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RESUMEN

Este trabajo se centra en la segmentación automática de blastocistos a partir de

imágenes de microscopio, un proceso de gran utilidad para la selección de blastocistos

en los tratamientos de fecundación in vitro.

Se desarrollan y comparan diferentes estrategias de ensemble learning para

combinar las predicciones de varios modelos pre-entrenados de segmentación semántica

(DeepLab, HRNet, U-Net y RDU-Net), con el objetivo de mejorar la precisión

y robustez de la segmentación de las tres principales estructuras del blastocisto:

la Zona Pelúcida (ZP), el Trofoectodermo (TE) y la Masa Celular Interna

(MCI). Las estrategias desarrolladas incluyen técnicas no supervisadas basadas en

operaciones sobre las máscaras (post-procesamiento, OR, AND, voto mayoritario)

y las probabilidades de salida (softmax, max, suma ponderada), aśı como enfoques

supervisados (Regresión Loǵıstica, Perceptrón Multicapa y Random Forest).

Estas estrategias se han evaluado en dos conjuntos de datos distintos, y destaca

el rendimiento de uno de los perceptrones multicapa, que alcanza el mejor equilibrio

entre precisión y recall, con buena generalización. Estos resultados se han comparado

con los del estado del arte, obteniéndose las mejores métricas para la segmentación de

la ZP, el segundo puesto para el TE, y el tercero para la MCI.

Además, se ha creado un repositorio público2 que incluye el código, las métricas y

los mejores modelos entrenados, con el fin de fomentar la reproducibilidad y extensión

del trabajo.

2https://github.com/816410unizar/Blastocyst-Seg-Ensemble
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Caṕıtulo 1

Introducción y objetivos

La infertilidad es un problema de salud creciente a nivel mundial que afecta

aproximadamente del 10 al 17.5% de la población adulta, tanto a hombres como a

mujeres [1, 2]. En este contexto, las técnicas de reproducción asistida, especialmente

la Fecundación In Vitro (FIV), se han convertido en herramientas fundamentales para

ofrecer soluciones reproductivas eficaces a millones de parejas. Se prevé que el número

de personas nacidas globalmente gracias a la FIV y otros tratamientos reproductivos

aumente a unos cuatrocientos millones para el año 2100 [1].

La FIV es una técnica de reproducción asistida que comienza con la

hiperestimulación de los ovarios para extraer múltiples ovocitos. A continuación, los

ovocitos son fecundados en una placa de cultivo y los embriones resultantes se cultivan

hasta el d́ıa 5 o 6, cuando alcanzan el estadio de blastocisto. En este momento se

selecciona el blastocisto más viable para su posterior transferencia al útero. Si el proceso

tiene éxito, dicho blastocisto se implantará correctamente y dará lugar al embarazo.

Este trabajo se centra en el momento de la selección de blastocistos, una etapa

clave para maximizar las probabilidades de implantación y el éxito reproductivo.

1.1. La selección de blastocistos en la FIV

El blastocisto es el estadio que alcanza el embrión cinco o seis d́ıas tras la

fecundación, cuando presenta una estructura celular compleja con varias zonas

diferenciadas: la Zona Pelúcida (ZP), el Trofoectodermo (TE), la Masa Celular Interna

(MCI), y la cavidad conocida como Blastocele (BC) (Figura 1.1).
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Figura 1.1: Estructuras del blastocisto (Fuente: [3]).

No todos los embriones cultivados en la FIV desarrollan el mismo potencial

de implantación, y es de vital importancia seleccionar el blastocisto con mejores

caracteŕısticas para maximizar las probabilidades de éxito reproductivo, ya que, según

el Consorcio Europeo de Monitorización de la FIV [4], tan solo el 34% de transferencias

embrionarias al útero logran el embarazo, y solo un 26% culminan en un parto exitoso.

Actualmente, existen principalmente dos métodos para la selección de blastocistos:

el Test Genético Preimplantacional para Aneuploid́ıas (PGT-A, por sus siglas en inglés

Preimplantation Genetic Testing for Aneuploidy) [5] y la evaluación morfológica [6].

El PGT-A permite detectar anomaĺıas genéticas en los embriones antes de su

transferencia al útero, diferenciando entre embriones euploides (con el número correcto

de cromosomas) y aneuploides (con alteraciones cromosómicas). Cabe destacar que el

PGT-A no garantiza la implantación de los embriones euploides, por lo que siempre se

complementa con una evaluación morfológica visual de los blastocistos llevada a cabo

por los embriólogos. Esta segunda técnica consiste en clasificar los embriones según

sus caracteŕısticas observables como el grado de expansión del blastocisto, la forma, el

tamaño, o el grado de desarrollo de estructuras como el TE y la MCI.

A pesar de su utilidad cĺınica, ambos métodos presentan limitaciones importantes.

El PGT-A, aunque eficaz para descartar embriones no viables, es un procedimiento de

uso limitado por ser costoso, invasivo y conllevar riesgos, ya que implica la extracción de

células del embrión en un estado muy inicial. En particular, es especialmente importante

no extraer células pertenecientes a la región de la MCI, ya que las células de esta zona

formarán el futuro cuerpo del feto [7]. En cuanto a la evaluación morfológica, el principal

problema de este método es que conlleva una gran subjetividad, ya que depende del

criterio y experiencia del embriólogo, y no se basa en estándares universales o métricas

cuantitativas objetivas [8].

