

Se utilizó una colección de 272 Modelos Digitales del Terreno (MDT) de alta resolución, con un 

tamaño de píxel de 2 metros. Este producto, derivado de datos LiDAR y distribuido por el Centro Na-

cional de Información Geográfica (CNIG) disponible en https://centrodedescargas.cnig.es, fue la base 

para la extracción de las variables topográficas claves utilizadas en el análisis: la elevación, la pendiente, 

la exposición general, el Índice de Posición Topográfica (TPI) y el Índice de Rugosidad del Terreno 

(TRI). La siguiente Figura 4 muestra la extensión del MDT en el estudio. 

  

Figura 4.  Distribución espacial de los ficheros del Modelo Digital del Terreno –MDT02- correspondientes a 

las zonas quemadas analizadas.  

2.5.2.  Datos de vegetación pre-incendio. 

Para controlar el efecto de la condición de la vegetación antes del fuego, se utilizó como variable 

proxy el Índice Normalizado de Quemadura o área quemada (NBR) (Key and Benson, 1999), del pe-

riodo inmediatamente anterior al incendio. Estas capas, con una resolución de 30 metros, fueron gene-

https://centrodedescargas.cnig.es/
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radas y proporcionadas por el proyecto PaF, y resultaron cruciales para asegurar la similitud en las con-

diciones espectrales de la vegetación entre los puntos de incendio y sus correspondientes controles. La 

siguiente Figura 5 se muestra la extensión de los ráster con respecto a los incendios. Por cuestiones de 

escala y dimensionalidad estos no se pueden representar por completo en el mapa, pero esta información 

cubre en su totalidad las áreas del grupo de incendios para el estudio. 

  

Figura 5. Distribución espacial de los ficheros del Índice Normalizado de Quemadura previo al evento – PRE-

NBR- correspondientes a las zonas quemadas analizadas.  

3. METODOLOGÍA 

3.1. Flujo de trabajo general. 

La metodología empleada en este estudio se estructuró en un flujo de trabajo secuencial y replicable, 

diseñado para procesar y analizar los datos de teledetección a múltiples escalas. El proceso, implemen-

tado mayoritariamente en el entorno de programación R y en la plataforma Google Earth Engine, puede 
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dividirse en cuatro grandes fases: (1) Diseño y Validación, donde se generaron los puntos de muestreo 

y se validó el método de emparejamiento; (2) Extracción de Series Temporales, donde se obtuvieron los 

datos satelitales para cada punto; (3) Procesamiento y Limpieza de Datos, donde se calcularon las va-

riables de diferencia y se depuraron los datos; y (4) Análisis Estadístico y Comparativo, donde se ajus-

taron los modelos y se contrastaron los resultados entre escalas. En la Figura 6 se presenta un diagrama 

de flujo que resume las etapas principales de la metodología. 

 

Figura 6. Diagrama de flujo metodológico aplicado a la generación del trabajo (resumido).  

3.2. Estrategia de muestreo y generación de puntos de control. 

La validez del estudio se fundamenta en una estrategia de muestras y controles pareados, diseñada 

para aislar el efecto neto de los incendios de otras fuentes de variabilidad ambiental. El principio meto-

dológico consistió en comparar, a lo largo del tiempo, las mediciones de LST de puntos de muestreo 
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localizados dentro de áreas quemadas (muestras) con las de "puntos gemelos" análogos situados en zo-

nas adyacentes no afectadas (controles). Para implementar este diseño, se desarrolló un flujo de trabajo 

en R que abarcó dos procesos principales: primero, la generación de los puntos de muestreo base para 

cada escala de análisis (satélite y dron); y segundo, la posterior búsqueda de su correspondiente punto 

de control, como se detallará en el apartado 3.2.2. 

3.2.1.  Generación de puntos de muestreo (escala satélite y dron). 

El proceso para crear la población de puntos de muestreo iniciales se lo implementó con un algo-

ritmo en R y se adaptó a las características y objetivos de cada escala de análisis. 

Para el análisis a escala de satélite, el objetivo era evaluar la estabilización a largo plazo. Por ello, 

fue crucial asegurar que las áreas de estudio no estuvieran contaminadas por perturbaciones posteriores. 

Partiendo de la cartografía de 95 perímetros de incendio y sus respectivas fechas de ocurrencia, se eje-

cutó un proceso de análisis espacial iterativo. Para cada incendio, el script (Anexo 1) identificó y excluyó 

cualquier porción de su área que se hubiera solapado con un incendio posterior. El resultado de este 

filtrado fue un conjunto de polígonos de "área de quema única", garantizando que la recuperación ob-

servada en ellos correspondiera exclusivamente al evento de fuego original. Sobre estas áreas únicas 

validadas, se generó una muestra de puntos aleatorios con una densidad de 20 puntos por km². La si-

guiente Figura 7 muestra un ejemplo de “Área única” y los puntos de muestra. 

 

Figura 7. Generación de las áreas únicas y puntos de muestra, ejemplo del incendio código IDPAF: 90 (Ambel, 

Zaragoza). 

Para el análisis a escala de dron, el objetivo era caracterizar la anomalía térmica a muy alta resolu-

ción (Anexo 2). El punto de partida fueron los 12 ortomosaicos térmicos georreferenciados. Se imple-

mentó un procedimiento para crear una "huella de datos válidos" para cada ortomosaico. Este proceso 

convirtió el ráster térmico en un polígono vectorial, excluyendo automáticamente las celdas sin datos 
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(valores NoData), que se manifiestan como huecos o bordes irregulares en el área de cobertura. Este 

polígono de datos válidos fue posteriormente segmentado en zonas de "Incendio" y "Control" mediante 

su intersección con los perímetros oficiales. Finalmente, se generó una muestra de 150 puntos aleatorios 

dentro de cada una de las zonas de "Incendio", con la certeza de que todos los puntos se localizaban en 

áreas con mediciones térmicas válidas (Figura 8). 

 

Figura 8. Generación de las áreas “Incendio”, “Control” y puntos de muestra, ejemplo del incendio código 

IDPAF: 62 (Lasosa, Huesca). 

3.2.2.  Metodología de emparejamiento de "puntos gemelos”. 

Para cada punto de muestreo generado, se implementó un algoritmo en R con el objetivo de encon-

trar su "punto gemelo" o control ambientalmente análogo. Este proceso es crucial para aislar el efecto 

del fuego de la variabilidad intrínseca del paisaje (Barbet-Massin et al., 2012). Al asegurar que cada 

punto de incendio tenga su análogo en una zona no quemada, se neutralizan las variables de confusión, 

permitiendo que las diferencias observadas puedan ser atribuidas con mayor confianza al impacto de la 

perturbación (VanDerWal et al., 2009). 

El paso fundamental de este proceso fue la construcción de un perfil ambiental para cada punto de 

incendio, seleccionando un conjunto de descriptores que, en conjunto, modelan los procesos biofísicos 

primarios que gobiernan el régimen térmico de la superficie. La base de este análisis fue el MDT de 2 

metros de resolución, a partir del cual se derivaron las siguientes variables topográficas: 
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▪ Elevación: Extraída directamente del MDT. Es un factor de primer orden que modula la temperatura 

a través del gradiente adiabático atmosférico, donde a mayor altitud, la temperatura tiende a ser 

menor (Li et al., 2013). Se estableció una tolerancia de emparejamiento de ±20 metros. 

▪ Pendiente (Slope): Calculada en grados. Determina el ángulo de incidencia de la radiación solar. 

Pendientes más pronunciadas y orientadas hacia el sol reciben una mayor irradiancia, lo que puede 

resultar en una LST más elevada. Además, influye en procesos hidrológicos que afectan indirecta-

mente a la LST a través de la humedad del suelo (Vlassova et al., 2014). Se fijó una tolerancia de 

±10 grados. 

▪ Exposición General (Iluminación Multidireccional): Para superar el sesgo de un índice de ilumina-

ción unidireccional (que depende de una fuente de luz arbitraria), se implementó un indicador de 

exposición general más robusto. El cálculo de este índice se realizó en cuatro pasos: primero, se 

generaron cuatro capas de iluminación (hillshade) individuales desde las cuatro direcciones cardi-

nales intermedias (Noroeste 315°, Noreste 45°, Sureste 135° y Suroeste 225°). Segundo, cada una 

de estas capas se normalizó de forma independiente a un rango de 0 a 1 para asegurar que ninguna 

dirección dominara el resultado final. Tercero, las cuatro capas normalizadas se promediaron, re-

sultando en un único índice que representa el grado de protección o apertura topográfica de un 

punto. Finalmente, se impuso una tolerancia estricta de ±0.05 sobre este índice compuesto (en su 

escala de 0 a 1), garantizando un balance energético y una exposición al viento prácticamente idén-

ticos entre los puntos emparejados. 

▪ Índice de Posición Topográfica (TPI): Calculado como la diferencia entre la elevación de cada celda 

y la media de su vecindad (en este caso, una ventana de 3x3 celdas). Este índice cuantifica la posi-

ción relativa de un punto en el paisaje (cresta, valle o ladera), lo cual es vital para capturar procesos 

microclimáticos clave, como el drenaje de aire frío o la acumulación de humedad en los valles, 

ambos con un fuerte impacto sobre la LST (Weiss, 2001). Se estableció una tolerancia de ±1.0 

metros sobre el valor de este índice. 

▪ Índice de Rugosidad del Terreno (TRI): Calculado como la raíz cuadrada de la suma de los cuadra-

dos de las diferencias de elevación entre una celda central y sus ocho vecinas. El TRI mide la hete-

rogeneidad y complejidad del terreno. Un terreno muy rugoso (TRI alto) presenta una mayor varia-

bilidad de microclimas, con más zonas de auto-sombreado que pueden moderar las temperaturas 

superficiales (Riley et al., 1999). Se fijó una tolerancia de ±0.5 sobre el valor de este índice para 

asegurar que la complejidad microclimática de los puntos comparados fuera análoga. 

▪ Índice Normalizado de Quemadura Pre-Incendio (PRE_NBR): A diferencia de las variables topo-

gráficas estáticas, el NBR captura las características espectrales de la vegetación antes del evento. 

Actúa como un proxy directo de los procesos biológicos que regulan la LST, como el enfriamiento 

por evapotranspiración y la modificación del albedo superficial. Incluir esta variable es fundamental 

para asegurar que el estado fisiológico de la cobertura vegetal era equivalente entre los puntos de 

incendio y control antes de la perturbación. Se fijó una tolerancia rigurosa de ±0.1 sobre este índice 

(cuyo rango teórico es de -1 a +1). 

 

Una vez definidas estas variables de control, el algoritmo de emparejamiento procedió de la si-

guiente manera. Para cada punto de muestreo dentro de un incendio, el script generó primero una nube 

de puntos candidatos aleatorios en su correspondiente zona de búsqueda asignando un identificador 

único a cada punto (ID_Punto). A continuación, cada punto candidato fue "enriquecido", extrayendo 

para su localización los valores de todas las variables de control descritas. Posteriormente, se aplicó un 

filtro estricto, descartando todos aquellos candidatos que no cumplían con las tolerancias absolutas pre-

definidas para cada una de las seis variables. 

Del subconjunto de candidatos “cualificados” que superaron este filtro, se utilizó la distancia eucli-

diana multidimensional como criterio de desempate final para seleccionar al "gemelo" óptimo. Para 

calcular esta distancia de forma robusta, primero se realizó una normalización Min-Max de todas las 

variables continuas. Es crucial destacar que esta normalización se aplicó sobre el conjunto global de 

datos, utilizando los valores mínimos y máximos de todos los puntos de muestreo y todos los puntos 

candidatos de todos los incendios combinados. Este procedimiento asegura que los valores se escalen a 

un rango adimensional (0 a 1) utilizando un estándar común, lo que permite una comparación equitativa 
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entre incendios que operan en rangos de valores distintos (ej. un incendio de baja altitud frente a uno de 

alta montaña). La distancia euclidiana se calculó entonces en este espacio n-dimensional normalizado, 

seleccionando como "punto gemelo" definitivo aquel candidato que presentaba el menor valor de dis-

tancia, garantizando así la elección del análogo ambiental más similar posible. Como paso final se le 

asigna el mismo identificador único que su par de incendio. Este paso final es crucial, ya que establece 

un vínculo entre cada caso y su control, permitiendo el análisis pareado posterior. Como paso final se 

realizó la eliminación de los puntos de muestreo que no encontraron un “gemelo” para su análisis. La 

siguiente figura 8 presentada son un ejemplo de los puntos de control obtenidos, se mantiene el mismo 

incendio, tanto para la escala Dron y Satélite. El script de uso para este proceso se lo presenta en el 

Anexo 3. 

 

Figura 8. Izquierda la distribución de los puntos de “Control” correspondientes al análisis de las colecciones 

Landsat, a la Derecha correspondiente para el análisis con imágenes de UAV. 

3.2.3.  Validación del emparejamiento. 

Una vez generado el conjunto completo de pares de puntos, fue necesario realizar una validación 

estadística para confirmar que los puntos de control y los de incendio eran funcionalmente similares en 

sus características ambientales antes del fuego. Esta validación se estructuró en dos niveles: un análisis 

univariado para cada variable de control individual y una validación multivariada global. 

Para el análisis univariado, se seleccionó la prueba no paramétrica de los rangos con signo de Wil-

coxon (Wilcoxon, 1945). Esta prueba es especialmente adecuada para un diseño pareado, ya que analiza 

las diferencias dentro de cada par, un enfoque crucial para controlar la variabilidad que existe entre los 

diferentes incendios de la región. Al ser una prueba no paramétrica, no requiere que estas irregularidades 

sigan una distribución normal. El objetivo de esta prueba fue verificar si la mediana de las diferencias 

para cada variable de control era estadísticamente indistinguible de cero. 

Para la validación multivariada global, se seleccionó la prueba T-cuadrado de Hotelling. Esta 

prueba, que constituye la generalización multivariada de la prueba t de Student, permite responder a la 

pregunta fundamental: considerando el conjunto de variables de control simultáneamente, ¿son los per-

files ambientales de los grupos de Incendio y Control diferentes? Un paso inicial para esta prueba es la 



13 

ausencia de multicolinealidad severa. Por ello, se realizó un análisis previo de la matriz de correlación 

para identificar y excluir las variables redundantes, asegurando así la robustez del resultado final. 

3.3. Procesamiento de datos satelitales en Google Earth Engine. 

Una vez definido el universo de puntos de muestreo y sus controles pareados, se procedió a la 

extracción de las series temporales de datos satelitales. Este proceso se realizó en la plataforma de 

computación en la nube Google Earth Engine (GEE), para lo cual se desarrollaron tres scripts diferen-

ciados, cada uno para generar una serie temporal a una escala específica: diaria, mensual y anual. 

La lógica de extracción fue consistente en los tres casos. Para cada incendio, el script utilizó el año 

del evento como punto de partida temporal, filtrando el archivo histórico de imágenes Landsat para 

construir una colección de imágenes relevante solo para ese incendio. Espacialmente, para evitar errores 

de cómputo con geometrías de polígonos complejos y optimizar el rendimiento, la búsqueda de imáge-

nes no se limitó al perímetro exacto del incendio, sino a su rectángulo envolvente (bounding box). Esta 

estrategia asegura la captura de todas las imágenes que cubren el área de interés de una forma compu-

tacionalmente eficiente. 

3.3.1.  Preprocesamiento de imágenes Landsat. 

Para asegurar la calidad y comparabilidad de los datos a lo largo de toda la serie temporal, cada 

imagen satelital dentro de una colección fue sometida a un riguroso flujo de pre-procesamiento estan-

darizado. Este proceso consistió en tres pasos metodológicos principales. 

Primero, se realizó una limpieza radiométrica para enmascarar los píxeles inutilizables. Para ello, 

se utilizó la banda de evaluación de calidad (QA_PIXEL) que acompaña a cada imagen de Nivel 2. Esta 

banda permite identificar de forma fiable las observaciones contaminadas por nubes, sombras de nubes 

o nieve, las cuales fueron excluidas de todos los análisis posteriores para garantizar que únicamente se 

trabajara con datos de cielo despejado. 

Segundo, los valores de número digital de cada banda fueron convertidos a unidades físicas están-

dar. Las bandas ópticas se transformaron en valores de reflectancia de superficie y la banda térmica se 

convirtió a Temperatura de la Superficie Terrestre (LST) en grados Celsius, aplicando para ello los 

factores de escala y desplazamiento oficiales proporcionados por el USGS. A partir de las bandas de 

reflectancia de superficie, se calcularon en este paso los principales índices espectrales de vegetación y 

agua, como el Índice de Vegetación de Diferencia Normalizada (NDVI) y el Índice Normalizado de 

Quemadura (NBR). 

Finalmente, se aplicó un proceso de armonización espectral para asegurar la consistencia entre los 

diferentes sensores de la serie Landsat (TM, ETM+, OLI/TIRS). Este paso ajusta las pequeñas diferen-

cias en las respuestas espectrales de los sensores, permitiendo la creación de una serie temporal continua 

y homogénea, fundamental para el análisis multitemporal. 

3.3.2.  Creación de composites y series temporales (diaria, mensual, anual). 

A partir de las colecciones de imágenes pre-procesadas, que ya contenían tanto la LST como los 

índices espectrales calculados, se procedió a la extracción de valores para generar tres series temporales 

distintas, cada una diseñada para un objetivo de análisis específico: 

▪ La serie temporal diaria se construyó extrayendo los valores de LST y de todos los índices espec-

trales (NDVI, LST, NDWI, BAI y NBR) de cada observación individual disponible durante los tres 

primeros años posfuego. Este enfoque preserva la máxima resolución temporal de los datos y está 

orientado al análisis detallado de la dinámica de la anomalía térmica a corto plazo, incluyendo la 

identificación de patrones estacionales. 

▪ La serie temporal mensual se generó con el objetivo de analizar las tendencias a medio y largo 

plazo, mitigando el ruido inherente a las observaciones diarias. Para ello, se creó una imagen "com-

puesta" para cada mes, desde el año del incendio hasta la fecha más reciente disponible. Cada com-

posite mensual se obtuvo calculando la mediana de los valores de cada píxel (tanto para la LST 
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como para cada índice) a partir de todas las observaciones válidas de ese mes. Se eligió la mediana 

por ser un estadístico robusto que minimiza el efecto de posibles valores atípicos residuales, gene-

rando así un único valor representativo mensual. 

▪ La serie temporal anual fue diseñada para el análisis de las tendencias de normalización a la escala 

más larga. De forma análoga a la serie mensual, se creó un composite para cada año posfuego cal-

culando el valor promedio de la LST y de cada uno de los índices a partir de todas las observaciones 

válidas contenidas en ese año. 

Una vez generadas estas tres colecciones de imágenes (diarias, composites mensuales y composites 

anuales), se extrajeron los valores de todas las variables para cada punto de muestreo y de control, con-

formando así los tres conjuntos de datos brutos que sirvieron de entrada para la siguiente fase de proce-

samiento en R. 

3.4. Procesamiento y depuración de series temporales. 

Tras la extracción de las series temporales desde Google Earth Engine, los datos brutos fueron 

sometidos a una fase de procesamiento y depuración en R con el fin de prepararlos para el análisis 

estadístico. Este proceso se estructuró en una cascada de filtrado y transformación que incluyó, secuen-

cialmente: (1) un filtrado temporal para excluir las observaciones previas al evento de fuego; (2) la 

consolidación de observaciones duplicadas; (3) el cálculo de las variables de diferencia a partir de los 

pares de puntos; y (4) la detección y eliminación de valores atípicos. Los siguientes apartados detallan 

los pasos metodológicos más relevantes de este flujo de trabajo. 

3.4.1.  Cálculo de las variables de diferencias. 

El primer paso consistió en la consolidación de los datos para el análisis pareado. Para cada identi-

ficador de punto (ID_Punto) y en cada fecha u año de observación, se verificó la existencia simultánea 

de datos tanto para el punto de la muestra en la zona de “Incendio" como para su correspondiente "Con-

trol". Aquellas observaciones que no contaban con su par fueron descartadas. 

Una vez asegurada la estructura de pares, se procedió a calcular la variable principal del estudio: la 

Diferencia de Temperatura Superficial Terrestre. Esta se obtuvo restando el valor de LST del punto de 

control al del punto de incendio (LST_Incendio - LST_Control). Este mismo procedimiento se aplicó a 

todos los índices espectrales extraídos, generando las variables de diferencia correspondientes (Diferen-

cia de NBR, Diferencia de NDVI, Diferencia de BAI y Diferencia de NDWI). Estas variables represen-

tan la anomalía neta atribuible al efecto del incendio. 

3.4.2.  Tratamiento de valores atípicos. 

Como paso final en la depuración de los datos, se aplicó un procedimiento estadístico para identi-

ficar y eliminar valores atípicos (outliers). El objetivo de este filtro fue asegurar que el análisis posterior 

no se viera distorsionado por mediciones extremas, que probablemente se originan en artefactos de los 

datos satelitales o en condiciones microclimáticas puntuales no representativas. 

El método seleccionado fue el del Rango Intercuartílico (IQR). Esta es una técnica estándar y ro-

busta en el análisis exploratorio de datos (Tukey, 1977) que define los límites de la variabilidad normal 

basándose en la propia distribución de los datos. Este procedimiento se aplicó de forma independiente a 

la variable Diferencia de Temperatura Superficial Terrestre (Dif_LST) para cada una de las tres escalas 

temporales. 

Para cada escala, el proceso consistió en los siguientes pasos: primero, se calcularon el primer cuar-

til (Q1) y el tercer cuartil (Q3) de la distribución de todos los valores de Dif_LST. Segundo, se calculó 

el Rango Intercuartílico como la diferencia entre ambos (IQR = Q3 - Q1). Tercero, se establecieron los 

umbrales de detección, definiendo el límite inferior como Q1 - 1.5 * IQR y el límite superior como Q3 

+ 1.5 * IQR, siguiendo la convención estándar. Finalmente, todas las observaciones cuyo valor de 

Dif_LST se encontraba fuera de este rango fueron clasificadas como atípicas y eliminadas de los con-
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juntos de datos finales. Aunque este enfoque puede conllevar la eliminación de valores válidos en dis-

tribuciones sesgadas, se lo seleccionó ya que no se requiere asumir una normalidad en la distribución de 

los datos. 

3.5. Análisis estadístico. 

Para cuantificar e interpretar los patrones observados en los datos depurados, se aplicaron diferentes 

técnicas estadísticas. El análisis se estructuró en una fase exploratoria inicial, seguida de un modelado 

estadístico formal para probar las hipótesis del estudio. 

3.5.1.  Análisis exploratorio de datos. 

El análisis exploratorio de datos (EDA), siguiendo los principios propuestos por Tukey (1977), se 

centró en la visualización de los datos para identificar tendencias, patrones y relaciones fundamentales. 

Se generaron gráficos de series temporales para visualizar la normalización de la Diferencia de tempe-

ratura superficial terrestre a lo largo del tiempo en las diferentes escalas. La estacionalidad se exploró 

mediante gráficos de violín, mientras que la influencia de las variables de control se analizó visualmente 

a través de gráficos facetados. Adicionalmente, se utilizó una matriz de correlación para cuantificar la 

asociación lineal entre las principales variables de diferencia. El protocolo general de exploración de 

datos se basó en las recomendaciones de Zuur et al. (2010) para evitar problemas comunes en el análisis 

estadístico. 

3.5.2.  Modelado de la normalización térmica: Modelos Lineales Mixtos (LMM). 

Para cuantificar específicamente las relaciones identificadas en la fase exploratoria, se selecciona-

ron los Modelos Lineales Mixtos (LMM). Esta herramienta es el estándar para el análisis de datos con 

una estructura jerárquica o anidada, como es el caso en este estudio, donde existen múltiples observa-

ciones temporales para cada par de puntos, y múltiples pares anidados dentro de cada incendio (Pinheiro 

& Bates, 2000). Los LMM resuelven el problema de la no independencia de las observaciones al incor-

porar "efectos aleatorios" (1 | IDPAF/ID_Punto), que modelan la variabilidad inherente a cada sitio y 

punto de muestreo. Esto permite obtener estimaciones más precisas y generalizables de los "efectos 

fijos", que son las variables de interés. 

La variable respuesta para todos los modelos fue la iferencia del LST. Todas las variables predic-

toras continuas fueron rescaladas (centradas a media 0 y con desviación estándar 1) para facilitar la 

convergencia del modelo y la comparación de la magnitud de los coeficientes. La selección del modelo 

final para cada escala se realizó mediante un procedimiento por pasos hacia adelante, utilizando el Cri-

terio de Información de Akaike (AIC) para comparar el ajuste y la complejidad de los modelos anidados 

(Burnham & Anderson, 2002). 

3.5.3.  Análisis comparativo multiescala. 

Para abordar el objetivo de comparar las mediciones de la anomalía térmica a diferentes escalas 

espaciales, se implementó un flujo de trabajo específico para integrar los datos de alta resolución del 

dron (3 cm) con los datos de resolución media de Landsat (30 m). La premisa de este análisis fue garan-

tizar la máxima comparabilidad temporal entre ambos sensores. 

El proceso se estructuró en los siguientes pasos: 

▪ Procesamiento de Datos Independiente: Los conjuntos de datos del dron y del satélite (este último 

consistente en una serie temporal diaria extraída de GEE para las coordenadas de los puntos de la 

campaña de dron) fueron sometidos a procesos de limpieza paralelos e independientes. Para cada 

conjunto, se aseguró la existencia de pares de puntos (Incendio y Control), se pivotaron los datos 

para obtener un formato ancho y se calculó la variable de diferencia (Dif_LST_dron y Dif_LST_sa-

telite, respectivamente). Finalmente, se aplicó un filtro de valores atípicos basado en el Rango In-

tercuartílico (IQR) a cada variable Dif_LST de forma separada. 

▪ Cruce por Fecha Más Cercana: Utilizando un archivo de referencia con las fechas exactas de los 

vuelos del dron para cada uno de los 12 incendios (IDPAF), se realizó un cruce temporal inteligente. 
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Para cada punto de muestreo del dron, el script buscó en la serie temporal satelital la observación 

cuya fecha era la más próxima a la fecha del vuelo, minimizando así la diferencia temporal entre 

ambas mediciones. 

▪ Generación de la Tabla Maestra: El resultado de este cruce fue una tabla de análisis final donde 

cada fila representaba un único punto de muestreo, conteniendo tanto el valor de Dif_LST_dron 

como el de Dif_LST_satelite para fechas casi idénticas. 

▪ Análisis Estadístico Integrado: Sobre esta tabla maestra se realizaron tres análisis clave: (a) una 

comparación de las distribuciones de Dif_LST mediante estadísticos descriptivos y gráficos de vio-

lín; (b) un análisis de correlación de Pearson para cuantificar el grado de asociación lineal entre las 

mediciones de ambos sensores; y (c) un modelado predictivo mediante un Modelo Lineal Mixto 

(LMM), donde la Dif_LST_dron fue la variable respuesta y la Dif_LST_satelite, junto con las va-

riables estáticas del paisaje, actuaron como predictores. 

3.5.4.  Discretización de variables para análisis exploratorio. 

Para facilitar la visualización de la influencia de las variables de control en el análisis exploratorio, 

las variables continuas (topográficas, NBR Pre-Incendio y Severidad Inicial) fueron discretizadas en 

tres niveles categóricos: "Bajo", "Medio" y "Alto". Para asegurar que estos niveles fueran consistentes 

y comparables a lo largo de toda el área de estudio, se utilizó un método de terciles globales. Para cada 

variable, se calcularon los cuantiles del 33% y del 66% sobre el conjunto total de datos de los 95 incen-

dios. Estos dos valores se usaron como umbrales fijos para clasificar todos los puntos, garantizando así 

que un nivel (ej. "Alto" en elevación) representara el mismo rango de valores para todos los incendios 

analizados. 

4. RESULTADOS 

4.1. Validación del emparejamiento de puntos. 

El algoritmo de emparejamiento demostró una alta eficacia, encontrando un "punto gemelo" válido 

para 17,941 de los 18,108 puntos de muestra iniciales, lo que representa una tasa de éxito global del 

99.08%. El desglose por incendio se detalla en el Anexo 4. 

Los resultados de la prueba de Wilcoxon (Tabla 1) indican que, si bien se detectaron diferencias 

estadísticamente significativas (p < 0.05) en cinco de las seis variables, la mediana de la diferencia fue 

de una magnitud prácticamente irrelevante, como los -0.275 metros observados para la elevación. 

Tabla 1. Resultados prueba Wilcoxon puntos emparejados.  

Variable Mediana de la diferencia Estad. V p valor 

elevacion2m -0.28 82976236.00 0.00 

pendiente2m -0.01 83477587.00 0.00 

expo_general2m 0.00 77191628.50 0.00 

tpi2m 0.00 81268325.50 0.24 

tri2m 0.00 86674706.50 0.00 

PRE_NBR 0.00 82985567.00 0.00 

La distribución de estas diferencias entre los pares de puntos confirma visualmente este hallazgo. 

Para variables clave como el NBR Pre-Incendio (Figura 9) y la Exposición General (Figura 10), se 

observa una distribución marcadamente leptocúrtica, con un pico muy agudo y perfectamente centrado 

en cero, lo que demuestra que la gran mayoría de los pares tienen diferencias nulas o casi nulas. 
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Figura 9. Distribución de los valores de diferencia NBR Pre-Incendio, emparejamiento de puntos. 

 

Figura 10. Distribución de los valores de Exposición General, emparejamiento de puntos.  

Posteriormente, el análisis de multicolinealidad entre las variables de control (Figura 11) identificó 

una fuerte correlación (r > |0.95|) entre las variables topográficas de pendiente, rugosidad y exposición. 

Este resultado fue determinante para seleccionar un subconjunto de variables no redundantes para la 

validación multivariada. 
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Figura 11. Multicolinealidad de las variables de control del estudio. 

Finalmente, la prueba T-cuadrado de Hotelling, ejecutada sobre las variables no correlacionadas, 

arrojó un p-valor de 0.97 (Tabla 2). Este resultado permite determinar que no se tiene cualquier diferen-

cia significativa entre los perfiles ambientales de los grupos. En conjunto, estos análisis validan el con-

junto de puntos pareados para los análisis posteriores. 

Tabla 2. Resultados estadísticos de la prueba T-cuadrado de Hotelling. 

Prueba Estadístico F Libertad 1 Libertad 2 p valor 

Hotelling (Pendiente y 

PRE_NBR) 0.07 2 35879 0.97 

4.2. Auditoría del procesamiento de datos. 

Las series temporales brutas extraídas de Google Earth Engine fueron sometidas a un riguroso 

proceso de depuración en R. La Tabla 3 detalla el procesamiento y la reducción progresiva del número 

de observaciones en cada una de sus etapas para las tres escalas temporales. 

Tabla 3. Proceso de depuración de la información de series temporales. 

Paso Diario Mensual Anual 

Observaciones iniciales GEE 3267497 9765789 951779 

Filtrado temporal 2749922 9543002 915897 

Consolidación duplicados 2393530 9543002 915897 

Filtrado pares incompletos 2056117 9174603 915896 

Eliminación outliers Dif_LST 1991852 8869602 897336 

Obs. Finales pareadas 995926 4434801 448668 
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El proceso partió de más de 9.7 millones de observaciones individuales en la escala mensual, de las 

cuales aproximadamente 4.4 millones de pares de observaciones sobrevivieron a la limpieza completa. 

Como se observa en la tabla, las fases de "Filtrado temporal" y "Filtrado pares incompletos" fueron las 

que ocasionaron la mayor parte de la reducción de datos. La consolidación de duplicados fue un fenó-

meno relevante únicamente en los datos diarios. 

El paso final de depuración fue la eliminación de valores atípicos en la variable Diferencia de LST. 

La Tabla 4 resume los umbrales calculados para este filtro y el número de observaciones eliminadas. 

Este procedimiento resultó en la exclusión de aproximadamente un 3% de las observaciones pareadas 

restantes en las escalas diaria y mensual. Notablemente, en la escala anual no se detectó ningún valor 

atípico, lo que evidencia el efecto de suavizado del promedio anual. 

Tabla 4. Filtro de eliminación de valores atípicos (outliers). 

Escala Q1 Q3 IQR 

Lim. Infe-

rior 

Lim. Supe-

rior 

Obs. 

Inicio 

Obs. Elimina-

das % Eliminado 

Anual -0.89 2.82 3.71 -6.46 8.38 457948 0 0.00 

Diario -0.54 4.40 4.94 -7.96 11.81 1028059 32133 3.13 

Mensual -1.26 3.18 4.44 -7.93 9.85 4587302 152501 3.32 

El resultado final de esta fase de preparación se resume en la Tabla 5. A pesar de la considerable 

reducción en el número de observaciones temporales, el proceso de limpieza mantuvo una alta retención 

de los puntos de muestreo geográficos originales, conservando más del 99% de los 17,941 puntos em-

parejados en todas las escalas. Este resultado confirma que la pérdida de datos se debió a factores alea-

torios (como la nubosidad) y no a un sesgo sistemático, validando la muestra espacial a lo largo de todo 

el análisis. 

Tabla 5. Resumen del proceso de limpieza datos. 

Escala 

Muestra 

inicial 

Empareja-

miento 

Lim-

pieza 

% de 

éxito 

% de 

conser-

vación 

Obs. Ini-

ciales GEE 

Pares de 

Obs. lim-

pias  

Obs. Conserva-

das GEE % 

Diario 18108 17941 17941 99.08 99.08 3267497 995926 60.96 

Mensual 18108 17941 17941 99.08 99.08 9765789 4434801 90.82 

Anual 18108 17941 17939 99.08 99.07 951779 448668 94.28 

 

Además de la evaluación global, se analizó la consistencia del proceso de depuración a nivel de 

cada incendio individual (ver Anexo 5 para el desglose completo). A modo de ejemplo, para el incendio 

con IDPAF 55, se conservó un 65.4% de las observaciones diarias y un 64.6% de las mensuales. Estos 

valores, representativos del grupo, ilustran cómo la retención de datos se mantuvo no solo a nivel global, 

sino también a escala de cada evento de fuego. 

4.3. Análisis exploratorio de la dinámica de la Diferencia de LST. 

Tras la depuración de los datos, se realizó un análisis exploratorio visual para identificar los patro-

nes y relaciones fundamentales en las series temporales. 

4.3.1.  Relación entre la anomalía térmica y la recuperación de la vegetación. 

El primer paso del análisis fue cuantificar la relación entre la anomalía térmica (Dif_LST) y las 

anomalías de los principales índices espectrales. La matriz de correlación Figura 12 revela dos patrones 

clave. 
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Figura 12. Correlograma entre la anomalía térmica y los índices espectrales. 

Primero, se observa una correlación negativa, moderada y significativa entre la Diferencia de LST 

y los índices de vegetación. La correlación con la Diferencia de NBR es de r = -0.35, mientras que con 

la Diferencia de NDVI es de r = -0.18. Este resultado confirma la hipótesis de que, a mayor recuperación 

vegetal, la anomalía térmica disminuye. 

Segundo, se evidencia una alta colinealidad entre los propios índices de vegetación, particularmente 

entre la Diferencia de NBR y la Diferencia de NDVI (r = 0.76). Dado que ambos índices miden procesos 

ecológicos similares y que el NBR es el estándar en la literatura sobre incendios, se seleccionó la Dife-

rencia de NBR como el principal indicador de la recuperación de la vegetación para los análisis poste-

riores. 

4.3.2.  Patrón general y estacionalidad de la estabilización térmica. 

El análisis de las series temporales revela un patrón de recuperación general consistente a lo largo 

del tiempo para las tres escalas de análisis (Figura 13). Inmediatamente después del fuego (año 0), la 

Diferencia de LST media es elevada, superando los 2.5°C en la escala diaria. Durante los primeros 10 a 

15 años, se observa una fase de recuperación rápida con una disminución pronunciada de la anomalía 

térmica. Posteriormente, la recuperación se ralentiza y la Diferencia de LST tiende a estabilizarse en 

valores cercanos a cero. El Anexo 6 presenta los valores promedio para cada año y escala. 
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Figura 13. Tendencia de recuperación de la Diferencia de LST a escalas diaria, mensual y anual. La figura 

muestra la Diferencia de LST media para cada año transcurrido desde el incendio. Las áreas sombreadas repre-

sentan el error estándar de la media. El patrón general muestra una rápida atenuación inicial seguida de una es-

tabilización a largo plazo. 

Es importante notar que la trayectoria de la media global, particularmente las fluctuaciones a medio 

y largo plazo, debe interpretarse con cautela. Dado que el estudio abarca un grupo de incendios ocurridos 

en diferentes años, la composición de la muestra utilizada para calcular la media de cada "año desde el 

incendio" cambia a lo largo del tiempo. A medida que avanzan los años, los incendios más recientes 

"salen" del análisis, y la tendencia pasa a estar determinada por un subconjunto decreciente de incendios 

más antiguos. Este efecto de composición de la muestra (detallado en el Anexo 7, que muestra las tra-

yectorias individuales) puede introducir artefactos en la tendencia agregada, como los ligeros repuntes 

observados a lo largo de la serie temporal. No obstante, el patrón dominante de una rápida atenuación 

inicial seguida de una estabilización a largo plazo se mantiene. La siguiente Figura 14 se puede apreciar 

la perdida de observacones de estudio en el análisis temporal. 
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Figura 14. Curva de atrición del grupo de incendios. 

La dinámica a corto plazo, analizada a partir de los datos diarios de los primeros tres años posfuego, 

se presenta en la Figura 15. Para visualizar el patrón de recuperación promedio del grupo completo de 

95 incendios, las series temporales fueron alineadas según su fecha de inicio. El gráfico muestra con 

gran claridad la trayectoria de la diferencia en el LST media durante los primeros 1095 días. Se observa 

una pronunciada caída durante el primer año, indicando una rápida normalización inicial. Superpuesta 

a esta tendencia descendente, se manifiesta un patrón estacional cíclico muy marcado, con picos recu-

rrentes de la anomalía térmica que coinciden con los periodos estivales del primer, segundo y tercer año 

posfuego. 

 

Figura 15. Trayectoria de recuperación térmica promedio durante los tres primeros años posfuego. La línea 

azul representa la media diaria y la línea naranja suavizada (LOESS) revela una pronunciada tendencia descen-

dente superpuesta a ciclos estacionales. 

Este patrón estacional lo podemos apreciar al analizar la distribución de los datos por estación del 

año (Figura 16). El análisis de tres muestras aleatorias independientes, tanto para la escala diaria como 

mensual, muestra consistentemente que la Diferencia de LST es máxima durante el verano y mínima 
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durante el invierno. La Tabla 6 cuantifica esta observación, mostrando que la Diferencia de LST media 

en verano (1.33°C) es aproximadamente tres veces superior a la registrada en invierno (0.44°C). 

 

Figura 16. Análisis de la estacionalidad de la Diferencia de LST. El gráfico muestra las distribuciones de 

Dif_LST (°C) para cada estación del año, a partir de tres muestras aleatorias independientes para las escalas dia-

ria y mensual. Se observa de forma consistente un máximo de la anomalía térmica en verano y un mínimo en 

invierno. 

Tabla 6. Estadísticos de las observaciones agrupadas por estacionalidad. 