En este contexto, las técnicas para la segmentación de blastocistos, que incluyen

desde métodos de procesamiento de imágenes hasta algoritmos de deep learning,

ofrecen una alternativa prometedora, ya que permiten delimitar automáticamente las
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estructuras del blastocisto a partir de imágenes de microscopio (Figura 1.2). De esta

manera, se consigue información objetiva y cuantitativa sobre su morfoloǵıa, como

por ejemplo la localización exacta y tamaño de la MCI, cuyo papel es crucial en el

desarrollo embrionario. Esta información puede utilizarse tanto para ayudar en la toma

de decisiones cĺınicas, como para futuros estudios sobre la morfoloǵıa y selección de

blastocistos, aumentando las probabilidades de éxito de los tratamientos de FIV.

Figura 1.2: Imágen de blastocisto al microscopio (izq.) y su segmentación por un modelo
de Deep learning (der.).

1.2. Objetivos y alcance

Este Trabajo de Fin de Grado (TFG) busca combinar los resultados de

varios modelos pre-entrenados de deep learning utilizados para la segmentación de

blastocistos, con la intención de generar máscaras más precisas y robustas que las

obtenidas por modelos individuales, optimizando aśı los resultados actuales del estado

del arte en el ámbito de la segmentación de blastocistos para la FIV.

1.2.1. Objetivos

Más concretamente, los objetivos de este TFG se pueden resumir en:

− Optimizar la segmentación automática de las principales estructuras del

blastocisto (ZP, TE, y MCI).

− Implementar, evaluar y comparar diferentes estrategias de ensemble learning [9],

tanto no supervisadas como supervisadas, aplicadas a modelos de segmentación

de blastocistos.

A través de estos objetivos se pretende proporcionar información morfológica

objetiva y cuantitativa del blastocisto, útil para la toma de decisiones en la FIV, como la

selección de embriones o la aplicación de técnicas como el PGT-A. Además, se sentarán
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las bases para futuros estudios sobre la morfoloǵıa del blastocisto y para el desarrollo

de sistemas automáticos de predicción del embrión óptimo a implantar.

1.2.2. Alcance

Este TFG toma como punto de partida cuatro modelos de segmentación

semántica [10] (DeepLab, HRNet, U-Net y RDU-Net), pre-entrenados por Villota et

al. [11] y disponibles en su repositorio público [12]. Se han obtenido las salidas de estos

modelos para imágenes de blastocistos de dos conjuntos de datos distintos (descritos en

la Sección 2.3.1), y a partir de estas salidas, tanto a nivel de máscaras de segmentación

como a nivel de tensores de probabilidades, se han diseñado e implementado desde cero

diversas estrategias de ensemble learning, que se resumen en:

− Técnicas de post-procesamiento de máscaras individuales.

− Uso de operadores lógicos para hibridar varios modelos (OR, AND, voto

mayoritario).

− Combinación de post-procesamiento y operadores lógicos.

− Operadores sobre la salida de probabilidades de varios modelos (softmax, max,

suma ponderada, reescalado de probabilidades).

− Algoritmos supervisados sobre la salida de probabilidades de varios modelos,

entrenando los parámetros (Regresión Loǵıstica, Perceptrón Multicapa, Random

Forest).

Estas técnicas se han evaluado sobre los dos conjuntos de datos utilizados, y los

resultados se han comparado con los obtenidos por los principales estudios del estado

del arte.

1.3. Herramientas utilizadas

Este trabajo ha sido implementado en su totalidad en Jupyter Notebooks utilizando

el lenguaje de programación Python. Para asistir en la implementación, se han

empleado diversas libreŕıas de Python, entre las que destacan:

− PyTorch y TensorFlow/Keras: para cargar los modelos de segmentación

pre-entrenados, obtener sus probabilidades de salida, y procesarlas aplicando

operaciones como softmax o argmax.
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− Torchvision y PIL (Pillow): para cargar y transformar (reescalar, normalizar,

cambiar formato a RGB...) las imágenes de entrada para los modelos, y para

reescalar las probabilidades de salida con interpolación bilineal.

− OpenCV: para el procesamiento de imágenes y máscaras de segmentación

(lectura y escritura de imágenes, extracción de componentes conexas, reescalado,

etc.).

− Scikit-learn: para el entrenamiento de los modelos supervisados (Regresión

Loǵıstica, Perceptrón Multicapa y Random Forest).

− NumPy: para operaciones matriciales, funciones matemáticas, uso de operadores

lógicos (OR, AND), etc.

− Pandas: para la organización de los archivos de métricas y resultados.

− Pathlib y os: para cargar y guardar archivos.

1.4. Desarrollo temporal

La Figura 1.3 a continuación muestra un cronograma con la planificación y el

desarrollo temporal del trabajo. Cada mes se divide en cuatro semanas, y para cada

tarea se muestra el tiempo inicialmente planificado (azul), el tiempo real empleado

(rojo), y las coincidencias entre ambos (morado).

Figura 1.3: Cronograma con la planificación y ejecución temporal del TFG.
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1.5. Estructura de la memoria

El documento se ha estructurado en seis caṕıtulos:

− Caṕıtulo 1: Introducción y objetivos. En este primer caṕıtulo se introduce el

tema de la selección de blastocistos en la FIV, y se explican las técnicas actuales

para realizar esta tarea y sus limitaciones. Después, se describen los objetivos y

el alcance de este TFG, se detallan las herramientas utilizadas y se presenta un

cronograma con el desarrollo temporal.