Estación Media Mediana 

Desv. Estan-

dar P05 P95  # obs. 

Primavera 1.06 1.00 3.42 -4.71 6.96 1076234 

Verano 1.33 1.27 3.37 -4.31 7.08 1237630 

Otoño 0.83 0.76 3.32 -4.76 6.58 1096908 

Invierno 0.44 0.37 3.04 -4.63 5.72 1024029 

4.3.3.  Influencia de los factores de control en la estabilización térmica. 

Para explorar cómo diferentes variables modulan la cicatrización térmica, se analizó la evolución 

de la Diferencia de LST media anual agrupando los datos en tres niveles (Bajo, Medio, Alto) para cada 

una de las variables de control. Los resultados de este análisis se presentan en la Figura 17. 
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Figura 17. Influencia de las variables de control en la trayectoria de recuperación de la Diferencia de LST. 

Cada panel muestra la tendencia de la Diferencia de LST media anual para subgrupos de datos. Los datos fue-

ron divididos en tres niveles ("Bajo", "Medio", "Alto"). La Severidad Inicial muestra el efecto más marcado en 

la magnitud y persistencia de la anomalía. 

Del análisis visual de los gráficos se desprenden varios patrones. La Severidad Inicial (Severi-

dad_Inicial_DifNBR_grupo) aparece como el factor con la influencia más marcada y clara: las áreas 

que sufrieron una mayor severidad (grupo "Alto) presentan una Diferencia de LST inicial significativa-

mente más elevada y una recuperación más lenta y prolongada en el tiempo. 

Las variables topográficas también muestran tendencias. Las zonas con mayor elevación y pen-

diente tienden a registrar una Diferencia de LST inicial más alta y una recuperación aparentemente más 
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lenta. Para otras variables como la Exposición General, el TPI o el TRI, las tendencias son menos pro-

nunciadas, aunque parecen sugerir que los terrenos más expuestos y rugosos mantienen una diferencia 

ligeramente superior. De igual manera, las áreas con menor cobertura vegetal antes del incendio (grupo 

"Bajo" en PRE_NBR_grupo) muestran, como era de esperar, una Diferencia de LST más elevada du-

rante todo el periodo. 

4.3.4.  Heterogeneidad en las trayectorias de recuperación: Casos de estudio. 

Si bien las tendencias promedio muestran patrones claros, el análisis individual de cada incendio 

revela una considerable heterogeneidad en las trayectorias de recuperación. Los gráficos de panel que 

muestran la evolución de la Diferencia de LST y la Diferencia de NBR para los 95 incendios se presentan 

en el Anexo 8. Para ilustrar esta diversidad, se han seleccionado tres casos de estudio representativos 

que se detallan a continuación: 

▪ Incendio 90 (1991, Ambel): Este caso presenta una trayectoria que se alinea estrechamente con el 

comportamiento teórico esperado (Figura 18). Los valores iniciales de la Diferencia de LST son 

elevados, mientras que los de la Diferencia de NBR son fuertemente negativos. A medida que avan-

zan los años, se observa una clara tendencia descendente en la anomalía térmica, y una tendencia 

ascendente de la recuperación de la vegetación. La fuerte relación inversa entre ambas variables y 

la progresiva vuelta a valores cercanos a cero indican un proceso de recuperación predecible y fuer-

temente acoplado.  

 

Figura 18. Evolución de las diferencias del LST y NBR Incendio 90. 

▪ Incendio 169 (2009, Campo de Tiro y Maniobras de San Gregorio): En contraste, este incendio es 

un ejemplo de aparente baja resiliencia del ecosistema (Figura 19). A lo largo de todo el periodo de 

observación, ambas métricas muestran una escasa evolución. Las líneas de tendencia, tanto para la 

Diferencia de LST como para la Diferencia de NBR, son prácticamente planas y se mantienen lejos 

de los valores de referencia (cero). Este comportamiento sugiere un estancamiento en el proceso de 

sucesión ecológica, donde ni la vegetación logra recuperarse de forma significativa ni, en conse-

cuencia, se disipa la anomalía térmica generada por el fuego. 



26 

 

Figura 19. Evolución de las diferencias del LST y NBR Incendio 169. 

▪ Incendio 99 (1994, Maestrazgo): Este caso ilustra una dinámica de recuperación más compleja e 

inestable (Figura 20). Si bien las tendencias generales promedio son las esperadas (la Diferencia de 

LST desciende y la de NBR asciende), la dispersión de los datos interanuales es extremadamente 

alta para ambas variables. Para un mismo año transcurrido desde el fuego, se registran anomalías 

térmicas tanto positivas como negativas, y una gran amplitud en los valores de recuperación de la 

vegetación. Esto sugiere un ecosistema que, aunque tiende a la recuperación a largo plazo, se ha 

vuelto termodinámicamente más inestable y altamente sensible a las variaciones climáticas inter-

anuales tras la perturbación. 

 

Figura 20. Evolución de las diferencias del LST y NBR Incendio 99. 

4.4. Modelado de la normalización térmica. 

El proceso de selección de modelos y los resultados finales del ajuste de los Modelos Lineales 

Mixtos (LMM) se presentan a continuación de forma individual para cada una de las tres escalas tem-

porales analizadas. Además, se realizó un diagnóstico de los residuos para cada uno de los tres modelos 

con el fin de asegurar la fiabilidad de los resultados. Los gráficos de residuos frente a valores ajustados, 
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presentados en el Anexo 9, muestran en los tres casos una nube de puntos aleatoria y sin patrones dis-

cernibles, centrada horizontalmente en la línea de cero. Esta distribución indica que se cumplen los 

supuestos de linealidad y homocedasticidad (varianza constante de los errores), validando así la adecua-

ción de los modelos lineales mixtos empleados en este estudio. 

4.4.1.  Resultados del modelo mensual. 

Para la serie temporal mensual, se siguió un procedimiento de selección de modelos por pasos hacia 

adelante para identificar los predictores más relevantes. Se compararon modelos anidados utilizando el 

Criterio de Información de Akaike (AIC), que evalúa el ajuste relativo de cada modelo penalizando su 

complejidad (Burnham & Anderson, 2002). El proceso, detallado en el Anexo 10, mostró que el modelo 

con el mejor ajuste fue aquel que incluyó la Diferencia de NBR como indicador de vegetación y la 

elevación como variable topográfica. El análisis posterior de los coeficientes y la significación estadís-

tica de este modelo final es lo que determina la importancia y el efecto de cada factor. 

La tabla de coeficientes del modelo final se presenta en la Tabla 7. Todos los efectos fijos resultaron 

estadísticamente significativos (p < 0.001). Los resultados cuantitativos del ajuste del modelo (Tabla 8) 

muestran que los efectos fijos explican aproximadamente un 9.0% de la variabilidad de la Diferencia de 

LST (R² marginal), mientras que los efectos fijos y aleatorios combinados explican un 46.2% (R² con-

dicional). 

 

Tabla 7. Coeficientes estadísticos para el modelo “mensual”. 

Variable Estimate 

Std. 

Error df t value Pr(>|t|) 

(Intercept) 0.42 0.07 87.77 6.28 <0.001 

year_since_fire_z -0.12 0.00 4419845.38 -89.60 <0.001 

Dif_NBR_z -0.79 0.00 4430125.63 -456.04 <0.001 

estacionOtoño 0.38 0.00 4416864.75 115.91 <0.001 

estacionPrimavera 0.65 0.00 4416887.29 193.99 <0.001 

estacionVerano 0.96 0.00 4416942.15 297.21 <0.001 

elevacion2m_z 0.33 0.03 1595.18 10.83 <0.001 

year_since_fire_z:Dif_NBR_z -0.01 0.00 4425920.52 -5.75 <0.001 

Tabla 8. Coeficientes estadísticos para el ajuste del modelo “mensual”. 

Métrica Valor 

AIC 20488904.380 

BIC 20489050.734 

R2_condicional 0.462 

R2_marginal 0.090 

RMSE 2.408 

 

4.4.2.  Resultados del modelo anual . 

De manera análoga a la escala mensual, la selección de variables para el modelo anual confirmó a 

la Diferencia de NBR y a la elevación como los predictores más significativos. El modelo final (Tabla 

9) muestra que todos los efectos fijos son estadísticamente significativos. El análisis de la bondad de 

ajuste (Tabla 10) indica una capacidad explicativa superior en esta escala: los efectos fijos explican un 

17.3% de la variabilidad (R² marginal), y el modelo completo alcanza a explicar un 68.2% de la varia-

bilidad total (R² condicional). 
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Tabla 9. Coeficientes estadísticos para el modelo “anual”. 

Variable Estimate 

Std. 

Error df t value Pr(>|t|) 

(Intercept) 1.00 0.06 87.06 16.15 <0.001 

Year_z -0.05 0.00 438495.71 -16.64 <0.001 

Dif_NBR_z -1.03 0.00 433683.16 -218.45 <0.001 

elevacion2m_z 0.28 0.03 1396.71 9.50 <0.001 

Year_z:Dif_NBR_z -0.04 0.00 440259.03 -15.14 <0.001 

Tabla 10. Coeficientes estadísticos para el ajuste del modelo “anual”. 

Métrica Valor 

AIC 1717392.037 

BIC 1717480.149 

R2_condicional 0.682 

R2_marginal 0.173 

RMSE 1.497 

 

4.4.3.  Resultados del modelo diario. 

El modelo para la escala diaria arrojó resultados consistentes con las otras escalas temporales. El 

proceso de selección de variables identificó a la Diferencia de NBR y a la elevación como los predictores 

óptimos. Los coeficientes del modelo final se presentan en la Tabla 11. El análisis de la bondad de ajuste 

(Tabla 12) indica que los efectos fijos explican un 15.7% de la variabilidad (R² marginal), mientras que 

el modelo completo, incluyendo los efectos aleatorios, explica un 61.0% (R² condicional). 

Tabla 11. Coeficientes estadísticos para el modelo “diario”. 

Variable Estimate 

Std. 

Error df t value Pr(>|t|) 

(Intercept) 0.40 0.09 88.41 4.25 <0.001 

year_since_fire_z -0.27 0.00 987428.86 -100.70 <0.001 

Dif_NBR_z -1.02 0.00 991384.27 -234.34 <0.001 

estacionOtoño 0.96 0.01 978479.41 133.74 <0.001 

estacionPrimavera 1.83 0.01 978046.70 239.75 <0.001 

estacionVerano 2.23 0.01 978832.96 322.26 <0.001 

elevacion2m_z 0.49 0.04 2344.52 12.25 <0.001 

year_since_fire_z:Dif_NBR_z 0.03 0.00 983268.59 10.29 <0.001 

 

Tabla 12. Coeficientes estadísticos para el ajuste del modelo “diario”. 

Métrica Valor 

AIC 4574306.393 

BIC 4574436.318 

R2_condicional 0.610 

R2_marginal 0.157 

RMSE 2.300 
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4.4.4.  Interpretación de los efectos del modelo. 

El análisis de los coeficientes de los modelos finales (efectos fijos) revela patrones consistentes y 

estadísticamente significativos en las tres escalas temporales. A continuación, se interpretan los princi-

pales hallazgos derivados del modelo mensual, que es el más completo al incluir el efecto estacional. 

▪ Efecto de la Recuperación de la Vegetación y el Tiempo: Los resultados confirman la hipótesis 

principal. El efecto más potente es la normalización de las propiedades ópticas de la superficie 

analizadas a través de la Diferencia de NBR (Dif_NBR_z) (β ≈ -0.79). Dado que este índice es el 

principal indicador de la recuperación de la biomasa y está inversamente relacionado con la severi-

dad inicial del fuego, el resultado pone de manifiesto que la regeneración de la vegetación es el 

motor principal de la reducción de la diferencia térmica entre casos y controles. Adicionalmente, el 

coeficiente asociado al tiempo transcurrido desde el incendio (year_since_fire_z) es consistente-

mente negativo (β ≈ -0.12), indicando una progresiva normalización térmica a lo largo de los años. 

▪ Efecto de la Estacionalidad: El modelo confirma el patrón observado en el análisis exploratorio. 

Tomando el invierno como estación de referencia, la Diferencia de LST es significativamente mayor 

en otoño (β ≈ +0.38), primavera (β ≈ +0.65) y, sobre todo, en verano (β ≈ +0.96), haciendo patente 

que la anomalía térmica se magnifica durante los meses de mayor insolación. 

▪ Efecto de los Factores de Control: De las variables topográficas analizadas, la elevación (eleva-

cion2m_z) resultó ser el predictor más influyente. Su coeficiente positivo (β ≈ +0.33) indica que, a 

mayor altitud, la Diferencia de LST tiende a ser mayor. Esto sugiere que los incendios ocurridos en 

zonas más elevadas presentan una cicatriz térmica más pronunciada o persistente. 

▪ Variabilidad entre Incendios (Efectos Aleatorios): El análisis de las métricas de ajuste del modelo 

(Tabla #) revela un hallazgo fundamental. El R² marginal, que representa la varianza explicada por 

los efectos fijos, es del 9.0%, mientras que el R² condicional, que incluye la variabilidad atribuible 

a cada incendio y punto de muestreo, asciende al 46.2%. Esta gran diferencia entre ambos valores 

cuantifica la enorme heterogeneidad que existe entre los distintos eventos de fuego y demuestra que 

una parte sustancial de la respuesta térmica depende de las características idiosincráticas de cada 

incendio, justificando la necesidad del enfoque de modelado mixto. 

4.5. Análisis multiescala: comparación de la anomalía térmica Dron vs. Satélite. 

El análisis comparativo final se efectuó sobre un conjunto de 1,342 pares de puntos de muestreo 

válidos, donde la diferencia temporal promedio entre la adquisición del dron y la del satélite fue de 6.2 

días, garantizando así una alta comparabilidad temporal entre ambos sensores. 

4.5.1.  Distribución y variabilidad de las diferencias de temperatura. 

El análisis de las distribuciones de la Diferencia de LST (Dif_LST) revela diferencias fundamenta-

les entre las dos escalas de observación. Como se detalla en la Tabla 13, la anomalía térmica media 

registrada por el dron fue de 0.82°C, mientras que la capturada por el satélite fue sustancialmente menor, 

de 0.10°C. La divergencia más significativa se manifestó en la variabilidad de las mediciones: la des-

viación estándar para los datos del dron fue de 4.30°C, un valor casi cinco veces superior al de los datos 

satelitales 0.93°C. 

Tabla 13. Valores estadísticos de las distribuciones de la Diferencia del LST para Dron (D) y Satélite (S). 

Media D. Mediana D. SD D. Media S. Mediana S. SD S. # Obs. Media Día 

0.82 0.21 4.30 0.10 0.02 0.93 1342.00 6.18 

 

La Figura 21 ilustra visualmente este contraste. La distribución de los datos del dron presenta colas 

muy extendidas, indicativas de una alta heterogeneidad y la presencia de valores extremos, mientras 

que la distribución de los datos satelitales se muestra mucho más concentrada en torno a la media. Este 

patrón, donde el dron registra una variabilidad sistemáticamente mayor, se mantuvo de forma consis-

tente en los 12 incendios analizados individualmente (Figura 22). 



30 

 

Figura 21. Comparación de las distribuciones de la Diferencia de LST entre las escalas de dron (3 cm) y satélite 

(30 m). Los gráficos de violín muestran la densidad de probabilidad de los datos, mientras que las cajas internas 

representan la mediana y el rango intercuartílico. Se observa una dispersión significativamente mayor en las 

mediciones del dron en comparación con las del satélite. 

 

Figura 21. Comparación de las distribuciones de la Diferencia de LST por cada incendio. 
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La Tabla 14 recoge estas diferencias a nivel de cada incendio. Por ejemplo, para el incendio con 

IDPAF 63, la Dif_LST media con datos procedentes del dron fue de +2.71°C con una desviación están-

dar de 3.79°C, mientras que para el satélite los valores correspondientes fueron de +0.28°C y 1.24°C, 

respectivamente. En contraste, para el incendio 90, se registraron anomalías térmicas medias negativas 

para el dron (-1.33°C) y positivas para el satélite (+0.18°C), aunque en ambos casos, la variabilidad 

capturada por el dron (SD = 2.29°C) fue notablemente superior a la del satélite (SD = 0.76°C). Estos 

resultados confirman que el efecto de atenuación de la variabilidad por parte del sensor satelital es un 

fenómeno fuerte y generalizable a lo largo de los distintos eventos de fuego estudiados. 

Tabla 14. Estadísticos de las distribuciones de la Diferencia del LST por escala Dron (D) y Satélite (S).  

IDPAF Media D. SD D. Media S. SD S. # Obs 

54.00 -0.24 1.97 0.42 0.51 107.00 

62.00 -1.53 4.52 -0.03 0.77 140.00 

63.00 2.71 3.79 0.28 1.24 116.00 

64.00 2.19 5.31 0.93 1.17 121.00 

65.00 0.53 2.78 0.16 0.41 79.00 

75.00 0.61 3.18 0.41 0.61 66.00 

90.00 -1.33 2.29 0.18 0.76 130.00 

114.00 1.38 3.21 -0.11 0.63 148.00 

124.00 0.42 5.21 0.66 0.33 94.00 

149.00 5.62 4.77 -0.28 0.61 126.00 

187.00 -0.07 5.27 0.09 1.30 65.00 

192.00 -0.63 1.72 -0.84 0.75 150.00 

 

4.5.2.  Relación lineal entre las mediciones de ambos sensores. 

Para cuantificar el grado de acoplamiento entre las mediciones, se realizó un análisis de correlación 

Tabla 15. Se obtuvo un coeficiente de Pearson de r = 0.057, que, a pesar de ser estadísticamente signi-

ficativo (p = 0.037), indica en la práctica la ausencia de una relación lineal relevante entre las mediciones 

de ambos sensores a nivel de punto. La Figura 22 confirma gráficamente este desacoplamiento, mos-

trando una nube de puntos dispersa y sin una tendencia lineal definida. Adicionalmente, se cuantificó 

un sesgo medio de -0.72°C, confirmando que el satélite tiende a subestimar la magnitud de la anomalía 

térmica registrada por el dron. 

Tabla 15. Análisis de correlación entre Satélite y Dron 

Pearson p valor Sesgo medio Sesgo mediana SD sesgo 

0.0569 0.0372 -0.7188 -0.1311 4.3479 
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Figura 22. Relación lineal entre las mediciones de Dif_LST de satélite y dron. El gráfico de dispersión muestra 

los 1,342 pares de mediciones temporalmente pareadas. La línea roja representa el ajuste lineal (regresión) y la 

línea azul discontinua la relación 1:1. El bajo coeficiente de correlación de Pearson (r = 0.06) indica un pro-

fundo desacoplamiento entre las mediciones de ambas escalas a nivel de punto. 

4.5.3.  Modelado predictivo de la anomalía térmica a microescala. 

Para evaluar la relación entre las mediciones y la influencia de los factores de control a microescala, 

se ajustó un Modelo Lineal Mixto (LMM). En este modelo, la Dif_LST_dron fue la variable respuesta, 

mientras que la Dif_LST_satelite y las variables topográficas derivadas del MDT de 2 metros actuaron 

como predictores. El objetivo no era crear un modelo predictivo, sino cuantificar el poder explicativo 

relativo de las variables de diferentes escalas espaciales. 

La Tabla 16 resume los resultados de los coeficientes del modelo. El análisis revela que la única 

variable con un efecto estadísticamente significativo fue el NBR pre-incendio (PRE_NBR_z), con un 

coeficiente negativo (β = -0.59, p = 0.003). Es notable que ni la Dif_LST_satelite (p = 0.073) ni ninguna 

de las variables topográficas de alta resolución (p > 0.1 en todos los casos) resultaron ser predictores 

significativos de la anomalía térmica a microescala. 

Tabla 16. Coeficientes del modelado predictivo a microescala. 

Variable 

Esti-

mate 

Std. 

Error df t value Pr(>|t|) 

(Intercept) 0.757 0.669 10.390 1.130 0.284 

Dif_LST_satelite_z 0.217 0.121 1327.403 1.790 0.073 

PRE_NBR_z -0.587 0.195 867.772 -3.020 0.003 

elevacion2m_z 0.226 0.430 74.140 0.530 0.601 

pendiente2m_z 0.101 0.923 1326.719 0.110 0.913 

expo_general2m_z -0.960 0.613 1330.574 -1.570 0.117 

tpi2m_z -0.092 0.104 1324.086 -0.880 0.379 

tri2m_z -0.867 1.121 1325.127 -0.770 0.439 
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El análisis de la bondad de ajuste del modelo (Tabla 17) revela que los efectos fijos explicaron tan 

solo un 2.4% de la varianza (R² marginal), mientras que el modelo completo, al incluir el efecto aleatorio 

por incendio (IDPAF), explicó un 28.4% de la varianza total (R² condicional). 

Tabla 17. Coeficientes del ajuste para el modelado predictivo a microescala. 

Métrica Valor 

AIC 7447.498 

BIC 7499.517 

R2_conditional 0.284 

R2_marginal 0.024 

RMSE 3.767 

5. DISCUSIÓN. 

5.1. Dinámica temporal de la cicatriz térmica. 

Los resultados del análisis de series temporales muestran un patrón de recuperación no lineal, con-

sistente en las tres escalas analizadas. Se identifica una fase inicial de recuperación rápida, con una caída 

pronunciada de la Diferencia de LST durante los primeros 10-15 años, seguida de una fase de recupera-

ción mucho más lenta y prolongada. Este comportamiento de dos fases es consistente con los procesos 

ecológicos posfuego. La rápida disminución inicial puede atribuirse a factores de primer orden como la 

colonización por vegetación pionera y cambios abruptos en las propiedades de la superficie, como la 

disipación de la capa de cenizas y las consiguientes modificaciones del albedo. La fase posterior, más 

lenta, reflejaría los procesos a largo plazo de la sucesión ecológica, como el cierre del dosel y el desa-

rrollo de un suelo orgánico. 

La magnitud de esta anomalía térmica no es constante a lo largo del año, sino que está fuertemente 

modulada por un patrón estacional, con máximos en verano y mínimos en invierno, como se ha deter-

minado en el análisis exploratorio. Esta dinámica estacional, observada en otros estudios de LST y ve-

getación (Ahmed et al., 2024), se explica por la confluencia de dos factores que se exacerban durante el 

estío en el clima Mediterráneo. 

En primer lugar, la mayor radiación solar incidente en verano magnifica el impacto térmico de 

cualquier diferencia biofísica residual entre la zona recuperada y la de control. Diferencias sutiles en el 

albedo, la estructura del dosel o la proporción de suelo desnudo, que pueden tener un efecto térmico 

menor en invierno, se traducen en un calentamiento diferencial mucho más pronunciado bajo la máxima 

insolación estival (Quattrochi & Luvall, 1999). 

En segundo lugar, y de forma crucial, el estrés hídrico característico del verano limita la capacidad 

de la vegetación para termorregularse. La capacidad de las plantas para enfriar la superficie mediante la 

evapotranspiración, un proceso fundamental para el balance energético (Ruelland & Zachowski, 2010), 

se ve reducida por la escasez de agua. Es plausible que la vegetación de las zonas de control, a menudo 

más madura y con sistemas radiculares más desarrollados, mantenga una mayor capacidad de transpira-

ción que la vegetación más joven y estructuralmente más simple de las áreas en recuperación. Esta 

diferencia en la eficiencia del enfriamiento latente se acentúa en verano, contribuyendo de forma signi-

ficativa al pico observado en la Dif_LST. 

5.2. Recuperación de la vegetación como actor principal de la recuperación térmica. 

Los resultados del modelado estadístico ponen de manifiesto que la recuperación de la vegetación, 

medida a través de la Diferencia de NBR, es el factor explicativo más potente de la disminución de la 

anomalía térmica. El coeficiente fuertemente negativo y significativo de esta variable en todos los mo-

delos explica que la regeneración de la biomasa es el principal agente de la normalización térmica. Este 

hallazgo se alinea con los principios biofísicos fundamentales: el restablecimiento de la cubierta vegetal 
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aumenta el sombreamiento del suelo y, de forma crucial, reintroduce el enfriamiento por evapotranspi-

ración, dos mecanismos clave que regulan el balance energético de la superficie (Veraverbeke et al., 

2012). Esta relación inversa entre la temperatura superficial y la vegetación, medida a través de índices 

como el NDVI, es un principio fundamental en teledetección, ampliamente documentado no solo en 

contextos posfuego, sino también en estudios sobre cambios de uso del suelo y dinámica de paisajes 

(Jaiswal et al., 2023; Kumar et al., 2025). La capacidad de la vegetación para modular la LST es tan 

directa que la dinámica temporal de ambos parámetros a menudo muestra una fuerte correlación, como 

demuestran análisis recientes con datos de Sentinel-2 y Landsat (Ahmed et al., 2024). 

5.3. Heterogeneidad entre incendios: la importancia de los factores locales. 

Un hallazgo central de este estudio es la considerable heterogeneidad en las trayectorias de recupe-

ración entre los 95 incendios analizados, ilustrada en los casos de estudio (Apartado 4.3.4). Esta varia-

bilidad es cuantificada por los resultados de los modelos mixtos: la gran diferencia entre el R² marginal 

(que explica entre un 9% y un 17% de la varianza) y el R² condicional (que explica entre un 46% y un 

68%) demuestra que las características idiosincráticas de cada incendio y de cada punto específico son 

el principal factor que determina la respuesta de la LST. Esto subraya que, si bien existen patrones 

generales, la trayectoria de recuperación de un incendio concreto está fuertemente condicionada por 

factores locales (topografía, condiciones climáticas posfuego, severidad local, intervenciones antrópi-

cas, etc.), lo que valida la idoneidad de haber trabajado con un grupo extenso de incendios para separar 

las tendencias generales de los efectos locales. Este hallazgo es crucial, ya que se alinea con la visión de 

la ecología del paisaje que considera los procesos térmicos como fenómenos espacialmente heterogé-

neos, y no como promedios uniformes (Quattrochi & Luvall, 1999). La persistencia o atenuación de una 

cicatriz térmica no depende únicamente de la recuperación de la biomasa, sino de un complejo entra-

mado de factores locales que condicionan el balance energético a escala de ladera o incluso de parcela. 

5.4. Efecto de la escala de observación: implicaciones del análisis dron vs. satélite. 

El análisis entre las mediciones del dron y del satélite pone de manifiesto una profunda disfunción 

espacial, un concepto clave en la ecología del paisaje y la teledetección. El resultado más notable, la 

ausencia de una relación predictiva entre la LST satelital y la del dron, no debe interpretarse como una 

"falla" del sensor Landsat, sino como la cuantificación de la pérdida de información que ocurre al pasar 

de una escala métrica a una centimétrica. Más revelador aún es que, a pesar de su enorme diferencia de 

resolución, la medición satelital (p = 0.073) se muestra como un predictor marginalmente más potente 

que cualquiera de las variables topográficas de alta resolución (2 m), las cuales no muestran ninguna 

capacidad explicativa (p > 0.1). 

El valor de un píxel de Landsat (900 m²) es una abstracción, un promedio radiométrico de un mo-

saico de componentes (suelo, vegetación, sombras) que no tiene una correspondencia directa con un 

punto específico de 3 cm en el terreno, además de que se tiene que tener presente la volatilidad que se 

tiene en la LST a diferentes horas del día o entre días mismos, entre los productos de diferentes escalas 

espaciales contribuyendo a la falta de correlación. Si bien la heterogeneidad a microescala es demasiado 

alta para ser explicada por el promedio de 900m² del satélite, la información radiométrica de Landsat 

aún captura una señal térmica más relevante para el proceso que las características estáticas del terreno 

a 2m.  Esto sugiere que la heterogeneidad térmica a una escala de centímetros, en un ecosistema post-

recuperación, está gobernada por procesos a una escala aún más fina que la topografía del MDT, como 

la estructura 3D de la vegetación baja, la rugosidad del suelo o la distribución de la necromasa, factores 

que no fueron medidos en este estudio. 

El único predictor significativo fue la "memoria o el legado del paisaje", representada por el 

PRE_NBR. Este hallazgo, aparentemente paradójico (una variable de 30m predice un fenómeno de 

3cm), apunta a un fuerte determinismo ecológico. Sugiere que el estado de la vegetación pre-incendio 

(un fenómeno a escala de paisaje) es un factor clave que condiciona la trayectoria de la sucesión pos-

fuego, y es esta trayectoria la que, a su vez, define la estructura y la firma térmica del nuevo ecosistema 

a microescala décadas más tarde. En esencia, la historia del paisaje (un fenómeno a escala de paisaje) 
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demuestra tener más influencia en la micro-temperatura actual que las mediciones térmicas contempo-

ráneas obtenidas a esa misma escala. 

5.5. Fortalezas y limitaciones del estudio. 

La principal fortaleza de esta investigación reside en su aproximación regional, analizando un grupo 

de 95 incendios, lo que permite una mayor generalización de los resultados en comparación con los 

estudios de caso único. La aplicación de una metodología de emparejamiento de puntos y un análisis 

estadístico mediante modelos mixtos ha permitido separar y cuantificar los patrones generales de la 

variabilidad local. 

Sin embargo, el estudio no está exento de limitaciones. En primer lugar, la limpieza de outliers, 

aunque metodológicamente se optó por un proceso normalizado, se trata de un procedimiento que podría 

haber atenuado la magnitud real de las anomalías estacionales. En segundo lugar, si bien el análisis 

comparativo entre dron y satélite se realizó sobre mediciones temporalmente pareadas, la naturaleza de 

"instantánea" de los datos del dron no permite derivar de ellos una tendencia de recuperación a largo 

plazo como la obtenida con las series temporales satelitales. Finalmente, aunque el poder explicativo de 

los modelos es considerable (R² condicional > 46%), una parte importante de la variabilidad sigue sin 

ser explicada, lo que sugiere la influencia de otros factores no incluidos en este estudio, como las varia-

bles climáticas posfuego, la aplicación de tratamientos hidrológico-forestales o la dinámica hidro-geo-

morfológica. 

5.6. Futuras líneas de investigación. 

Los resultados de este trabajo abren numerosas líneas de investigación futuras. Sería de gran interés 

incorporar variables climáticas posfuego (precipitación, temperatura del aire) en los modelos para de-

terminar su papel en la modulación de las trayectorias de recuperación. Asimismo, la aplicación de este 

flujo de trabajo a otras regiones de ecosistemas mediterráneos permitiría verificar la generalidad de los 

patrones aquí encontrados. Finalmente, la integración de datos de nuevos sensores satelitales con mayor 

resolución temporal y espacial, como Sentinel-2, podría refinar aún más la comprensión de la dinámica 

de la recuperación posfuego. Asimismo, el presente estudio ha puesto de manifiesto el desacoplamiento 

entre las mediciones a escala de paisaje y de microescala. Una futura línea de investigación de gran 

interés sería explorar modelos de fusión de datos (data fusion) que intenten predecir la distribución sub-

píxel de la temperatura a partir de variables satelitales y topográficas, validando dichos modelos con 

datos de dron. Habiendo obtenido como resultado en este estudio que los predictores a escala de paisaje 

pierden poder explicativo a microescala, el siguiente paso lógico sería investigar qué variables medidas 

a escalas de detalle (ej. estructura de la vegetación derivada de LiDAR o del propio dron) sí pueden 

modelar eficazmente la heterogeneidad térmica a escala centimétrica. Esto podría abrir la puerta a la 

generación de mapas de heterogeneidad térmica a alta resolución para áreas extensas, superando las 

limitaciones logísticas de las campañas de vuelo. 
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6. CONCLUSIONES 

A partir del análisis realizado, se extraen las siguientes conclusiones principales en respuesta a los 

objetivos planteados: 

▪ La anomalía térmica posfuego en los ecosistemas estudiados sigue una tendencia de recuperación 

no lineal, caracterizada por una disminución inicial muy rápida, seguida de proceso lento de estabi-

lización a largo plazo.  

▪ La recuperación de la vegetación (NBR) es el principal factor que impulsa esta normalización tér-

mica, cuya magnitud está, a su vez, fuertemente modulada por un patrón estacional con máximos 

en verano. 

▪ El análisis mediante modelos mixtos muestra que la trayectoria de normalización térmica presenta 

una alta heterogeneidad entre los distintos eventos de fuego. Además, se identifica la severidad del 

fuego y la elevación como los factores más determinantes, de tal modo que los incendios más seve-

ros y a mayor altitud se corresponden con las cicatrices térmicas más intensas y persistentes. 

▪ La escala de observación es un factor crítico en la caracterización de la anomalía térmica. A escala 

de paisaje (30 m), el satélite registra una anomalía media atenuada y con baja variabilidad. Por el 

contrario, a microescala (3 cm), el dron revela una heterogeneidad espacial extrema, un mosaico de 

condiciones térmicas que es promediado y enmascarado por el sensor satelital. 

▪ Con el análisis comparativo entre las diferentes escalas se ha encontrado un desacoplamiento in-

tenso entre las mediciones, la medición LST Landsat en un día no constituye un predictor signifi-

cativo de la LST a una escala centimétrica, esto incorporando las dificultades para la comparación 

entre las diferencias horarias, se puede evidenciar la limitación de usar datos de resolución a escala 

paisaje para inferir procesos de la superficie a escala centimétrica. 

▪ La "memoria del paisaje", cuantificada a través del NBR pre-incendio, ha resultado ser un predictor 

más robusto de la cicatriz térmica a escala centimétrica que la propia medición térmica satelital 

contemporánea. Esto subraya la importancia de las condiciones iniciales en la determinación de la 

trayectoria eco-fisiológica posfuego. 
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7. GLOSARIO DE TÉRMINOS Y ACRÓNIMOS 

➢ AIC (Criterio de Información de Akaike): Criterio estadístico utilizado para la selección de mode-

los. Permite comparar un conjunto de modelos candidatos y elegir aquel que ofrece el mejor equi-

librio entre la bondad de ajuste y la complejidad (equilibrio). 

➢ Cicatriz Térmica: Fenómeno que describe el incremento significativo y persistente de la Tempera-

tura Superficial Terrestre (LST) en un área después de un incendio forestal, debido principalmente 

a cambios en el balance energético de la superficie. 

➢ Diferencia de LST (Dif_LST): Variable principal del estudio, calculada como la resta de la LST del 

punto de control a la del punto de incendio (LST_Incendio - LST_Control). Representa la anomalía 

térmica neta atribuible al fuego. 

➢ Emparejamiento Ambiental: Metodología utilizada en este estudio para seleccionar, para cada punto 

de muestreo, un punto de control análogo basándose en la similitud de un conjunto de variables 

geoespaciales (topográficas y de vegetación). 

➢ GEE (Google Earth Engine): Plataforma de computación en la nube de Google para el análisis de 

datos geoespaciales a escala planetaria. Ha sido la herramienta utilizada para la extracción de las 

series temporales de datos Landsat. 

➢ IQR (Rango Intercuartílico): Medida estadística de dispersión que equivale a la diferencia entre el 

tercer cuartil (Q3) y el primer cuartil (Q1). Se ha utilizado para la detección robusta de valores 

atípicos. 

➢ LMM (Modelo Lineal Mixto): Familia de modelos estadísticos utilizados para analizar datos con 

una estructura jerárquica o anidada (observaciones repetidas en el tiempo para diferentes puntos 

agrupados por incendio). Permiten separar los efectos fijos (generales) de los efectos aleatorios 

(específicos de cada grupo). 

➢ LST (Temperatura Superficial Terrestre): Temperatura radiométrica de la "piel" de la superficie 

terrestre. Es un indicador clave del balance de energía y agua. 

➢ MDT (Modelo Digital del Terreno): Representación vectorial de la superficie terrestre a partir de la 

cual se derivan variables topográficas como la elevación, la pendiente o la exposición. 

➢ NBR (Índice Normalizado de Quemadura): Índice espectral calculado a partir de las bandas del 

Infrarrojo Cercano (NIR) y el Infrarrojo de Onda Corta (SWIR). Es sensible a la humedad de la 

vegetación y a la biomasa, siendo un indicador estándar de la severidad del fuego y la recuperación 

vegetal. 

➢ Punto Gemelo / Punto de Control: Punto localizado en una zona no quemada, seleccionado por el 

algoritmo de emparejamiento por ser ambientalmente análogo a un punto de muestreo situado den-

tro de un incendio. 

➢ R² Condicional: En un LMM, es el coeficiente de determinación que mide el porcentaje de la va-

rianza explicado por los efectos fijos y los efectos aleatorios combinados. 

➢ R² Marginal: En un LMM, es el coeficiente de determinación que mide el porcentaje de la varianza 

explicado únicamente por los efectos fijos del modelo. 
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9. ANEXOS 

 

ANEXO 1. Script R para la Generación de Puntos de Muestreo Satélite 

# 

====================================================================

============= 

# SCRIPT UNIFICADO v2.0: GENERACIÓN DE PUNTOS DE MUESTREO EN ÁREAS 

DE INCENDIO ÚNICAS 

# 

# - PARÁMETROS CONFIGURABLES PARA LOS NOMBRES DE LAS COLUMNAS. 

# - 1. Identifica las porciones de cada incendio que NO se han 

vuelto a quemar. 

# - 2. Genera puntos de muestreo aleatorios únicamente dentro de 

estas áreas "únicas". 

# - 3. Se guardan los atributos de la capa original. 

# 

====================================================================

============= 

 

# 1. LIBRERÍAS 

library(sf) 

library(dplyr) 

 

  # 2. CONFIGURACIÓN 

ruta_gpkg <- "C:/MASTER_ERICK/TFM/Erick/SHP_TFM/TFM_ERICK_VIL-

LACIS.gpkg"  

 

# --- A) NOMBRES DE CAPAS --- 

  # CAPA DE ENTRADA DE LOS INCENDIOS QUE SE VAN A ESTUDIAR. 

nombre_capa_incendios <- "Areas_Incendio_Satelite" 

 

  # NOMBRE DE LA CAPA RESULTADO DEL PROCESO DE CRUCE DE AREAS EN 

INCENDIOS 

  # RESULTADO "Solapada_posteriormente" y "Unica" 

nombre_capa_areas_procesadas <- "Areas_Satelite" 

 

  # CAPA DE SALIDA FINAL DE LOS PUNTOS ALEATORIOS. 

nombre_capa_puntos_salida <- "P_Muestra_Satelite" 

 

# --- B) NOMBRES DE COLUMNAS (CAMPOS) --- 

  # COLUMNA DE IDENTIFICACION DEL CODIGO DEL INCENDIO 

campo_id_incendio <- "IDPAF" 

 

  # COLUMNA QUE IDENTIFICA EL AÑO DEL INCENDIO 

campo_fecha_incendio <- "Year" 

 

# NOMBRE DE LA COLUMNA DONDE GUARDAR LOS RESULTADOS DEL PROCESO DE 

SOLAPE 

campo_tipo_area_salida <- "Tipo_Area"  
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# --- C) PARÁMETROS DE MUESTREO --- 

  #NUMERO DE PUNTOS A GENERAR POR KM2 

puntos_por_km2 <- 20 

 

  # ¡IMPORTANTE! SEMILLA PARA REPRODUCIBILIDAD (EN CASO DOCUMEN-

TAR). 