− Caṕıtulo 2: Estado del arte y punto de partida. En este caṕıtulo se resumen

los principales estudios realizados en el área de la segmentación automática

de blastocistos. A continuación, se explica el punto de partida de este TFG,

enmarcado como una extensión de uno de los estudios más relevantes del estado

del arte. En la explicación se incluyen los datasets y modelos empleados.

− Caṕıtulo 3: Estrategias de ensemble no supervisado. En este caṕıtulo

se explican las estrategias de ensemble implementadas que no requieren de

entrenamiento adicional. Estas técnicas se basan en post-procesado de máscaras,

operadores lógicos (OR, AND, voto mayoritario) y operadores sobre las

probabilidades de salida de los modelos base (softmax, max, suma ponderada,

reescalado de probabilidades).

− Caṕıtulo 4: Estrategias de ensemble supervisado. En este caṕıtulo se

explican las estrategias de ensemble implementadas que se basan en aprendizaje

supervisado. Se detalla el proceso de construcción de los datasets para el

aprendizaje y se explican los diferentes modelos entrenados (Regresión Loǵıstica,

Perceptrón Multicapa, Random Forest).

− Caṕıtulo 5: Resultados y análisis. En este caṕıtulo se presentan y discuten

los resultados obtenidos para cada una de las estrategias de ensemble, resaltando

los mejores modelos. Las métricas se comparan primero con las del estudio previo

en el que se basa este trabajo, y posteriormente con las del resto de estudios del

estado del arte.

− Caṕıtulo 6: Conclusiones. En este último caṕıtulo se resumen las principales

aportaciones del trabajo, se discuten sus limitaciones y se plantean posibles ĺıneas

de mejora y trabajo futuro.
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Caṕıtulo 2

Estado del arte y punto de partida

En los últimos años, se han seguido dos principales enfoques en el ámbito

de la segmentación automática de blastocistos: los métodos de procesamiento de

imágenes, y los que utilizan modelos de deep learning, principalmente redes neuronales

convolucionales (CNNs, por sus siglas en inglés, Convolutional Neural Networks). Por

lo general, los métodos de deep learning son más recientes y obtienen mejores resultados

que los anteriores.

2.1. Trabajos previos

Aunque no muy numerosos, existen diversos trabajos de investigación que buscan

segmentar de forma automática las principales estructuras del blastocisto: ZP, TE y

MCI.

Entre las principales aportaciones en este área, cabe destacar las siguientes: en 2014,

Singh et al. [13], utilizaron un algoritmo de contornos de nivel para segmentar la región

del TE. Posteriormente, Kheradmand et al. [14], entrenaron en 2016 una red neuronal

cuyo fundamento es aplicar Transformadas de Coseno Discretas (DCT, por sus siglas

en inglés Discrete Cosine Transform) a imágenes para clasificar las componentes del

blastocisto (ZP, TE y MCI), y en 2017 [15] utilizaron una Fully Convolutional Network

(FCN) para segmentar la MCI. Ese mismo año, Saeedi et al. [16] desarrollaron un

algoritmo que combina información de textura con caracteŕısticas f́ısicas para segmentar

automáticamente el TE y la MCI. Entre 2017 y 2018, Rad et al. llevaron a cabo

tres estudios: en el primero [17], usaron un método basado en texturas (Gabor [18]

y DCT) y contornos de nivel para segmentar la MCI, en el segundo [19], utilizaron

una red neuronal jerárquica (Hierarchichal Neural Network, HNN) para segmentar la

ZP, y en el tercero [20], utilizaron un ensemble de redes de tipo Dilated U-Net para la

segmentación de la MCI. En 2019, Harun et al. [21], implementaron una red profunda

de tipo Residual Dilated U-Net para segmentar el TE y otra para la MCI. Finalmente,
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en 2023, Farias et al. [22] propusieron un proceso de extracción de caracteŕısticas a

partir de imágenes de blastocistos para entrenar una red neuronal que clasifica cada

ṕıxel en ZP, TE, MCI, BC y fondo.

Más recientemente, en 2024, destaca el trabajo de Villota et al. [11], que además

de implementar y comparar diversos modelos de deep learning para la segmentación

de blastocistos, tiene como objetivo replicar y evaluar trabajos previos cuyo código no

estaba disponible públicamente. En dicho estudio, se entrenan arquitecturas estándares

de segmentación como DeepLab [23], HRNet [24], U-Net [25] y Residual Dilated U-Net

(tratando de replicar el trabajo de Harun [21]), y se obtienen resultados competitivos

para la segmentación de las tres principales estructuras del blastocisto (ZP, TE y MCI).

El trabajo de Villota et al. destaca especialmente por proporcionar su código y modelos

en un repositorio de GitHub público [12], facilitando la reproducibilidad y extensión

de sus resultados.

La mayoŕıa de los estudios previamente mencionados utilizan para el entrenamiento

y/o evaluación el conjunto de datos propuesto por Saeedi et al. [16], cuya descripción

se puede encontrar en la Sección 2.3.1.

2.2. Resumen de resultados previos

A continuación se resumen los resultados del estado del arte para la segmentación

automática de las tres principales estructuras del blastocisto (ZP, TE y MCI). Las

Tablas 2.1, 2.2 y 2.3 muestran los valores obtenidos en los estudios previos para métricas

como Accuracy, Precision, Recall, Dice Coefficient y Jaccard Index. La definición

cuantitativa de estas métricas aśı como su interpretación puede encontrarse en [26].