  # MANTÉN ESTE NÚMERO FIJO PARA OBTENER SIEMPRE LOS MISMOS PUNTOS. 

  # CAMBIA ESTE NÚMERO A CUALQUIER OTRO ENTERO PARA UNA NUEVA 

TANDADA. 

set.seed(456) 

 

# --- INICIO DEL PROCESO (NO MODIFICAR) --- 

 

# 

=================================================================== 

# PASO 1: IDENTIFICAR ÁREAS ÚNICAS VS. SOLAPADAS 

# 

=================================================================== 

message("PASO 1: Identificando áreas de incendio únicas...") 

 

# LECTURA Y VALIDACIÓN DE DATOS 

incendios_sf <- st_read(ruta_gpkg, layer = nombre_capa_incendios) 

 

# Verificación de CRS 

if (st_is_longlat(incendios_sf)) { 

  stop("ERROR: El CRS debe ser proyectado.") 

} 

# Verificación de columnas 

if (!campo_id_incendio %in% names(incendios_sf)) 

stop(paste("ERROR: La columna '", campo_id_incendio, "' no se encuen-

tra.")) 

if (!campo_fecha_incendio %in% names(incendios_sf)) 

stop(paste("ERROR: La columna '", campo_fecha_incendio, "' no se en-

cuentra.")) 

 

incendios_sf <- st_make_valid(incendios_sf) 

# Se ordena por el campo de fecha para asegurar un procesamiento 

cronológico correcto. 

incendios_sf <- incendios_sf %>% arrange(!!sym(campo_fecha_incen-

dio)) 

 

# PROCESAMIENTO 

lista_resultados <- list() 

for (i in 1:nrow(incendios_sf)) { 

  incendio_actual <- incendios_sf[i, ] 

   

  message(paste0("  Procesando ID: ", incendio_ac-

tual[[campo_id_incendio]],  

                 " (Año: ", incendio_actual[[campo_fecha_incen-

dio]], ") ... [", i, "/", nrow(incendios_sf), "]")) 

   

  geom_actual <- st_geometry(incendio_actual) 

   

  # Encuentra todos los incendios que ocurrieron después 
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  incendios_posteriores <- incendios_sf %>% 

    filter(!!sym(campo_fecha_incendio) > incendio_ac-

tual[[campo_fecha_incendio]]) 

   

  if (nrow(incendios_posteriores) == 0) { 

    incendio_actual[[campo_tipo_area_salida]] <- "Unica" 

    lista_resultados[[length(lista_resultados) + 1]] <- incen-

dio_actual 

    next 

  } 

   

  geom_posteriores_unidas <- st_union(st_geometry(incendios_poste-

riores)) 

   

  area_unica <- st_difference(geom_actual, geom_posteriores_uni-

das) 

  area_solapada <- st_intersection(geom_actual, geom_posteri-

ores_unidas) 

   

  if (length(area_unica) > 0 && !st_is_empty(area_unica)) { 

    poligono_unico <- incendio_actual 

    st_geometry(poligono_unico) <- area_unica 

    poligono_unico[[campo_tipo_area_salida]] <- "Unica" 

    lista_resultados[[length(lista_resultados) + 1]] <- poli-

gono_unico 

  } 

   

  if (length(area_solapada) > 0 && !st_is_empty(area_solapada)) { 

    poligono_solapado <- incendio_actual 

    st_geometry(poligono_solapado) <- area_solapada 

    poligono_solapado[[campo_tipo_area_salida]] <- "Solapada_Pos-

teriormente" 

    lista_resultados[[length(lista_resultados) + 1]] <- poli-

gono_solapado 

  } 

} 

 

if (length(lista_resultados) == 0) { 

  stop("ERROR: No se generó ningún polígono válido en el Paso 1.") 

} 

incendios_procesados_sf <- do.call(rbind, lista_resultados) 

incendios_procesados_sf <- st_collection_extract(incendios_proce-

sados_sf, "POLYGON") 

 

st_write(incendios_procesados_sf,  

         dsn = ruta_gpkg, 

         layer = nombre_capa_areas_procesadas, 

         delete_layer = TRUE) 

message(paste("\nCapa intermedia '", nombre_capa_areas_procesadas, 

"' guardada.")) 

 

 

# 

=================================================================== 
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# PASO 2: GENERAR PUNTOS SOLO EN ÁREAS ÚNICAS 

# 

=================================================================== 

message("\nPASO 2: Generando puntos de muestreo solo en áreas 'Uni-

ca'...") 

 

poligonos_unicos <- incendios_procesados_sf %>% 

  filter(!!sym(campo_tipo_area_salida) == "Unica") 

 

if (nrow(poligonos_unicos) == 0) { 

  stop("No se encontraron áreas de tipo 'Unica' para generar pun-

tos.") 

} 

 

message(paste("Se encontraron", nrow(poligonos_unicos), "polígonos 

de área única.")) 

 

poligonos_con_puntos <- poligonos_unicos %>% 

  mutate( 

    area_km2 = as.numeric(st_area(.)) / 1e6, 

    n_puntos = ceiling(area_km2 * puntos_por_km2) 

  ) %>% 

  mutate(n_puntos = if_else(n_puntos == 0, 1, n_puntos)) 

 

puntos_generados_sfc <- st_sample( 

  poligonos_con_puntos, 

  size = poligonos_con_puntos$n_puntos, 

  type = "random" 

) 

 

puntos_finales_sf <- st_as_sf(puntos_generados_sfc) %>% 

  st_join(poligonos_con_puntos, join = st_intersects) 

 

message(paste("\nTotal de", nrow(puntos_finales_sf), "puntos de 

muestreo generados en áreas únicas.")) 

 

st_write(puntos_finales_sf, 

         dsn = ruta_gpkg, 

         layer = nombre_capa_puntos_salida, 

         delete_layer = TRUE) 

 

message(paste("\n¡ÉXITO!")) 

message(paste("La capa final '", nombre_capa_puntos_salida, "' ha 

sido guardada en:", sep="")) 

message(ruta_gpkg) 
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ANEXO 2. Script en R para la Generación de Puntos de Muestreo Dron. 

# 

====================================================================

============= 

# SCRIPT UNIFICADO: ÁREAS Y PUNTOS DE MUESTREO PARA MODO DRON 

# 

# 1. Crea huellas precisas para cada imagen de dron (solo píxeles 

con datos). 

# 2. Particiona cada huella en zonas de "Incendio" y "Control". 

# 3. Disuelve las geometrías resultantes por ID de incendio y tipo 

de zona. 

# 4. Genera puntos de muestreo aleatorios dentro de estas áreas 

finales. 

# 

====================================================================

============= 

 

# 1. LIBRERÍAS 

library(sf) 

library(terra) 

library(dplyr) 

library(fs) 

 

# 2. CONFIGURACIÓN 

  # DIRECION A GPKG DEL PROYECTO 

ruta_gpkg <- "C:/MASTER_ERICK/TFM/Erick/SHP_TFM/TFM_ERICK_VIL-

LACIS.gpkg" 

 

# --- A) NOMBRES DE CAPAS --- 

  # CAPA DE ENTRADA DEL AREA DE INCENDIOS   

nombre_capa_incendios <- "Incendios_Completos"  

 

  # DIRECCION DE LA CARPETA CON LAS IMAGENES DE DRON 

carpeta_dron_tifs <- "C:/MASTER_ERICK/TFM/Erick/termicas_dron" 

 

  # NOMBRE DE LA CAPA DE SALIDA PARA LAS AREAS DE CONTROL E INCEN-

DIOS 

nombre_capa_areas_salida <- "Areas_Dron" 

 

  # NOMBRE DE LA CAPA DE PUNTOS DE MUESTRA ALEATORIOS 

nombre_capa_puntos_salida <- "P_Muestra_Dron" 

 

# --- B) NOMBRES DE COLUMNAS --- 

  # NOMBRE DEL CAMPO DEL IDENTIFICADOR UNICO DEL INCENDIO 

campo_id_incendio <- "IDPAF"  

 

  #NOMBRE DE LA COLUMNA DONDE SE VA A GUARDAR LA DIFERNECIA DE 

ZONAS 

  #PARA MANTENER CONCORDANCIA CON EL SCRIPT DE ENRIQUECIMIENTO Y 

CONTROL 

  #LOS RESULTADOS EN ESTE CAMPO SON 'Incendio' y 'Control'. 

campo_zona_salida <- "zona_dron"  
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# --- C) PARÁMETROS DE MUESTREO --- 

  #NUMERO DE PUNTOS ALEATORIOS A GENERAR POR AREA DEL INCENDIO 

  #SE CONSIDERA DIFETENTE AL DE SATELITE QUE NUESTRO ESPACIO ES MAS 

REDUCIDO 

puntos_por_poligono_incendio <- 150 

 

  # ¡IMPORTANTE! SEMILLA PARA REPRODUCIBILIDAD (EN CASO DOCUMEN-

TAR). 

  # MANTÉN ESTE NÚMERO FIJO PARA OBTENER SIEMPRE LOS MISMOS PUNTOS. 

  # CAMBIA ESTE NÚMERO A CUALQUIER OTRO ENTERO PARA UN NUEVO GRUPO. 

set.seed(123) 

 

# --- INICIO DEL PROCESO (NO MODIFICAR) --- 

 

# 

=================================================================== 

# PASO 1 Y 2: CREAR, PARTICIONAR Y DISOLVER ÁREAS DE DRON 

# 

=================================================================== 

message("PASO 1 & 2: Procesando y disolviendo áreas de Dron...") 

incendios_sf <- st_read(ruta_gpkg, layer = nombre_capa_incendios) 

incendios_sf <- st_make_valid(incendios_sf) 

crs_original <- st_crs(incendios_sf) 

incendios_unidos_sf <- st_union(incendios_sf) 

 

lista_tifs <- dir_ls(carpeta_dron_tifs, regexp = "\\.tif$", ig-

nore.case = TRUE) 

if (length(lista_tifs) == 0) stop("No se encontraron ficheros 

.tif.") 

 

lista_resultados_brutos <- list() 

 

for (ruta_tif in lista_tifs) { 

  nombre_fichero <- path_file(ruta_tif) 

  message(paste("  Procesando:", nombre_fichero)) 

   

  raster_dron <- rast(ruta_tif) 

  # Crea una huella precisa a partir de píxeles con datos 

  huella_poligono_sf <- st_as_sf(as.polygons(raster_dron > -Inf, 

dissolve = TRUE)) 

  huella_poligono_sf <- st_transform(huella_poligono_sf, crs = 

crs_original) 

   

  indice_cercano <- st_nearest_feature(huella_poligono_sf, incen-

dios_sf) 

  atributos_incendio_cercano <- st_drop_geometry(incendios_sf[in-

dice_cercano, ]) 

   

  huella_con_attrs_sf <- st_sf( 

    atributos_incendio_cercano, 

    geometry = st_geometry(huella_poligono_sf) 

  ) 

  huella_con_attrs_sf$origen_tif <- nombre_fichero 
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  # Particionar en Incendio y Control 

  area_incendio <- st_intersection(huella_con_attrs_sf, incen-

dios_unidos_sf) 

  if (nrow(area_incendio) > 0 && !st_is_empty(area_incendio)) { 

    area_incendio[[campo_zona_salida]] <- "Incendio"  

    lista_resultados_brutos[[length(lista_resultados_brutos) + 1]] 

<- area_incendio 

  } 

   

  area_control <- st_difference(huella_con_attrs_sf, incen-

dios_unidos_sf) 

  if (nrow(area_control) > 0 && !st_is_empty(area_control)) { 

    area_control[[campo_zona_salida]] <- "Control"  

    lista_resultados_brutos[[length(lista_resultados_brutos) + 1]] 

<- area_control 

  } 

} 

 

if (length(lista_resultados_brutos) == 0) stop("No se generaron 

polígonos válidos.") 

resultado_bruto_sf <- bind_rows(lista_resultados_brutos) 

resultado_bruto_sf <- st_collection_extract(st_make_valid(re-

sultado_bruto_sf), "POLYGON") 

 

areas_finales_sf <- resultado_bruto_sf %>% 

  group_by(!!sym(campo_id_incendio), !!sym(campo_zona_salida)) %>% 

  summarise(geometry = st_union(geometry), origenes_tif = 

paste(unique(origen_tif), collapse = ", "), .groups = 'drop') 

 

areas_a_guardar <- st_cast(areas_finales_sf, "MULTIPOLYGON") 

 

print(st_geometry_type(areas_a_guardar, by_geometry = FALSE)) 

 

 

st_write( 

  areas_a_guardar,  

  dsn = ruta_gpkg,  

  layer = nombre_capa_areas_salida,  

  delete_layer = TRUE 

) 

 

message(paste("\nCapa de áreas '", nombre_capa_areas_salida, "' 

(Incendio y Control) guardada.")) 

 

 

# 

=================================================================== 

# PASO 3: GENERAR PUNTOS DE MUESTREO SOLO EN ZONAS DE INCENDIO 

# 

=================================================================== 

message("\nPASO 3: Generando puntos de muestreo solo en polígonos 

de 'Incendio'...") 

 

# Se filtra para quedarse solo con las zonas de incendio --- 
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poligonos_incendio_dron <- areas_finales_sf %>% 

  filter(!!sym(campo_zona_salida) == "Incendio") 

 

if (nrow(poligonos_incendio_dron) == 0) { 

  stop("No se encontraron áreas de tipo 'Incendio' para generar 

puntos.") 

} 

 

message(paste("Se encontraron", nrow(poligonos_incendio_dron), 

"polígonos de incendio para el muestreo.")) 

 

# Se asigna el número fijo de puntos a cada polígono de incendio. 

poligonos_con_n_puntos <- poligonos_incendio_dron %>% 

  mutate(n_puntos = puntos_por_poligono_incendio) 

 

message(paste("Generando", puntos_por_poligono_incendio, "puntos 

en cada uno de los", nrow(poligonos_con_n_puntos), "polígonos de in-

cendio...")) 

message(paste("Total a generar:", sum(poligonos_con_n_pun-

tos$n_puntos), "puntos.")) 

 

# Genera los puntos aleatorios. 

puntos_generados_sfc <- st_sample( 

  poligonos_con_n_puntos, 

  size = poligonos_con_n_puntos$n_puntos, 

  type = "random" 

) 

 

# Asigna los atributos de los polígonos de incendio a los puntos 

puntos_finales_sf <- st_as_sf(puntos_generados_sfc) %>% 

  st_join(poligonos_con_n_puntos, join = st_intersects) 

 

message(paste("\nTotal de", nrow(puntos_finales_sf), "puntos de 

incendio generados.")) 

 

# Guarda la capa final de puntos 

st_write(puntos_finales_sf, 

         dsn = ruta_gpkg, 

         layer = nombre_capa_puntos_salida, 

         delete_layer = TRUE) 

 

message(paste("\n¡ÉXITO!")) 

message(paste("La capa final de puntos '", nombre_capa_puntos_sa-

lida, "' ha sido guardada en:", sep="")) 

message(ruta_gpkg) 
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ANEXO 3. Script en R para la Generación de Puntos de Control gemelos para el análisis de escala 

“Dron” y “Satélite” 

# 

====================================================================

============= 

# SCRIPT UNIFICADO v12.5: ENRIQUECIMIENTO Y GENERACIÓN DE PUNTOS 

DE CONTROL 

# 

# - SELECCIÓN DE BANDAS ESPECÍFICAS EN RÁSTERS (ÚNICOS O EN CAR-

PETA). 

# - OBTENCION DE DATOS ESPECIFICOS RASTER POR INCENDIO 

# - SIMPLIFICACION POR CONVENCIONES. 

# - SEPARACIÓN LÓGICA COMPLETA DE PARÁMETROS PARA MODO "SATELITE" 

Y "DRON". 

# - MODO SATELITE GENERA UN BUFFER CON SEPARACIÓN DEL AREA. 

# - FILTRADO AVANZADO POR TOLERANCIAS ABSOLUTAS. 

# - INTERRUPTOR DE RIGOR PARA VARIABLES DISCRETAS. 

# - LIMPIEZA AUTOMÁTICA DE ARCHIVOS TEMPORALES. 

# - OBTENCION DE PUNTOS DE CONTROL COMPARADOS POR PUNTOS DE MUESTRA 

# - OPCION DE VERIFICAR PRIMERO EN EL DISCO POR PRODUCTOS TERRA 

# 

====================================================================

============= 

 

# 1. CARGAR LAS LIBRERÍAS NECESARIAS 

library(sf) 

library(raster) #MANEJO DE LOS RASTER ESPECIFICOS DE INCENDIO 

library(terra) 

library(dplyr) 

library(tidyr) # NECESARIA PARA NA.OMIT(), ELIMINANDO LA PROBLEMÁ-

TICA QUE SE GENERABA 

library(fs)    # MANEJAR LAS RUTAS DE ARCHIVOS  

 

# --- PASO 1: CONFIGURACIÓN CENTRAL (EL ÚNICO LUGAR PARA MODIFICA-

CIONES) --- 

 

# --- A) CONFIGURACIÓN DEL ENTORNO --- 

Sys.setenv(PROJ_LIB = "") # ARREGLA EL ERROR DE NO RECONOCER LOS 

SCR 

 

  #PARA LOS PROCESAMIENTOS DE TERRA SE REQUIERE UN ESPACIO CONSI-

DERABLE SI ES BASTANTE INFORMACION SE PUEDE UTILIZAR UN DISCO EXTERNO 

ruta_temporal <- "E:/Temporal/terra_temp"  

 

  #SE CREA LA CARPETA EN CASO DE NO TENERLA, ESTIPULAMOS QUE SEA 

LA CARPETA TEMPORAL PARA TERRA 

if (!dir.exists(ruta_temporal)) dir.create(ruta_temporal, recur-

sive = TRUE)  

terraOptions(tempdir = ruta_temporal) 

 

  # (OPCIONAL) RUTA A UNA CARPETA RÁPIDA CON DERIVADOS YA CALCULADOS 

('materialized_...'). 
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  # SI EL SCRIPT ENCUENTRA LOS ARCHIVOS AQUÍ, LOS LEERÁ DESDE ESTA 

UBICACIÓN DE ALTA VELOCIDAD (EJ. UN SSD). 

  # SI SE DEJA COMO NULL O NO EXISTE, EL SCRIPT BUSCARÁ/ESCRIBIRÁ 

SOLO EN LA 'RUTA_TEMPORAL 

ruta_productos_terra <- "C:/MASTER_ERICK/TFM/Erick/Temporal/te-

rra_temp"  

 

# --- B) GESTIÓN DEL GEOPACKAGE Y CAPAS--- 

  #RUTA A LA GPKG DEL TRABAJO 

ruta_gpkg_central <- "C:/MASTER_ERICK/TFM/Erick/SHP_TFM/TFM_ER-

ICK_VILLACIS.gpkg"  

 

  # RUTA A LA CARPETA VIRTUAL PARA EL PROCESAMIENTO DEL MDT Y SUS 

DERIVADOS VIRTUALES 

ruta_trabajo_virtual <- "C:/MASTER_ERICK/TFM/Erick/Temporal/VRT"    

 

  #SE CREA LA CARPETA EN CASO DE NO TENERLA 

if (!dir.exists(ruta_trabajo_virtual)) dir.create(ruta_tra-

bajo_virtual, recursive = TRUE)   

 

  # CAPA DE PUNTOS DE INCENDIO A ENRIQUECER 

capa_puntos_entrada <- "P_Muestra_Dron"  

 

  # PARÁMETRO PARA MODO "DRON": CAPA CON POLÍGONOS DE INCENDIO Y 

CONTROL DEBE CONTENER EL CAMPO "zona_dron"  

capa_zonas_dron <- "Areas_Dron" 

 

  # PARÁMETRO PARA MODO "SATELITE": CAPA CON PERÍMETROS DE INCEN-

DIOS PARA EXCLUIRLOS 

capa_exclusion_satelite <- "Incendios_Completos"  

 

# --- C) LISTA ÚNICA DE RECETAS DE EXTRACCIÓN--- 

  # EL NOMBRE DE LA COLUMNA DE SALIDA SERÁ EL MISMO QUE EL NOMBRE 

DE LA RECETA (EJ. 'ELEVACION2M'). 

  # ADVERTENCIA: AL EXPORTAR A SHAPEFILE, NOMBRES > 10 CARACTERES 

SERÁN TRUNCADOS. 

  # SE RECOMIENDA USAR GPKG. 

  # tolerancia_abs DEFINE EL RANGO ACEPTABLE DE LA VARIABLE A ANA-

LISAR. 

 

  # --- TIPOS DE RECETA DISPONIBLES --- 

  # "raster":          PARA RÁSTERS ESTÁTICOS Y GLOBALES (EJ. MDT) 

O BANDAS ESPECÍFICAS DE UN ARCHIVO. 

  # "derivado_raster": PARA DERIVADOS TOPOGRÁFICOS ESTÁNDAR DE 'TE-

RRA' (SLOPE, TPI, TRI, ASPECT). 

  # "derivado_multishade": TIPO ESPECIALIZADO. GENERA UN ÍNDICE DE 

EXPOSICIÓN GENERAL PROMEDIANDO 

  #                    CUATRO ILUMINACIONES NORMALIZADAS (NO, NE, 

SE, SO) PARA UN ANÁLISIS 

  #                    TOPOGRÁFICO MÁS ROBUSTO Y SIN SESGO 

DIRECCIONAL. 

  # "vector_dis":      PARA CAPAS VECTORIALES CON DATOS DISCRE-

TOS/CATEGÓRICOS (EJ. USOS DEL SUELO). 
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  # "vector_con":      PARA CAPAS VECTORIALES CON DATOS CONTINUOS 

(NO IMPLEMENTADO EN EL EJEMPLO). 

  # "raster_dinamico_por_id": PARA RÁSTERS QUE SON ESPECÍFICOS PARA 

CADA PUNTO DE MUESTRA 

  #                    (EJ. UNA IMAGEN PRE_NBR PARA CADA INCENDIO). 

REQUIERE CONFIGURACIÓN ADICIONAL. 

 

  # --- PARÁMETROS ADICIONALES PARA RECETAS DE TIPO "RASTER" (ES-

TÁTICO) --- 

  # banda_numero: SELECCIONA UNA BANDA POR SU POSICIÓN NUMÉRICA 

EXACTA (EJ. BANDA_NUMERO = 8). 

  # banda_patron_nombre: BUSCA Y SELECCIONA UNA BANDA POR SU NOM-

BRE. 

  #    - PUEDE BUSCAR UNA PARTE DEL NOMBRE (EJ. "TEMP" ENCONTRARÁ 

"TEMPERATURA_MEDIA"). 

  #    - SI ENCUENTRA VARIAS BANDAS QUE COINCIDEN, SIEMPRE SELEC-

CIONARÁ LA PRIMERA. 

   

# PARÁMETROS ADICIONALES PARA RECETAS "raster_dinamico_por_id" --

- 

  # ESTE TIPO DE RECETA CARGA UN RÁSTER ESPECÍFICO PARA CADA PUNTO 

USANDO 

  # EL PARÁMETRO 'patron_nombre_archivo'. ESTE PARÁMETRO CONSTRUYE 

EL 

  # NOMBRE DEL ARCHIVO A PARTIR DE DOS TIPOS DE INSTRUCCIONES: 

  #   1. tipo_parte = "columna_valor": Usa el valor de una columna 

del punto 

  #      (ej. list(tipo_parte="columna_valor", nombre_co-

lumna="IDPAF")). 

  #   2. tipo_parte = "texto_fijo": Añade un texto estático 

  #      (ej. list(tipo_parte="texto_fijo", va-

lor_texto="_preNBR_season.tif")). 

  # EL SCRIPT UNIRÁ ESTAS PARTES EN ORDEN PARA ENCONTRAR EL ARCHIVO 

CORRESPONDIENTE. 

 

lista_recetas <- list( 

  elevacion2m = list( 

    tipo = "raster",  

    grupo = "topografia_2m", 

    ruta = "C:/MASTER_ERICK/TFM/Erick/MDE/MDT02m/MDT02_Vir-

tual_HU30.vrt", 

    tolerancia_abs = 20 #VALOR +/- QUE CONSIDERA TOLERABLE 

  ), 

  pendiente2m = list( 

    tipo = "derivado_raster",  

    grupo = "topografia_2m", 

    nombre_receta_mdt_fuente = "elevacion2m", 

    opciones_terrain = list(v = "slope", unit = "degrees"), 

    tolerancia_abs = 10    

  ), 

  expo_general2m = list( 

    tipo = "derivado_multishade", 

    grupo = "topografia_2m", 

    nombre_receta_mdt_fuente = "elevacion2m", 
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     #ELIMINAMOS LAS OPCIONES YA QUE IDENTIFICAMOS POR DEFECTO CUA-

TRO DIRECCIONES 

    tolerancia_abs = 0.05 # La tolerancia será sobre un valor de 0 

a 1. 

  ), 

  tpi2m = list( 

    tipo = "derivado_raster",  

    grupo = "topografia_2m", 

    nombre_receta_mdt_fuente = "elevacion2m", 

    opciones_terrain = list(v = "TPI"), 

    tolerancia_abs = 1 # El TPI suele tener valores pequeños, ej -

5 a 5 

  ), 

  tri2m = list( 

    tipo = "derivado_raster",  

    grupo = "topografia_2m", 

    nombre_receta_mdt_fuente = "elevacion2m", 

    opciones_terrain = list(v = "TRI"), 

    tolerancia_abs = 0.5  

  ), 

  PRE_NBR = list( 

    tipo = "raster_dinamico_por_id",  

    grupo = "NBR", 

    ruta = "C:/MASTER_ERICK/TFM/Erick/NBR_CRS_CORREGIDO",  

    tolerancia_abs = 0.1, # VALOR +/- QUE CONSIDERA TOLERABLE 

    patron_nombre_archivo = list( 

      list(tipo_parte = "columna_valor", nombre_columna = 

"IDPAF"), 

      list(tipo_parte = "texto_fijo", valor_texto = 

"_preNBR_season.tif") 

    ) 

  ) 

) 

  # --- EJEMPLO: CÓMO AÑADIR LA 'ORIENTACIÓN' (ASPECT) --- 

  # orientacion2m = list( 

  #   tipo = "derivado_raster", 

  #   grupo = "topografia_2m", 

  #   nombre_receta_mdt_fuente = "elevacion2m", 

  #   opciones_terrain = list(v = "aspect", unit = "degrees"), 

  #   tolerancia_abs = 22.5 # Opcional: filtro estricto de +/- 22.5 

grados de diferencia 

  # ), 

  #COD_CLC = list( 

  #tipo = "vector_dis",  

  #grupo = "coberturas", 

  #ruta = ruta_gpkg_central, 

  #layer_en_fuente = "clc_18_aragon", 

  #columna_origen = "CODE_18N" 

  # ), 

  # --- EJEMPLO: CÓMO AÑADIR OTRA CAPA VECTORIAL DISCRETA (ej. 

Geología) --- 

  # cod_geologia = list( 

  #   tipo = "vector_dis", 

  #   grupo = "geologia", # Grupo nuevo si tiene extensión diferente 
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  #   ruta = "C:/Ruta/A/Tu/Geopackage_Geologia.gpkg", 

  #   layer_en_fuente = "mapa_geologico_10k", 

  #   columna_origen = "LITO_COD" 

  # ), 

   

  # --- NUEVO EJEMPLO: SELECCIONAR BANDA POR NÚMERO DE UN ÚNICO 

ARCHIVO .TIF --- 

  # nir_s2 = list( 

  #   tipo = "raster", 

  #   grupo = "reflectancia", # SE CREA UN NUEVO GRUPO PARA ESTOS 

DATOS 

  #   ruta = "C:/DATOS/SATELITE/S2_escena_completa.tif", # RUTA A 

UN ÚNICO TIF MULTIBANDA 

  #   banda_numero = 8 # SELECCIONA LA BANDA 8 (POR EJEMPLO, EL 

INFRARROJO CERCANO) 

  # ), 

   

  # --- NUEVO EJEMPLO: SELECCIONAR BANDA POR PATRÓN DE NOMBRE EN 

UNA CARPETA DE TIFS --- 

  # # ESTE ES EL CASO MÁS POTENTE: BUSCARÁ EN CADA TIF DE LA CARPETA 

LA BANDA QUE CUMPLA EL PATRÓN. 

  # precipitacion_anual = list( 

  #   tipo = "raster", 

  #   grupo = "clima", 

  #   ruta = "C:/DATOS/CLIMA/PRECIPITACIONES/", # RUTA A UNA CARPETA 

CON VARIOS TIFS 

  #   banda_patron_nombre = "pre" # BUSCARÁ DENTRO DE CADA TIF UNA 

BANDA CUYO NOMBRE CONTENGA "pre" Y LAS UNIRÁ EN UN MOSAICO VIRTUAL 

  # ), # RECORDAR QUITAR LA COMA EN CASO DE QUE ESTA SEA LA ÚLTIMA 

RECETA DE LA LISTA. 

 

 

# --- D) PARÁMETROS DEL ALGORITMO Y MODO--- 

 

  # 1. SELECCIÓN DEL MÉTODO DE BÚSQUEDA DE PUNTOS DE CONTROL "DRON", 

"SATELITE" 

MODO_CONTROL <- "DRON" 

 

# 2. PARÁMETROS GENERALES Y DE CONTROL 

 

  # ¡IMPORTANTE! SEMILLA PARA REPRODUCIBILIDAD (EN CASO DOCUMEN-

TAR). 

  # MANTÉN ESTE NÚMERO FIJO PARA OBTENER SIEMPRE LOS MISMOS PUNTOS. 

  # CAMBIA ESTE NÚMERO A CUALQUIER OTRO ENTERO PARA UNA NUEVA 

TANDADA. 

set.seed(123)  

 

  # TAMAÑO DEL LOTE PARA EL ENRIQUECIMIENTO INICIAL (PROCESO 1). 

AJUSTA SEGÚN LA MEMORIA RAM DISPONIBLE. 

tamano_lote_inicial <- 20000 

 

  # NÚMERO DE PUNTOS CANDIDATOS A GENERAR POR CADA ZONA DE CONTROL 

(DRON O SATELITE). 

puntos_candidatos_a_generar <- 20000  
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  # TAMAÑO DEL LOTE PARA PROCESAR LA NUBE DE PUNTOS CANDIDATOS. 

tamano_lote_candidatos <- 2000000 

 

 

# 3. PARÁMETROS DE IDENTIFICACIÓN Y RIGOR 

  # NOMBRE EXACTO DE LA COLUMNA DEL CÓDIGO ÚNICO DEL INCENDIO. 

ID_POLIGONO_INCENDIO <- "IDPAF"  

 

  # SI ES TRUE, SÓLO ACEPTA GEMELOS CON VARIABLES DISCRETAS IDÉN-

TICAS. 

EXIGIR_IGUALDAD_DISCRETA <- TRUE  

 

# 4. PARÁMETROS ESPECÍFICOS PARA EL MODO "SATELITE" 

  # RADIO INICIAL (EN METROS) DEL ANILLO DE SEPARACION CON EL AREA 

DE INVESTIGACION. 

buffer_inicial_m <- 50  

 

  # RADIO MÁXIMO (EN METROS) QUE ALCANZARÁ LA BÚSQUEDA ANTES DE 

RENDIRSE. 

buffer_maximo_m <- 3000 

 

# 5. COSAS A CONSIDERAR 

  # - ID DE PUNTO ÚNICO GENERADO SE NOMBRARA LA COLUMNA 'ID_Punto'. 

  # - PARA MODO DRON, LA COLUMNA EN LA CAPA DE POLIGONOS DEBE 

LLAMARSE 'zona_dron' 

  #   Y CONTENER LOS VALORES DE 'Incendio' y 'Control'. 

 

# --- E)SELECCION DE PROCESOS A CUMPLIR (TRUE,FALSE) --- 

EJECUTAR_ENRIQUECIMIENTO <- TRUE 

EJECUTAR_GENERACION_CONTROL <- TRUE 

 

# 

====================================================================

===== 

# --- PASO 2: GENERACIÓN DE NOMBRES Y FUNCIONES (NO MODIFICAR) --

- 

# 

====================================================================

===== 

 

capa_puntos_salida_enriquecidos <- paste0(capa_puntos_entrada, 

"_enriquecidos") 

capa_salida_control <- paste0(capa_puntos_entrada, "_control") 

.cache_fuentes <- new.env() 

 

preparar_fuentes_datos <- function(recetas, ruta_vrt) { 

  if (!is.null(.cache_fuentes$datos)) {return(.cache_fuentes$da-

tos)} 

  pilas_raster_por_grupo <- list(); fuentes_vector_por_grupo <- 

list() 

  grupos_de_capas <- unique(sapply(recetas, `[[`, "grupo")) 

   

  for (grupo_actual in grupos_de_capas) { 
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    recetas_del_grupo <- Filter(function(x) x$grupo == grupo_ac-

tual, recetas) 

    nombres_recetas_grupo <- names(recetas_del_grupo) 

    tipo_grupo <- recetas_del_grupo[[1]]$tipo 

     

    if (tipo_grupo %in% c("raster", "derivado_raster", "deri-

vado_multishade")) { 

      fuentes_raster_en_memoria <- list() 

       

      for (nombre_receta in nombres_recetas_grupo) { 

        receta_actual <- recetas_del_grupo[[nombre_receta]]; 

capa_raster_final <- NULL 

         

        if (receta_actual$tipo == "raster") { 

           

          seleccionar_banda_de_raster <- function(raster_obj, re-

ceta) { 

            if (!is.null(receta$banda_numero)) { 

              n_banda <- receta$banda_numero 

              if (n_banda > 0 && n_banda <= nlyr(raster_obj)) { 

                return(raster_obj[[n_banda]]) 

              } else { 

                warning(paste("En", sources(raster_obj), "el nº de 

banda", n_banda, "está fuera de rango. Se omite el archivo.")) 

                return(NULL) 

              } 

            } 

            else if (!is.null(receta$banda_patron_nombre)) { 

              patron <- receta$banda_patron_nombre 

              nombres_bandas <- names(raster_obj) 

              indices_coincidentes <- grep(patron, nombres_bandas) 

               

              if (length(indices_coincidentes) >= 1) { 

                if(length(indices_coincidentes) > 1) { 

                  warning(paste("En", sources(raster_obj), "se en-

contraron múltiples bandas con patrón '", patron, "'. Usando la pri-

mera: '", nombres_bandas[indices_coincidentes[1]], "'")) 

                } 

                return(raster_obj[[indices_coincidentes[1]]]) 

              } else { 

                warning(paste("En", sources(raster_obj), "no se 

encontró banda con patrón '", patron, "'. Se omite el archivo.")) 

                return(NULL) 

              } 

            } 

            if (nlyr(raster_obj) > 1) { 

              warning(paste("Receta '", nombre_receta, "' apunta a 

un raster multibanda ('", sources(raster_obj) ,"') pero no especifica 

banda a seleccionar. Se usará la primera por defecto.")) 

            } 

            return(raster_obj[[1]]) 

          } 

           

          ruta_fuente <- receta_actual$ruta 
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          ruta_vrt_final <- file.path(ruta_vrt, paste0(nombre_re-

ceta, ".vrt")) 

           

          if (file.exists(ruta_vrt_final)) { 

            capa_raster_final <- rast(ruta_vrt_final) 

          } else { 

            if (dir.exists(ruta_fuente)) { 

              lista_tifs <- list.files(ruta_fuente, pattern = 

"\\.tif$", full.names = TRUE, ignore.case = TRUE) 

              if (length(lista_tifs) > 0) { 

                print(paste("-> Procesando", length(lista_tifs), 

"TIFs en la carpeta para la receta:", nombre_receta)) 

                lista_bandas_seleccionadas <- list() 

                for (tif_path in lista_tifs) { 

                  raster_individual <- rast(tif_path) 

                  banda_seleccionada <- seleccionar_banda_de_ras-

ter(raster_individual, receta_actual) 

                  if (!is.null(banda_seleccionada)) { 

                    lista_bandas_seleccionadas <- ap-

pend(lista_bandas_seleccionadas, banda_seleccionada) 

                  } 

                } 

                if (length(lista_bandas_seleccionadas) > 0) { 

                  capa_raster_final <- vrt(lista_bandas_seleccio-

nadas, ruta_vrt_final, overwrite = TRUE) 

                } else { 

                  warning(paste("No se pudo extraer ninguna banda 

válida de la carpeta para la receta:", nombre_receta)) 

                } 

              } 

            } else if (file.exists(ruta_fuente)) { 

              print(paste("-> Procesando archivo único para la re-

ceta:", nombre_receta)) 

              raster_completo <- rast(ruta_fuente) 

              capa_raster_final <- seleccionar_banda_de_ras-

ter(raster_completo, receta_actual) 

            } 

          } 

           

        } else if (receta_actual$tipo %in% c("derivado_raster", 

"derivado_multishade")) { 

          fuente_mdt <- fuentes_raster_en_memoria[[receta_ac-

tual$nombre_receta_mdt_fuente]] 

          if (is.null(fuente_mdt)) {warning(paste("Fuente MDT no 

encontrada para", nombre_receta)); next} 

           

          nombre_archivo_materializado <- paste0("materialized_", 

nombre_receta, ".tif") 

           

          ruta_lectura_rapida <- if (!is.null(ruta_productos_te-

rra) && dir.exists(ruta_productos_terra)) { 

            file.path(ruta_productos_terra, nombre_archivo_mate-

rializado) 

          } else { NULL } 
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          ruta_lectura_escritura_temporal <- file.path(terraOpti-

ons()$tempdir, nombre_archivo_materializado) 

           

          if (!is.null(ruta_lectura_rapida) && 

file.exists(ruta_lectura_rapida)) { 

            print(paste("   -> Leyendo derivado desde la RUTA RÁ-

PIDA:", nombre_receta)) 

            capa_raster_final <- rast(ruta_lectura_rapida) 

          } else if (file.exists(ruta_lectura_escritura_temporal)) 

{ 

            print(paste("   -> Leyendo derivado desde la RUTA TEM-

PORAL:", nombre_receta)) 

            capa_raster_final <- rast(ruta_lectura_escritura_tem-

poral) 

          } else { 

            print(paste("   -> Derivado no encontrado. GENERANDO y 

guardando en la RUTA TEMPORAL:", nombre_receta)) 

            capa_derivada <- NULL 

             

            if (receta_actual$tipo == "derivado_raster") { 

              if (!is.null(receta_actual$opciones_terrain)) { 

                args <- c(list(x = fuente_mdt), receta_actual$op-

ciones_terrain); capa_derivada <- do.call(terra::terrain, args) 

              } 

            } else if (receta_actual$tipo == "derivado_multi-

shade") { 

              slope_rad <- terra::terrain(fuente_mdt, v="slope", 

unit="radians") 

              aspect_rad <- terra::terrain(fuente_mdt, v="aspect", 

unit="radians") 

              # GENERACIOND 4 HILLSHADES EN DIFERENTES DIRECCIONES 

PARA SU EXPOSICION. 