Cabe destacar que no es una comparación perfecta, ya que no todos los estudios

utilizan el conjunto de datos propuesto por Saeedi et al. [16] para la evaluación.

Algunos utilizan otros datasets privados [14, 15, 17, 13], o diferentes particiones de

dicho conjunto [19]. Además, ninguno de estos trabajos, excepto el de Villota et al.,

ofrece acceso a sus modelos o al código, lo cual imposibilita una evaluación reproducible

e imparcial. Por ello, en las tablas solo se reflejan los resultados tal y como fueron

reportados en las publicaciones originales.
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Accuracy Precision Recall Dice Coef. Jaccard Idx.
Kheradmand et al. [14] 0.92 0.80 0.81 - 0.64
Rad et al. [19] 0.95 0.79 0.91 - 0.74
Farias et al. [22] 0.94 0.85 0.69 0.75 -
Villota et al. [11] 0.97 0.92 0.84 0.87 0.78

Tabla 2.1: Resultados del estado del arte para la segmentación de la ZP (Mejor en
negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.
Singh et al. [13] 0.87 0.71 0.83 0.77 0.62
Kheradmand et al. [14] 0.90 0.69 0.80 0.74 0.59
Saeedi et al. [16] 0.86 0.69 0.89 0.77 -
Harun et al. [21] 0.98 0.92 0.93 0.92 0.85
Farias et al. [22] 0.93 0.80 0.59 0.67 -
Villota et al. [11] 0.97 0.88 0.84 0.85 0.75

Tabla 2.2: Resultados del estado del arte para la segmentación del TE (Mejor en
negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.
Kheradmand et al. [14] 0.93 0.76 0.56 0.64 0.48
Kheradmand et al. [15] 0.96 - - 0.87 0.77
Saeedi et al. [16] 0.91 0.77 0.84 0.79 -
Saeedi et al. (DLRS) [16] 0.93 0.84 0.78 0.83 -
Rad et al. [17] - 0.79 0.87 0.83 0.70
Rad et al. [20] 0.98 0.89 0.92 0.90 0.82
Harun et al. [21] 0.99 0.95 0.94 0.94 0.89
Farias et al. [22] 0.96 0.87 0.62 0.67 -
Villota et al. [11] 0.98 0.88 0.87 0.87 0.79

Tabla 2.3: Resultados del estado del arte para la segmentación de la MCI (Mejor en
negrita).

Como se puede observar, el trabajo de Villota et al. obtiene los mejores resultados

para la segmentación de la ZP, mientras que el de Harun et al. reporta un mejor

rendimiento en la segmentación del TE y la MCI. Sin embargo, los resultados de Harun

no son fácilmente reproducibles. De hecho, el estudio de Villota et al. intentó replicar

el modelo de Harun y no consiguió alcanzar el mismo rendimiento, aunque sus modelos

basados en DeepLab y HRNet śı superan al resto de estudios analizados.

Por lo tanto, podemos concluir que el trabajo de Villota et al. es actualmente la

referencia más sólida del estado del arte, debido a su completitud, buenos resultados y

fácil reproducibilidad.
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2.3. Punto de partida de este trabajo

El punto de partida de este TFG será el trabajo realizado por Villota et al. [11],

debido a que es la propuesta más reciente y completa dentro de la literatura actual,

y además es el único que publica su código abiertamente. Por lo tanto, este trabajo

tomará como referencia sus resultados con el objetivo de mejorarlos mediante el uso de

técnicas de ensemble learning [9].

2.3.1. Conjuntos de datos

Para este trabajo se cuenta con dos conjuntos de datos distintos.

Conjunto público. El primero es el publicado por Saeedi et al. en [16],

que contiene 249 imágenes de microscopio de embriones humanos en estadio de

blastocisto (Figura 2.1), anotadas manualmente por especialistas del Pacific Centre for

Reproductive Medicine (PCRM) en Canadá. Las anotaciones incluyen la segmentación

de las estructuras ZP, TE e MCI, aśı como información adicional sobre el grado de

calidad del TE e MCI, y el resultado de la implantación. Este dataset se ha consolidado

como el más utilizado en la literatura para la segmentación de blastocistos, habiendo

sido empleado en la mayoŕıa de trabajos recientes, incluyendo el de Villota et al. El

conjunto de datos se obtuvo mediante solicitud directa a los autores por parte del grupo

de investigación TME Lab1 del Instituto de Investigación en Ingenieŕıa de Aragón

(I3A), Universidad de Zaragoza. En cuanto a la división del dataset, para mantener la

coherencia con el estudio de Villota et al. y poder comparar los resultados obtenidos en

el ensemble, se ha utilizado la misma división que en dicho estudio, utilizando el 85%

de las imágenes como conjunto de entrenamiento y el 15% como conjunto de test. A

lo largo de este trabajo nos referiremos a este dataset como Saeedi.

Figura 2.1: Imagen del dataset Saeedi junto a sus anotaciones de segmentación.

1https://tmelab.unizar.es/
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Conjunto privado. El segundo conjunto de datos utilizado es un conjunto privado

proporcionado por embriólogos del Hospital Quirónsalud de Zaragoza al grupo de

investigación TME Lab. El dataset contiene 25 imágenes microscópicas de blastocistos

y sus anotaciones con la segmentación de las estructuras ZP, TE e MCI (Figura 2.2).

Este conjunto solamente será empleado para evaluación, con el objetivo de comprobar

que las técnicas de ensemble implementadas generalizan bien a datos provenientes de

una fuente distinta no vista durante el entrenamiento. A lo largo de este trabajo nos

referiremos a este dataset como Quirón.

Figura 2.2: Imagen del dataset Quirón junto a sus anotaciones de segmentación.

2.3.2. Modelos de deep learning

En este trabajo se han utilizado los modelos entrenados publicados por Villota et

al. [11], disponibles en su repositorio de GitHub [12]. Se han descargado los pesos de

los modelos, y se han utilizado para obtener predicciones sobre los datasets Saeedi

y Quirón, con el objetivo de aplicar técnicas de ensemble learning [9] sobre estas

salidas para optimizar la precisión y robustez de la segmentación. En concreto, las

arquitecturas utilizadas para el ensemble son DeepLab [23], High-Resolution Network

(HRNet) [24], U-Net [25] y Residual Dilated U-Net (RDU-Net) [21]. Todas ellas son

arquitecturas de redes neuronales convolucionales (CNNs) [27], y son comúnmente

utilizadas en tareas de segmentación semántica [10]. A continuación se describe

brevemente cada una de estas arquitecturas.

La arquitectura U-Net fue una de las primeras en lograr un éxito rotundo en tareas

de segmentación [28]. Se trata de una arquitectura muy utilizada en el campo de la

segmentación biomédica [29], diseñada para ser eficaz en tareas con conjuntos de datos

limitados [30] como la nuestra. Tiene una estructura en forma de “U” (Figura 2.3)

compuesta por dos partes principales: un codificador (encoder) que captura información

contextual y reduce la resolución espacial, y un decodificador (decoder) simétrico que

aumenta la resolución con capas de upsampling y genera el mapa de segmentación.

Otra caracteŕıstica de U-Net es el uso de conexiones de salto (skip connections),
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que conectan directamente capas del encoder con el decoder, y ayudan a preservar

información perdida durante la reducción del encoder.

Figura 2.3: Arquitectura U-Net (Fuente: [30]).

DeepLab (Figura 2.4) es una arquitectura de CNN que destaca por

usar convoluciones dilatadas (dilated/atrous convolutions), que permiten extraer

caracteŕısticas de las imágenes de entrada sin reducir la resolución espacial de los

mapas de atributos. Además, utiliza un módulo llamado Atrous Spatial Pyramid Pooling

(ASPP), que aplica múltiples convoluciones dilatadas con diferentes tasas de dilatación

en paralelo, permitiendo extraer caracteŕısticas a distintas escalas. Esta arquitectura se

ha consolidado como una de las más robustas para tareas de segmentación en imágenes

complejas.

Figura 2.4: Esquema general del flujo de la arquitectura DeepLab (Fuente: [31]).

High-Resolution Network (HRNet) se llama de esta manera porque es capaz de

mantener representaciones de alta resolución a lo largo de todo el pipeline de la red,

mientras que otras arquitecturas como U-Net reducen la resolución espacial. Esto se

consigue mediante la combinación de múltiples convoluciones paralelas con distintas

12



resoluciones, que intercambian información entre śı. Estas caracteŕısticas hacen que

HRNet logre una segmentación precisa, especialmente en imágenes que contengan

detalles finos importantes, como en la segmentación de blastocistos.

Por último, RDU-Net es una variante de U-Net que incorpora bloques residuales

y convoluciones dilatadas. Los bloques residuales utilizan skip connections y ayudan a

mitigar el problema del desvanecimiento del gradiente en redes profundas [32].

2.3.3. Estructura de los datos

Para la segmentación de blastocistos, estos modelos toman como entrada imágenes

de blastocistos al microscopio junto con sus anotaciones (ground truth). Para el

conjunto de Saeedi, las anotaciones consisten en máscaras segmentadas donde cada

una de las principales estructuras del blastocisto toma un valor de intensidad de ṕıxel

distinto (fondo: 0, ZP: 75, TE: 255, MCI: 150), como se puede observar en la Figura 2.5.

Estos valores se convierten en etiquetas enteras (0, 1, 2, 3) para representar cada clase

durante el entrenamiento.

Figura 2.5: Ejemplo de entrada para los modelos, incluyendo la imagen de blastocisto
al microscopio y su máscara de segmentación (ground truth).

Estos modelos generan como salida un tensor de probabilidades para cada imagen de

entrada, que contiene para cada ṕıxel las probabilidades de pertenecer a cada una de las

4 clases (fondo, ZP, TE y MCI). Por lo tanto, para poder comparar las predicciones de

los modelos con las etiquetas del ground truth, el tensor de probabilidades se transforma

en una máscara segmentada con el mismo formato que el usado en las anotaciones de

Saeedi. Para ello, primero se aplica la función argmax, que selecciona para cada ṕıxel

la clase con la probabilidad más alta, y después se crea la máscara de segmentación

asignando a cada ṕıxel su valor de intensidad correspondiente (fondo: 0, ZP: 75, TE:

255, MCI: 150), como se muestra en la Figura 2.6.

A partir de las salidas de los cuatro modelos descritos, tanto a nivel de máscaras de
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segmentación como a nivel de probabilidades de salida, se han implementado distintas

estrategias de ensemble learning [9], con el objetivo de mejorar los resultados obtenidos

por cada modelo individual.