              h1 <- terra::shade(slope_rad, aspect_rad, angle=45, 

direction=315) 

              h2 <- terra::shade(slope_rad, aspect_rad, angle=45, 

direction=45) 

              h3 <- terra::shade(slope_rad, aspect_rad, angle=45, 

direction=135) 

              h4 <- terra::shade(slope_rad, aspect_rad, angle=45, 

direction=225) 

              promedio_hillshade <- (h1 + h2 + h3 + h4) / 4 

              capa_derivada <- promedio_hillshade / 255.0 

            } 

             

            if(!is.null(capa_derivada)) { 

              writeRaster(capa_derivada, ruta_lectura_escri-

tura_temporal, gdal=c("COMPRESS=LZW"), overwrite=TRUE) 

              capa_raster_final <- rast(ruta_lectura_escri-

tura_temporal) 

            } 

          } 

        } 
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        if (!is.null(capa_raster_final)) {fuentes_raster_en_memo-

ria[[nombre_receta]] <- capa_raster_final} 

      } 

       

      if (length(fuentes_raster_en_memoria) > 0) { 

        pila_raster_objetos <- rast(fuentes_raster_en_memoria); 

names(pila_raster_objetos) <- names(fuentes_raster_en_memoria) 

        pilas_raster_por_grupo[[grupo_actual]] <- pila_raster_ob-

jetos 

      } 

       

    } else if (tipo_grupo %in% c("vector_dis", "vector_con")) { 

      fuentes_vector_grupo <- list() 

      for(nombre_receta in nombres_recetas_grupo){ 

        receta_actual <- recetas_del_grupo[[nombre_receta]] 

        capa_vec <- st_read(receta_actual$ruta, layer = receta_ac-

tual$layer_en_fuente, quiet = TRUE) 

        fuentes_vector_grupo[[nombre_receta]] <- capa_vec %>%  

          select(!!sym(receta_actual$columna_origen), "geom") %>% 

          rename(!!sym(nombre_receta) := !!sym(receta_actual$co-

lumna_origen)) 

      } 

      fuentes_vector_por_grupo[[grupo_actual]] <- fuentes_vec-

tor_grupo 

    } 

  } 

   

  .cache_fuentes$datos <- list(pilas_raster = pilas_ras-

ter_por_grupo, fuentes_vector = fuentes_vector_por_grupo) 

  return(.cache_fuentes$datos) 

} 

 

# 

====================================================================

===== 

# FUNCIÓN enriquecer_puntos  

# 

====================================================================

===== 

enriquecer_puntos <- function(puntos_sf, fuentes_preparadas, to-

das_las_recetas) { 

  if(nrow(puntos_sf) == 0) return(puntos_sf) 

   

  # Creamos una lista para almacenar los data.frames de nuevos 

atributos 

  lista_nuevos_atributos <- list() 

   

  # --- PASO A: ENRIQUECIMIENTO CON RÁSTERS ESTÁTICOS (terra) --- 

  message("   ... enriqueciendo con variables estáticas (terra).") 

  for (grupo in names(fuentes_preparadas$pilas_raster)) { 

    receta_ejemplo <- todas_las_recetas[[names(fuentes_prepara-

das$pilas_raster[[grupo]])[1]]] 

    if (receta_ejemplo$tipo %in% c("raster", "derivado_raster", 

"derivado_multishade")) { 
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      pila_raster <- fuentes_preparadas$pilas_raster[[grupo]] 

      puntos_para_extract <- puntos_sf 

      if (st_crs(puntos_para_extract) != st_crs(pila_raster)) { 

        puntos_para_extract <- st_transform(puntos_para_extract, 

st_crs(pila_raster)) 

      } 

      valores_extraidos_df <- terra::extract(pila_raster, 

vect(puntos_para_extract), ID = FALSE, na.rm = TRUE) 

      lista_nuevos_atributos[[length(lista_nuevos_atributos) + 1]] 

<- valores_extraidos_df 

    } 

  } 

   

  # --- PASO B: ENRIQUECIMIENTO CON RÁSTERS DINÁMICOS (raster) --

- 

  recetas_dinamicas <- Filter(function(x) x$tipo == "raster_dina-

mico_por_id", todas_las_recetas) 

   

  if(length(recetas_dinamicas) > 0) { 

    message("   ... enriqueciendo con variables dinámicas (ras-

ter).") 

     

    for(nombre_receta in names(recetas_dinamicas)) { 

      receta_actual <- recetas_dinamicas[[nombre_receta]] 

      valores_resultados_dinamicos <- rep(NA_real_, nrow(pun-

tos_sf)) 

       

      for(i in 1:nrow(puntos_sf)) { 

        punto_actual_sf <- puntos_sf[i, ] 

         

        nombre_archivo_a_buscar <- "" 

        for(parte in receta_actual$patron_nombre_archivo){ 

          if(parte$tipo_parte == "texto_fijo"){ 

            nombre_archivo_a_buscar <- paste0(nombre_ar-

chivo_a_buscar, parte$valor_texto) 

          } else if(parte$tipo_parte == "columna_valor"){ 

            df_sin_geom <- st_drop_geometry(punto_actual_sf) 

            if (!parte$nombre_columna %in% names(df_sin_geom)) { 

              nombre_archivo_a_buscar <- "" 

              break 

            } 

            valor_columna <- df_sin_geom[, parte$nombre_columna, 

drop = TRUE] 

            if(is.na(valor_columna)) { nombre_archivo_a_buscar <- 

""; break } 

            nombre_archivo_a_buscar <- paste0(nombre_ar-

chivo_a_buscar, as.character(valor_columna)) 

          } 

        } 

        if(nombre_archivo_a_buscar == "") next 

         

        ruta_completa <- file.path(receta_actual$ruta, nombre_ar-

chivo_a_buscar) 
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        if (file.exists(ruta_completa)) { 

          raster_especifico <- raster::raster(ruta_completa) 

          valor_extraido <- raster::extract(raster_especifico, 

punto_actual_sf) 

          if (!is.null(valor_extraido) && !is.na(valor_extraido)) 

{ 

            valores_resultados_dinamicos[i] <- valor_extraido 

          } 

        } 

      } 

      df_dinamico_temp <- data.frame(valores_resultados_dinamicos) 

      names(df_dinamico_temp) <- nombre_receta 

      lista_nuevos_atributos[[length(lista_nuevos_atributos) + 1]] 

<- df_dinamico_temp 

    } 

  } 

   

  # --- ENSAMBLAJE FINAL Y SEGURO --- 

  df_todos_atributos_nuevos <- do.call(cbind, lista_nuevos_atribu-

tos) 

   

  if (ncol(st_drop_geometry(puntos_sf)) > 0) { 

    puntos_enriquecidos_final <- st_sf( 

      cbind(st_drop_geometry(puntos_sf), df_todos_atributos_nue-

vos), 

      geometry = st_geometry(puntos_sf) 

    ) 

  } else { 

    # Esto ocurre con los puntos candidatos que nacen sin atributos 

    puntos_enriquecidos_final <- st_sf(df_todos_atributos_nuevos, 

geometry = st_geometry(puntos_sf)) 

  } 

   

  # --- PASO C: ENRIQUECIMIENTO CON VECTORES (CÓDIGO COMPLETO) --

- 

  if (length(fuentes_preparadas$fuentes_vector) > 0) { 

    for (grupo in names(fuentes_preparadas$fuentes_vector)) { 

      for (nombre_receta in names(fuentes_preparadas$fuentes_vec-

tor[[grupo]])) { 

        message(paste("   ... enriqueciendo con capa vectorial:", 

nombre_receta)) 

        capa_vectorial_fuente <- fuentes_preparadas$fuentes_vec-

tor[[grupo]][[nombre_receta]] 

         

        # Asegurarse de que los CRS coincidan antes del join 

        if (st_crs(puntos_enriquecidos_final) != st_crs(capa_vec-

torial_fuente)) { 

          capa_vectorial_fuente <- st_transform(capa_vecto-

rial_fuente, st_crs(puntos_enriquecidos_final)) 

        } 

         

        # Realizar la unión espacial (spatial join) para añadir los 

atributos del vector 
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        puntos_enriquecidos_final <- st_join(puntos_enriqueci-

dos_final, capa_vectorial_fuente, join = st_intersects, left = TRUE) 

      } 

    } 

  } 

   

  return(puntos_enriquecidos_final) 

} 

 

# --- PASO 3: EJECUCIÓN DE PROCESOS --- 

if (EJECUTAR_ENRIQUECIMIENTO) { 

  print("======================================================") 

  print("INICIANDO PROCESO 1: ENRIQUECIMIENTO DE PUNTOS") 

  print("======================================================") 

  puntos_originales <- st_read(ruta_gpkg_central, layer = 

capa_puntos_entrada) 

  fuentes_de_datos <- preparar_fuentes_datos(lista_recetas, 

ruta_trabajo_virtual) 

  print("--- ENRIQUECIENDO LOS PUNTOS DE INCENDIO ORIGINALES POR 

LOTES... ---") 

   

  lista_lotes_enriquecidos <- list() 

  total_puntos <- nrow(puntos_originales) 

   

  for (lote_inicio in seq(1, total_puntos, by = tamano_lote_ini-

cial)) { 

    lote_fin <- min(lote_inicio + tamano_lote_inicial - 1, to-

tal_puntos) 

    print(paste("   -> Procesando lote de puntos:", lote_inicio, 

"a", lote_fin, "de", total_puntos)) 

    puntos_del_lote <- puntos_originales[lote_inicio:lote_fin, ] 

    lote_enriquecido <- enriquecer_puntos(puntos_del_lote, fuen-

tes_de_datos, lista_recetas) 

    lista_lotes_enriquecidos[[length(lista_lotes_enriquecidos) + 

1]] <- lote_enriquecido 

  } 

  puntos_finales_enriquecidos <- do.call(rbind, lista_lotes_enri-

quecidos) 

  puntos_finales_enriquecidos <- puntos_finales_enriquecidos %>% 

mutate(ID_Punto = row_number()) 

  print("--- VERIFICACIÓN DE LA TABLA DE ATRIBUTOS FINAL ---") 

  print(head(as.data.frame(puntos_finales_enriquecidos))) 

  st_write(puntos_finales_enriquecidos, dsn = ruta_gpkg_central, 

layer = capa_puntos_salida_enriquecidos, delete_layer = TRUE) 

  print(paste("¡PROCESO 1 COMPLETADO! CAPA GUARDADA COMO:", 

capa_puntos_salida_enriquecidos)) 

} 

 

if (EJECUTAR_GENERACION_CONTROL) { 

  print("======================================================") 

  print("INICIANDO PROCESO 2: GENERACIÓN DE PUNTOS DE CONTROL") 

  print("======================================================") 

   

  # --- PREPARACIÓN INICIAL --- 
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  puntos_incendio_enriquecidos <- st_read(ruta_gpkg_central, layer 

= capa_puntos_salida_enriquecidos) 

  if (!exists("fuentes_de_datos")) {fuentes_de_datos <- prepa-

rar_fuentes_datos(lista_recetas, ruta_trabajo_virtual)} 

   

  # --- PASO 2A: GENERAR PUNTOS CANDIDATOS DENTRO DE CADA ZONA DE 

CONTROL INDIVIDUAL --- 

  print("--- Generando puntos candidatos por cada zona de control 

individual ---") 

  lista_candidatos_por_zona <- list() 

  if (MODO_CONTROL == "DRON") { 

    zonas_de_control <- st_read(ruta_gpkg_central, layer = 

capa_zonas_dron) %>% filter(zona_dron == "Control") 

    if (nrow(zonas_de_control) == 0) stop("No se encontraron zonas 

con 'zona_dron' = 'Control'.") 

    for (i in 1:nrow(zonas_de_control)) { 

      zona_actual <- zonas_de_control[i, ] 

      id_incendio_asociado <- zona_actual[[ID_POLIGONO_INCENDIO]] 

      print(paste("   -> Generando candidatos para la zona de con-

trol del incendio:", id_incendio_asociado)) 

      candidatos_zona <- st_sample(zona_actual, size = puntos_can-

didatos_a_generar, type = "random", exact = FALSE) 

      if (length(candidatos_zona) > 0) { 

        candidatos_sf <- st_as_sf(candidatos_zona) 

        candidatos_sf[[ID_POLIGONO_INCENDIO]] <- id_incendio_aso-

ciado 

        lista_candidatos_por_zona[[length(lista_candida-

tos_por_zona) + 1]] <- candidatos_sf 

      } 

    } 

  } else if (MODO_CONTROL == "SATELITE") { 

    poligonos_incendios_originales <- st_read(ruta_gpkg_central, 

layer = capa_exclusion_satelite) 

    area_total_exclusion <- st_union(poligonos_incendios_origina-

les) 

    for (i in 1:nrow(poligonos_incendios_originales)) { 

      poligono_actual <- poligonos_incendios_originales[i, ] 

      id_incendio_asociado <- poligono_actual[[ID_POLIGONO_INCEN-

DIO]] 

      print(paste("   -> Generando candidatos en el anillo de bús-

queda para el incendio:", id_incendio_asociado)) 

      buffer_exterior <- st_buffer(poligono_actual, dist = 

buffer_maximo_m) 

      buffer_interior_colchon <- st_buffer(poligono_actual, dist = 

buffer_inicial_m) 

      anillo_de_busqueda <- st_difference(buffer_exterior, 

buffer_interior_colchon) 

      area_de_busqueda_final <- st_difference(anillo_de_busqueda, 

area_total_exclusion) 

      if (!st_is_empty(area_de_busqueda_final) && 

all(st_is_valid(area_de_busqueda_final, na.rm=TRUE))) { 

        candidatos_zona <- st_sample(area_de_busqueda_final, size 

= puntos_candidatos_a_generar, type = "random", exact = FALSE) 

        if (length(candidatos_zona) > 0) { 
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          candidatos_sf <- st_as_sf(candidatos_zona) 

          candidatos_sf[[ID_POLIGONO_INCENDIO]] <- id_incen-

dio_asociado 

          lista_candidatos_por_zona[[length(lista_candida-

tos_por_zona) + 1]] <- candidatos_sf 

        } 

      } 

    } 

  } 

  candidatos_globales_sf <- do.call(rbind, lista_candida-

tos_por_zona) 

  if(is.null(candidatos_globales_sf) || nrow(candidatos_globa-

les_sf) == 0) { 

    stop("No se pudo generar ningún punto candidato en ninguna 

zona. El proceso no puede continuar.") 

  } 

   

  # --- PASO 2B: ENRIQUECER LA MEGA-TABLA DE CANDIDATOS --- 

  print(paste("--- Enriqueciendo la nube global de", nrow(candida-

tos_globales_sf), "candidatos por lotes ---")) 

  lista_lotes_enriquecidos <- list() 

  for (lote_inicio in seq(1, nrow(candidatos_globales_sf), by = 

tamano_lote_candidatos)) { 

    lote_fin <- min(lote_inicio + tamano_lote_candidatos - 1, 

nrow(candidatos_globales_sf)) 

    print(paste("   ... procesando lote de candidatos:", 

lote_inicio, "a", lote_fin)) 

    candidatos_lote <- candidatos_globa-

les_sf[lote_inicio:lote_fin, ] 

    lista_lotes_enriquecidos[[length(lista_lotes_enriquecidos) + 

1]] <- enriquecer_puntos(candidatos_lote, fuentes_de_datos, lista_re-

cetas) 

  } 

  candidatos_enriquecidos <- do.call(rbind, lista_lotes_enriqueci-

dos) 

  candidatos_enriquecidos <- candidatos_enriquecidos %>% na.omit() 

  print(paste("--- Nube global enriquecida con", nrow(candida-

tos_enriquecidos), "puntos válidos ---")) 

   

  # --- PASO 2C: PREPARACIÓN PARA LA COMPARACIÓN--- 

  print("--- Preparando datos para la comparación inteligente 

(cálculo de rangos globales) ---") 

  nombres_variables_comparacion <- names(lista_recetas) 

  datos_completos_para_rangos <- rbind( 

    st_drop_geometry(puntos_incendio_enriquecidos)[, nombres_va-

riables_comparacion], 

    st_drop_geometry(candidatos_enriquecidos)[, nombres_varia-

bles_comparacion] 

  ) 

   

  rangos_globales <- lapply(datos_completos_para_rangos, fun-

ction(columna) { 

    list(min = min(columna, na.rm = TRUE), max = max(columna, na.rm 

= TRUE)) 
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  }) 

   

  normalize_global <- function(x, var_name) { 

    rango <- rangos_globales[[var_name]] 

    if (rango$max - rango$min == 0) return(0) 

    return((x - rango$min) / (rango$max - rango$min)) 

  } 

   

  # --- PASO 2D: BUCLE DE BÚSQUEDA DE GEMELOS--- 

  lista_puntos_control_final <- list() 

  ids_unicos_incendios_muestra <- unique(puntos_incendio_enrique-

cidos[[ID_POLIGONO_INCENDIO]]) 

   

  for (id_actual in ids_unicos_incendios_muestra) { 

    print(paste("--- Buscando gemelos para el incendio:", id_ac-

tual, "---")) 

    candidatos_del_incendio <- candidatos_enriquecidos %>% fil-

ter(!!sym(ID_POLIGONO_INCENDIO) == id_actual) 

    if (nrow(candidatos_del_incendio) == 0) { 

      warning(paste("   -> No hay candidatos válidos para el in-

cendio", id_actual, ". Saltando.")) 

      next 

    } 

     

    puntos_del_incendio_actual <- puntos_incendio_enriquecidos %>% 

filter(!!sym(ID_POLIGONO_INCENDIO) == id_actual) 

    for (j in 1:nrow(puntos_del_incendio_actual)) { 

      punto_actual <- puntos_del_incendio_actual[j, ] 

       

      # FASE 1: FILTRO DURO POR TOLERANCIA 

      candidatos_filtrados <- candidatos_del_incendio 

      nombres_col_con_tolerancia <- names(Filter(function(r) 

!is.null(r$tolerancia_abs), lista_recetas)) 

      for (col_nombre in nombres_col_con_tolerancia) { 

        valor_actual <- punto_actual[[col_nombre]] 

        tolerancia <- lista_recetas[[col_nombre]]$tolerancia_abs 

        candidatos_filtrados <- candidatos_filtrados %>% fil-

ter(abs(.data[[col_nombre]] - valor_actual) <= tolerancia) 

      } 

       

      if (nrow(candidatos_filtrados) == 0) { 

        next  

      } 

       

      # FASE 2: RANKING POR DISTANCIA EUCLIDIANA (SOBRE LOS MISMOS 

DATOS, NORMALIZADOS GLOBALMENTE) 

      distancias <- rep(0, nrow(candidatos_filtrados)) 

      for(var_name in nombres_variables_comparacion) { 

        norm_punto <- normalize_global(punto_actual[[var_name]], 

var_name) 

        norm_candidatos <- normalize_global(candidatos_filtra-

dos[[var_name]], var_name) 

        distancias <- distancias + (norm_punto - norm_candidatos)^2 

      } 
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      distancias <- sqrt(distancias) 

       

      mejor_candidato_idx <- which.min(distancias) 

      mejor_candidato_final <- candidatos_filtrados[mejor_candi-

dato_idx, ] 

       

      mejor_candidato_final[["ID_Punto"]] <- punto_ac-

tual[["ID_Punto"]] 

      lista_puntos_control_final[[length(lista_puntos_control_fi-

nal) + 1]] <- mejor_candidato_final 

    } 

  } 

   

  # --- PASO 2E: ENSAMBLAJE FINAL --- 

  if(length(lista_puntos_control_final) > 0) { 

    puntos_control_a_guardar <- do.call(rbind, lista_puntos_con-

trol_final) 

    puntos_control_a_guardar$Tipo <- "Control" 

    print("--- COMPILANDO Y GUARDANDO RESULTADOS FINALES... ---") 

    st_write(puntos_control_a_guardar, dsn = ruta_gpkg_central, 

layer = capa_salida_control, delete_layer = TRUE) 

    

print("=============================================================

====================") 

    print(paste("¡PROCESO 2 COMPLETADO! SE GENERARON", nrow(pun-

tos_control_a_guardar), "PUNTOS DE CONTROL VÁLIDOS.")) 

    print(paste("LA CAPA '", capa_salida_control, "' SE HA GUARDADO 

EN:", ruta_gpkg_central)) 

    

print("=============================================================

====================") 

  } else { 

    print("ADVERTENCIA: NO SE PUDO GENERAR NINGÚN PUNTO DE CONTROL 

CON EL MODO Y PARÁMETROS SELECCIONADOS.") 