Figura 2.6: Proceso de construcción de las máscaras de segmentación a partir de las
salidas de probabilidad de los modelos.
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Caṕıtulo 3

Estrategias de ensemble no
supervisado

En este caṕıtulo se describen las distintas técnicas de ensemble no supervisado

desarrolladas para mejorar la segmentación automática de blastocistos. A diferencia de

las estrategias basadas en aprendizaje supervisado descritas en el Caṕıtulo 4, estas

técnicas no requieren de entrenamiento adicional, ya que se basan en procesar y

combinar las salidas individuales de los cuatro modelos entrenados y publicados en

el estudio de Villota et al. [11, 12] (DeepLab, HRNet, U-Net y RDU-Net). Todas las

técnicas han sido implementadas en notebooks de Jupyter en Python.

En total, se han planteado cuatro enfoques de ensemble no supervisado:

1. Post-procesado de máscaras individuales.

2. Operadores lógicos para hibridar varios modelos (OR, AND, voto mayoritario).

3. Combinación de post-procesado y operadores lógicos.

4. Operadores sobre la salida de probabilidades de varios modelos (softmax, max,

suma ponderada, reescalado de probabilidades).

En las siguientes secciones se describe detalladamente en qué consiste cada

estrategia, aśı como su lógica e implementación.

3.1. Post-procesado de máscaras individuales

Antes de comenzar con la combinación de modelos, se ha implementado un

algoritmo de procesamiento de imágenes diseñado para eliminar cierto ruido presente

en las máscaras de predicción generadas por los modelos base.

Como se puede observar en la Figura 3.1, algunas máscaras de predicción contienen

imperfecciones, principalmente en forma de pequeños grupos de ṕıxeles aislados que

son ruido y realmente no forman parte de ninguna de las estructuras del blastocisto.
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Figura 3.1: Ejemplos de predicciones con ruido de los distintos modelos utilizados.

Además, otra imperfección en las predicciones (excepto en las del modelo RDU-Net)

es que contienen un suavizado o degradado de ṕıxeles en los bordes de cada estructura,

como se observa en la Figura 3.2. Este efecto no está presente en el ground truth

(anotaciones de referencia), y afecta negativamente a la precisión de los bordes. La

causa del suavizado es un resize (reescalado) realizado en el código original para la

obtención de las máscaras, al transformar las máscaras del tamaño fijo de salida de los

modelos al tamaño original de la imagen de entrada.

Figura 3.2: Ejemplo de suavizado de bordes en una predicción.

Para mitigar estos problemas, tanto los ṕıxeles aislados con ruido como el

suavizado de bordes, se han implementado tres versiones de un mismo algoritmo de

post-procesado. El algoritmo base se centra en el problema de los ṕıxeles aislados, y

consiste en conservar para cada estructura (ZP, TE, MCI) las componentes conexas

cuya área supere un umbral mı́nimo establecido, es decir, descarta los agrupamientos de

ṕıxeles aislados pequeños que suelen representar ruido. El umbral de área mı́nima se ha

determinado de forma emṕırica, buscando un equilibrio entre eliminar imperfecciones

y conservar las regiones relevantes. Para el desarrollo de este algoritmo se ha utilizado

la libreŕıa de visión por computador OpenCV [33] en Python.

Las tres versiones implementadas comparten este algoritmo base de eliminación

de componentes conexas pequeñas, y solo se diferencian en los pasos de preproceso

aplicados para corregir el suavizado de bordes antes de aplicar el algoritmo. A

continuación se describen dichas variantes.
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V1: Sin preprocesado. En esta primera versión, se aplica directamente el algoritmo

base de eliminación de componentes conexas pequeñas sin ningún paso previo de

preprocesado. Esta versión presenta un problema; los ṕıxeles del suavizado de bordes se

eliminan ya que no coinciden exactamente con los valores definidos para las estructuras

(fondo: 0, ZP: 75, TE: 255, MCI: 150). Como resultado, quedan huecos entre las

estructuras, como se puede observar en la Figura 3.3.

Figura 3.3: Ejemplo de bordes de estructuras tras aplicar algoritmo V1.

V2: Eliminación previa del suavizado. Esta variante busca resolver el problema

anterior eliminando primero el suavizado de bordes antes de aplicar el algoritmo base.

Para eliminar el suavizado, todos los ṕıxeles que no coinciden exactamente con los

valores esperados, son reemplazados por el valor de la estructura más cercana al ṕıxel.

Para determinar dicha estructura, se busca en las cuatro direcciones cardinales (arriba,

abajo, izquierda, derecha).

Aunque esta solución elimina los huecos entre estructuras (ver Figura 3.4), presenta

dos inconvenientes: tiene un mayor coste computacional y sobreestima el área de las

estructuras, ya que todos los ṕıxeles del degradado se asignan a la estructura más

cercana, incluso aquellos que debeŕıan considerarse como fondo.

Figura 3.4: Ejemplo de bordes de estructuras tras aplicar algoritmo V2.
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V3: Eliminación eficiente del suavizado. La tercera versión busca mantener los

beneficios de la V2 pero con una implementación más eficiente y precisa. Para ello, los

ṕıxeles del suavizado de bordes se reasignan al valor más cercano en intensidad entre

los cuatro valores válidos (0, 75, 150, 255), sin necesidad de inspeccionar direcciones

vecinas. Este enfoque reduce el coste computacional y mejora la precisión en la

separación de estructuras, como se puede ver en la Figura 3.5.

Figura 3.5: Ejemplo de bordes de estructuras tras aplicar algoritmo V3.

Para demostrar la efectividad de esta versión, en la Figura 3.6 se muestran los

resultados de aplicar el algoritmo V3 a las predicciones ruidosas originales.

Figura 3.6: Comparación de predicciones antes y después de aplicar el algoritmo V3

Cabe destacar que esta solución tampoco es perfecta. Debido a las similitudes en los

valores, algunos de los ṕıxeles entre la ZP y el TE son asignados erróneamente al valor

de la MCI, y por tanto son eliminados por el algoritmo base al no superar el umbral

de área mı́nima, dejando pequeños huecos entre las estructuras. En la Sección 3.4 se

propone una mejor solución a este problema.
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3.2. Operadores lógicos hibridando varios modelos

La siguiente estrategia de ensemble no supervisado implementada consiste en

combinar las máscaras de predicción generadas por los distintos modelos utilizando

operadores lógicos clásicos (OR, AND) y la técnica de voto mayoritario. Estas técnicas

son comúnmente utilizadas en tareas de ensemble, ya que permiten fusionar la

información de varios modelos para aprovechar sus puntos fuertes y compensar sus

debilidades. Dependiendo del método utilizado, se puede priorizar la exhaustividad

(recall) o la precisión [26] de la segmentación. A continuación, se describen las diferentes

técnicas aplicadas, su propósito y su implementación.

Operador lógico OR. El operador OR es útil para aumentar el recall, aunque puede

bajar la precisión. Aplicando este operador a las salidas de varios modelos se consigue

que un ṕıxel se considere perteneciente a una estructura si al menos uno de los modelos

lo ha predicho como tal. Esta estrategia es útil para asegurar que se incluyan todos los

ṕıxeles predichos de regiones relevantes. Es el caso de la MCI, esta estructura formará

el futuro cuerpo del feto, y su segmentación completa es fundamental, especialmente

si se desea aplicar técnicas invasivas como el PGT-A, que requieren extraer células del

embrión sin dañar dicha estructura.

Se han implementado y evaluado diversas combinaciones de modelos,

principalmente utilizando los dos modelos que mejores resultados obtienen en el estudio

de Villota et al. (DeepLab y HRNet). En concreto, se ha implementado:

− DeepLab OR HRNet.

− DeepLab OR RDU-Net.

− DeepLab OR HRNet OR U-Net.

− DeepLab OR HRNet OR RDU-Net.

Para la implementación, se ha desarrollado un algoritmo que itera sobre las máscaras

de predicción de los modelos implicados y aplica la operación OR para cada una de

las estructuras del blastocisto (ZP, TE, ICM) por separado. Después, los resultados

de cada estructura se recombinan en una sola imagen final, resolviendo los posibles

conflictos con prioridad MCI > TE > ZP. Es decir, si un mismo ṕıxel es asignado

simultáneamente a varias estructuras, se le termina asignando la estructura de mayor

prioridad. Como ya se ha comentado, la prioridad se establece teniendo en cuenta que

la segmentación de la MCI es especialmente cŕıtica.
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Operador lógico AND. El operador AND tiene el efecto contrario, aumenta la

precisión a costa del recall. Con este operador se consigue que un ṕıxel solo se incluya

en una estructura si todos los modelos implicados coinciden en su predicción. Es una

estrategia más conservadora, útil para evitar falsos positivos.

Como aplicar AND con modelos de bajo rendimiento puede perjudicar el resultado,

los experimentos se han centrado en combinar únicamente los mejores modelos:

− DeepLab AND HRNet.

− DeepLab AND RDU-Net (buscando una segmentación precisa de la MCI).

La implementación es similar a la anterior, aplicando el AND por separado a cada

estructura, y combinando los resultados en una sola imagen final, sin necesidad de

priorizar estructuras, ya que el AND no produce conflictos.

Voto mayoritario. El voto mayoritario es otra técnica común de ensemble que ofrece

un equilibrio entre OR y AND. Con esta técnica se consigue que un ṕıxel solo se incluya

en una estructura si la mayoŕıa de modelos participantes coinciden en su predicción.

Esta estrategia permite corregir errores aislados cometidos por un modelo concreto.

Para evitar empates frecuentes si utilizáramos los cuatro modelos, se ha limitado el

voto mayoritario a grupos de tres. Las combinaciones implementadas han sido:

− VotoMayoritario(DeepLab, HRNet, U-Net).

− VotoMayoritario(DeepLab, HRNet, RDU-Net).

Del mismo modo que los anteriores, el algoritmo implementado itera sobre las máscaras

de los modelos implicados y aplica el criterio de mayoŕıa para cada estructura por

separado, combinando los resultados al final.

3.3. Combinación de post-procesado y operadores

lógicos

La siguiente estrategia de ensemble no supervisado consiste en hibridar las dos

estrategias previas, buscando reducir el ruido en las predicciones y al mismo tiempo

combinar las salidas de varios modelos. Para ello, primero se han obtenido las máscaras

“limpias” resultantes de aplicar el mejor algoritmo de post-procesado (el algoritmo

denotado como V3) a las predicciones de cada modelo. Estas máscaras corregidas se han

combinado entre śı utilizando operadores lógicos y voto mayoritario, del mismo modo

que en la Sección 3.2. Además, también se ha experimentado con algunas variantes en
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las que no se aplica el post-procesado a todos los modelos, y otras en las que se combinan

operaciones de OR con AND. Más concretamente, las combinaciones implementadas

son las siguientes:

− V3-DeepLab OR V3-HRNet (denominado como OR(V3-DL, V3-HR) en el

Caṕıtulo 5).