  } 

} 

 

# --- PASO FINAL: LIMPIEZA EXPLÍCITA DE ARCHIVOS TEMPORALES --- 

# DESCOMENTAR SI SE REQUIERE ELIMINAR LOS TIF GENERADOS 

##print("======================================================") 

##print("INICIANDO LIMPIEZA DE ARCHIVOS TEMPORALES...") 

##archivos_temporales <- list.files(path = terraOptions()$tempdir, 

pattern = "\\.tif$", full.names = TRUE, ignore.case = TRUE) 

##if (length(archivos_temporales) > 0) { 

##  print(paste("Se encontraron", length(archivos_temporales), 

"archivos temporales para eliminar:")) 

##  print(basename(archivos_temporales)) 

##  eliminados <- file.remove(archivos_temporales) 

##  if (all(eliminados)) { 

##    print("¡TODOS LOS ARCHIVOS TEMPORALES HAN SIDO ELIMINADOS 

CORRECTAMENTE!") 

##  } else { 

##    warning("NO SE PUDIERON ELIMINAR TODOS LOS ARCHIVOS TEMPORA-

LES. REVISA LA CARPETA MANUALMENTE.") 
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##  } 

##} else { 

##  print("No se encontraron archivos temporales .tif para elimi-

nar.") 

##} 

print("======================================================") 

print("¡FLUJO DE TRABAJO COMPLETADO!") 
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ANEXO 4. Tabla de éxito de emparejamiento por incendio. 

IDPAF 

P. Mues-

tra 

P. Con-

trol 

% 

Éxito 

53 133.00 133.00 100.00 

56 29.00 29.00 100.00 

54 193.00 179.00 92.75 

55 73.00 70.00 95.89 

66 214.00 210.00 98.13 

61 75.00 72.00 96.00 

65 20.00 9.00 45.00 

64 87.00 87.00 100.00 

62 340.00 340.00 100.00 

58 75.00 75.00 100.00 

63 103.00 102.00 99.03 

59 85.00 85.00 100.00 

60 356.00 354.00 99.44 

67 72.00 72.00 100.00 

68 54.00 54.00 100.00 

69 130.00 128.00 98.46 

70 44.00 44.00 100.00 

72 27.00 27.00 100.00 

73 113.00 111.00 98.23 

74 96.00 96.00 100.00 

75 60.00 59.00 98.33 

80 143.00 142.00 99.30 

82 58.00 58.00 100.00 

83 23.00 23.00 100.00 

86 36.00 36.00 100.00 

79 62.00 62.00 100.00 

84 24.00 20.00 83.33 

89 48.00 47.00 97.92 

90 255.00 253.00 99.22 

87 28.00 28.00 100.00 

88 332.00 331.00 99.70 

91 18.00 18.00 100.00 

92 143.00 143.00 100.00 

94 213.00 211.00 99.06 

93 330.00 328.00 99.39 

98 42.00 42.00 100.00 

101 970.00 969.00 99.90 

104 43.00 41.00 95.35 

110 374.00 374.00 100.00 

97 13.00 13.00 100.00 

105 37.00 37.00 100.00 

106 90.00 90.00 100.00 

107 85.00 72.00 84.71 

96 276.00 274.00 99.28 

99 2953.00 2905.00 98.37 

113 133.00 133.00 100.00 

103 244.00 244.00 100.00 

108 1.00 1.00 100.00 
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100 98.00 92.00 93.88 

102 16.00 16.00 100.00 

114 585.00 585.00 100.00 

115 36.00 36.00 100.00 

118 56.00 56.00 100.00 

119 112.00 112.00 100.00 

117 40.00 40.00 100.00 

120 24.00 24.00 100.00 

121 31.00 31.00 100.00 

123 55.00 55.00 100.00 

124 497.00 488.00 98.19 

122 13.00 13.00 100.00 

125 42.00 42.00 100.00 

126 54.00 53.00 98.15 

128 51.00 51.00 100.00 

129 106.00 106.00 100.00 

131 20.00 20.00 100.00 

133 121.00 118.00 97.52 

132 13.00 13.00 100.00 

136 79.00 79.00 100.00 

134 55.00 55.00 100.00 

138 21.00 21.00 100.00 

143 273.00 272.00 99.63 

147 298.00 298.00 100.00 

149 334.00 334.00 100.00 

165 231.00 231.00 100.00 

167 110.00 110.00 100.00 

157 30.00 29.00 96.67 

151 144.00 144.00 100.00 

169 1188.00 1183.00 99.58 

158 1286.00 1273.00 98.99 

159 186.00 185.00 99.46 

163 110.00 110.00 100.00 

160 37.00 37.00 100.00 

161 239.00 238.00 99.58 

177 38.00 38.00 100.00 

184 56.00 56.00 100.00 

182 11.00 11.00 100.00 

187 663.00 662.00 99.85 

190 22.00 22.00 100.00 

193 21.00 20.00 95.24 

192 1234.00 1232.00 99.84 

195 20.00 20.00 100.00 

196 25.00 25.00 100.00 

194 25.00 25.00 100.00 

197 26.00 26.00 100.00 

201 23.00 23.00 100.00 

TOTAL: 18108.00 17941.00 99.08 
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ANEXO 5. Tabla de retención de observaciones por incendio. 

IDPAF 

DIARIO Mensual Anual 

Inicio 

Pares fina-

les 

% 

éxito Inicio 

Pares fina-

les 

% 

éxito Inicio 

Pares fina-

les 

% 

éxito 

53 27340 7587 55.50 116053 53451 92.11 10906 5155 94.54 

54 38178 10372 54.33 156190 69650 89.19 14678 6953 94.74 

55 5869 2250 76.67 56578 26643 94.18 5740 2773 96.62 

56 5533 1692 61.16 25284 11809 93.41 2378 1127 94.79 

58 12808 5148 80.39 65298 31035 95.06 6000 2919 97.30 

59 7588 3048 80.34 66695 31473 94.38 6800 3304 97.18 

60 46223 15019 64.98 289022 133006 92.04 28320 13657 96.45 

61 15157 4603 60.74 62096 28970 93.31 5760 2783 96.63 

62 25006 9235 73.86 239867 109268 91.11 27200 13094 96.28 

63 10173 3185 62.62 73195 31200 85.25 8160 3743 91.74 

64 18772 5635 60.04 76181 36095 94.76 6960 3388 97.36 

65 2220 579 52.16 7875 3738 94.93 720 350 97.22 

66 50911 13302 52.26 180157 83330 92.51 16800 8115 96.61 

67 13842 5176 74.79 61305 29023 94.68 5616 2723 96.97 

68 4780 1802 75.40 37908 16597 87.56 4212 1885 89.51 

69 27328 8038 58.83 102777 46912 91.29 9984 4773 95.61 

70 7390 1704 46.12 32623 15388 94.34 3344 1624 97.13 

72 5852 1778 60.77 19403 8737 90.06 1998 966 96.70 

73 11005 4415 80.24 75391 34927 92.66 8214 3955 96.30 

74 19264 7568 78.57 75007 35804 95.47 6912 3357 97.14 

75 15339 4207 54.85 45051 20981 93.14 4248 2058 96.89 

79 5496 2238 81.44 40812 18969 92.96 4340 2072 95.48 

80 21922 5481 50.00 95451 44398 93.03 9940 4763 95.84 

82 11154 4245 76.12 44164 21060 95.37 4060 1966 96.85 

83 5539 1604 57.92 17303 8170 94.43 1610 776 96.40 

84 1791 758 84.65 12532 5853 93.41 1400 677 96.71 

86 5394 2070 76.75 25293 11726 92.72 2520 1213 96.27 

87 3207 1343 83.75 19781 9464 95.69 1960 951 97.04 

88 66429 20488 61.68 242688 106586 87.84 23170 10847 93.63 

89 9824 3308 67.35 34430 15917 92.46 3290 1575 95.74 

90 23827 9090 76.30 159390 73264 91.93 17710 8522 96.24 

91 1759 708 80.50 11456 5438 94.94 1188 573 96.46 

92 24978 9513 76.17 103254 48605 94.15 9438 4557 96.57 

93 29141 10044 68.93 212085 95704 90.25 21648 10291 95.08 

94 17643 5200 58.95 127168 54792 86.17 13926 6409 92.04 

96 47044 18183 77.30 190201 88315 92.86 17536 8273 94.35 

97 879 386 87.83 7500 3502 93.39 832 400 96.15 

98 3189 1200 75.26 24663 11601 94.08 2688 1300 96.73 

99 305029 97341 63.82 1856213 823820 88.76 185919 87252 93.86 

100 21401 6742 63.01 64204 30353 94.55 5888 2835 96.30 

101 192233 40443 42.08 631485 282134 89.36 62016 29451 94.98 

102 1188 456 76.77 8938 4138 92.59 1024 494 96.48 

103 53786 12027 44.72 165885 77221 93.10 15616 7505 96.12 

104 10334 2611 50.53 28694 13360 93.12 2624 1243 94.74 

105 2963 1160 78.30 22386 10301 92.03 2368 1107 93.50 

106 7653 2816 73.59 53945 24985 92.63 5760 2734 94.93 
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107 8316 3062 73.64 47440 22255 93.82 4608 2200 95.49 

108 168 66 78.57 699 330 94.42 64 31 96.88 

110 81569 22371 54.85 257590 119500 92.78 23936 11399 95.25 

113 35883 9615 53.59 95101 44653 93.91 8512 4082 95.91 

114 111541 42401 76.03 395843 186142 94.05 36270 17226 94.99 

115 5514 2301 83.46 19701 9313 94.54 2016 971 96.33 

117 16108 3812 47.33 22176 10309 92.97 2080 986 94.81 

118 22451 5622 50.08 31174 14405 92.42 2912 1382 94.92 

119 15201 5070 66.71 54712 24860 90.88 5824 2766 94.99 

120 2909 991 68.13 11911 5575 93.61 1248 599 95.99 

121 4237 1441 68.02 15580 7305 93.77 1612 775 96.15 

122 1610 672 83.48 6169 2953 95.74 650 310 95.38 

123 11454 4413 77.06 28851 13289 92.12 2750 1300 94.55 

124 178680 40871 45.75 266057 119121 89.55 24400 11362 93.13 

125 13490 3865 57.30 22961 10704 93.24 2100 997 94.95 

126 16147 3672 45.48 27453 12712 92.61 2544 1210 95.13 

128 10737 3270 60.91 25089 11366 90.61 2346 1099 93.69 

129 20608 7388 71.70 53451 24747 92.60 4876 2320 95.16 

131 2002 790 78.92 8278 3825 92.41 880 418 95.00 

132 2263 796 70.35 6139 2828 92.13 572 272 95.10 

133 22060 7655 69.40 56244 26296 93.51 5192 2465 94.95 

134 4954 1854 74.85 21494 9727 90.51 2310 1074 92.99 

136 14371 4739 65.95 36056 16696 92.61 3318 1562 94.15 

138 4330 1232 56.91 8560 3970 92.76 840 398 94.76 

143 54288 18944 69.79 118943 55536 93.38 10880 5157 94.80 

147 36497 14171 77.66 111184 50819 91.41 11324 5301 93.62 

149 69654 24563 70.53 131687 59868 90.92 12024 5515 91.73 

151 33202 11517 69.38 55114 25657 93.11 4896 2287 93.42 

157 4848 1603 66.13 10399 4658 89.59 986 455 92.29 

158 141809 49190 69.38 431458 188758 87.50 43282 19820 91.59 

159 18362 6304 68.66 58807 25583 87.01 6290 2738 87.06 

160 11170 2869 51.37 14168 6586 92.97 1258 588 93.48 

161 31946 10731 67.18 84518 38547 91.22 8092 3802 93.97 

163 13627 5208 76.44 39446 18191 92.23 3740 1758 94.01 

165 42667 12170 57.05 85813 38785 90.39 7854 3584 91.27 

167 11563 4159 71.94 36858 16283 88.36 3740 1696 90.70 

169 227319 65000 57.19 444659 201249 90.52 40222 18675 92.86 

177 9616 3564 74.13 12685 5962 94.00 1140 528 92.63 

182 3294 1309 79.48 3411 1612 94.52 308 143 92.86 

184 16060 6286 78.28 17581 8224 93.56 1568 727 92.73 

187 94425 35426 75.04 182291 80765 88.61 18536 8446 91.13 

190 7677 2754 71.75 6546 3061 93.52 572 264 92.31 

192 540045 150920 55.89 308242 140895 91.42 27104 12296 90.73 

193 9543 2755 57.74 4956 2268 91.53 440 200 90.91 

194 12860 3145 48.91 5602 2494 89.04 500 222 88.80 

195 7626 2625 68.84 4598 2062 89.69 400 180 90.00 

196 4656 1842 79.12 5240 2290 87.40 500 222 88.80 

197 5108 1990 77.92 5458 2456 90.00 520 234 90.00 

201 8651 3114 71.99 3519 1598 90.82 322 138 85.71 
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ANEXO 6. Tabla de las Diferencias del LST por escala y año transcurrido por el evento 

(year_since_fire) 

Media 

Dif_LST SE Escala year_since_fire 

2.812 0.012 Diario 0 

2.350 0.007 Diario 1 

1.591 0.006 Diario 2 

1.348 0.006 Diario 3 

1.993 0.016 Mensual 0 

1.901 0.010 Mensual 1 

1.412 0.009 Mensual 2 

1.195 0.009 Mensual 3 

1.037 0.008 Mensual 4 

1.015 0.008 Mensual 5 

1.071 0.008 Mensual 6 

1.025 0.008 Mensual 7 

1.107 0.008 Mensual 8 

1.055 0.008 Mensual 9 

0.968 0.008 Mensual 10 

1.004 0.008 Mensual 11 

0.950 0.008 Mensual 12 

0.913 0.008 Mensual 13 

0.958 0.008 Mensual 14 

0.916 0.008 Mensual 15 

0.884 0.009 Mensual 16 

0.853 0.010 Mensual 17 

0.742 0.011 Mensual 18 

0.841 0.010 Mensual 19 

0.631 0.009 Mensual 20 

0.728 0.010 Mensual 21 

0.776 0.010 Mensual 22 

0.665 0.010 Mensual 23 

0.697 0.010 Mensual 24 

0.639 0.010 Mensual 25 

0.634 0.010 Mensual 26 

0.551 0.010 Mensual 27 

0.532 0.010 Mensual 28 

0.483 0.010 Mensual 29 

0.546 0.011 Mensual 30 

0.648 0.011 Mensual 31 

0.772 0.016 Mensual 32 

0.981 0.016 Mensual 33 

0.844 0.017 Mensual 34 

0.710 0.020 Mensual 35 

0.814 0.021 Mensual 36 

0.708 0.022 Mensual 37 

0.812 0.022 Mensual 38 

0.979 0.026 Mensual 39 

0.769 0.053 Mensual 40 

2.192 0.023 Anual 1 
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1.444 0.022 Anual 2 

1.225 0.022 Anual 3 

1.058 0.021 Anual 4 

0.965 0.021 Anual 5 

1.054 0.020 Anual 6 

0.970 0.020 Anual 7 

1.105 0.022 Anual 8 

1.132 0.020 Anual 9 

1.076 0.020 Anual 10 

1.003 0.022 Anual 11 

1.031 0.022 Anual 12 

0.905 0.021 Anual 13 

0.947 0.022 Anual 14 

1.048 0.021 Anual 15 

0.997 0.023 Anual 16 

0.689 0.026 Anual 17 

0.740 0.029 Anual 18 

0.808 0.025 Anual 19 

0.708 0.025 Anual 20 

0.835 0.025 Anual 21 

0.782 0.026 Anual 22 

0.544 0.026 Anual 23 

0.588 0.026 Anual 24 

0.747 0.027 Anual 25 

0.664 0.027 Anual 26 

0.553 0.025 Anual 27 

0.663 0.025 Anual 28 

0.436 0.025 Anual 29 

0.565 0.024 Anual 30 

0.670 0.025 Anual 31 

0.893 0.040 Anual 32 

0.961 0.041 Anual 33 

0.935 0.041 Anual 34 

0.752 0.049 Anual 35 

0.877 0.053 Anual 36 

0.870 0.051 Anual 37 

0.899 0.051 Anual 38 

1.091 0.055 Anual 39 

0.736 0.119 Anual 40 
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ANEXO 7. Tabla de perdida de eventos según el año transcurrido del grupo. 

year_since_fire N_Incendios_Activos 

1 95 

2 95 

3 95 

4 95 

5 95 

6 95 

7 94 

8 94 

9 94 

10 90 

11 88 

12 88 

13 87 

14 84 

15 83 

16 83 

17 73 

18 72 

19 71 

20 69 

21 67 

22 64 

23 62 

24 61 

25 57 

26 52 

27 52 

28 51 

29 51 

30 51 

31 50 

32 35 

33 31 

34 31 

35 21 

36 19 

37 17 

38 16 

39 13 

40 4 
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ANEXO 8. Tendencias por incendio de la diferencia del LST y el NBR. 
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ANEXO 9. Gráficos de residuos de los modelos mensual, anual y diario. 
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ANEXO 10. Proceso de comparación con el método de AIC, escala diaria, mensual y anual. 

Mensual 

Nombre Modelo R AIC AIC_wt 

Dif_NBR lmerModLmerTest 20488947.07 1 

Dif_NDVI lmerModLmerTest 20696798.90 0 

Dif_BAI lmerModLmerTest 20671305.16 0 

Dif_NDWI lmerModLmerTest 20678021.99 0 

 

Nombre Modelo R AIC AIC_wt 

elevacion2m lmerModLmerTest 20488832.11 1.00E+00 

pendiente2m lmerModLmerTest 20488949.05 4.04E-26 

expo_general2m lmerModLmerTest 20488946.22 1.66E-25 

tpi2m lmerModLmerTest 20488948.83 4.52E-26 

tri2m lmerModLmerTest 20488947.59 8.40E-26 

Anual 

Nombre Modelo R AIC AIC_wt 

Dif_NBR lmerModLmerTest 1717441.81 1 

Dif_NDVI lmerModLmerTest 1748894.70 0 

Dif_NDWI lmerModLmerTest 1758132.15 0 

 

Nombre Modelo R AIC AIC_wt 

elevacion2m lmerModLmerTest 1717353.94 1.00E+00 

pendiente2m lmerModLmerTest 1717443.81 3.05E-20 

expo_general2m lmerModLmerTest 1717442.09 7.21E-20 

tpi2m lmerModLmerTest 1717443.68 3.26E-20 

tri2m lmerModLmerTest 1717442.80 5.06E-20 

Diario 

Nombre Modelo R AIC AIC_wt 

Dif_NBR lmerModLmerTest 4574390.40 1 

Dif_NDVI lmerModLmerTest 4632634.85 0 

Dif_BAI lmerModLmerTest 4631917.51 0 

Dif_NDWI lmerModLmerTest 4633684.32 0 

 

Nombre Modelo R AIC AIC_wt 

elevacion2m lmerModLmerTest 4574244.09 1.00E+00 

pendiente2m lmerModLmerTest 4574387.09 8.88E-32 

expo_general2m lmerModLmerTest 4574378.95 5.21E-30 

tpi2m lmerModLmerTest 4574392.40 6.25E-33 

tri2m lmerModLmerTest 4574381.90 1.19E-30 

 

 

 