− V3-DeepLab OR V3-RDU-Net.

− DeepLab OR V3-RDU-Net.

− (V3-HRNet AND RDU-Net) OR V3-DeepLab.

− (V3-HRNet AND Deeplab) OR V3-RDU-Net.

− VotoMayoritario(V3-DeepLab, V3-HRNet, V3-RDU-Net).

− VotoMayoritario(DeepLab, V3-HRNet, V3-RDU-Net).

Estas combinaciones se han elegido en función de los resultados previos, tratando de

optimizar aún más las mejores estrategias.

3.4. Operadores sobre la salida de probabilidades

de varios modelos

La última estrategia de ensemble no supervisado implementada se basa en operar

sobre las probabilidades de salida de los modelos. Los modelos utilizados no generan

máscaras segmentadas directamente, sino que devuelven un tensor tridimensional de

probabilidades con la forma (n clases, alto img, ancho img), que contiene para cada

ṕıxel de la imagen de entrada, la probabilidad de pertenecer a cada una de las

cuatro posibles clases (fondo, ZP, TE y MCI). Para obtener la máscara final de la

segmentación, a este tensor, se aplica al tensor la función argmax, que asigna a cada

ṕıxel la clase con la probabilidad más alta. El modelo RDU-Net es un caso especial

que utiliza dos variantes, una para predecir la probabilidad de TE y otra para la de

MCI. En esta sección, se exploran diferentes técnicas de ensemble aplicadas a estas

probabilidades de salida, antes de ser convertidas en máscaras de segmentación.

Todas las técnicas desarrolladas tienen una base común: se obtiene el tensor de

probabilidades de cada modelo y se aplica la función softmax [34]. Esta función

normaliza las probabilidades de modo que sumen 1 en cada ṕıxel. A continuación,

en lugar de aplicar la función argmax inmediatamente, se realiza primero el reescalado

con interpolación bilineal [35] del propio tensor de probabilidades, aśı al convertirlo

a máscaras segmentadas no hace falta reescalar las máscaras, y por lo tanto no se
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genera el suavizado de bordes de estructuras descrito en la Sección 3.1, logrando aśı

una segmentación más precisa. Esta operación de reescalado de probabilidades se ha

aplicado a todos los métodos de ensemble descritos a continuación.

Combinación de probabilidades reescaladas. Como la operación reescalado de

probabilidades logra una mejor segmentación, se han vuelto a combinar las máscaras

de los mejores modelos tras aplicar este reescalado, de manera similar a la sección 3.3.

En particular, se han probado las siguientes combinaciones, buscando maximizar el

recall de las estructuras (ZP, TE y especialmente MCI):

− RP-DeepLab OR RP-HRNet (denominado como OR(RP-DL, RP-HR) en el

Caṕıtulo 5)

− RP-DeepLab OR RP-HRNet OR RP-RDU-Net

− RP-DeepLab OR RP-HRNet OR RP-RDU-Net OR RP-U-Net

Donde el prefijo RP- indica que se ha aplicado previamente el reescalado

probabiĺıstico.

Operación max. Esta estrategia de ensemble consiste en combinar las

probabilidades de salida de varios modelos, eligiendo para cada ṕıxel, la clase que

indica el modelo que más seguro de su predicción esté, es decir, la clase asociada a

la probabilidad máxima de entre todos los modelos. Esta técnica es útil para resolver

ambigüedades en ṕıxeles conflictivos, ya que tiende a descartar predicciones erróneas

de baja confianza, aunque es menos eficaz cuando alguno de los modelos realiza

predicciones incorrectas con seguridad. Por lo tanto, las combinaciones implementadas

aplicando esta estrategia se centran en los mejores modelos (DeepLab y HRNet), y son

las siguientes:

− max(Deeplab, HRNet) (denominado como Max(DL, HR) en el Caṕıtulo 5)

− max(DeepLab, RDU-Net)

− max(HRNet, RDU-Net)

− max(DeepLab, HRNet, RDU-Net)

− max(DeepLab, HRNet, U-Net)

Para la implementación, se ha desarrollado un algoritmo que itera sobre las imágenes

de un directorio de entrada, obtiene los tensores de probabilidad de los modelos

implicados, y los procesa aplicando la operación max. En concreto, para cada ṕıxel
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de una imagen, primero se mantiene la probabilidad máxima por clase de entre todos

los modelos, y luego se asigna al ṕıxel la clase con la probabilidad más alta.

Suma ponderada. Esta estrategia de ensemble consiste en combinar las

probabilidades de salida de varios modelos aplicando una suma ponderada, es decir,

se multiplican las probabilidades de cada modelo por un peso espećıfico asignado

previamente, y se suman clase por clase. Posteriormente, se asigna a cada ṕıxel la

clase con la probabilidad total más alta. Esta técnica es útil para combinar varios

modelos pudiendo ajustar la influencia de cada uno según su rendimiento. En este

caso, se han implementado múltiples combinaciones de 2, 3 y 4 modelos, probando

diversas configuraciones de pesos que suman 1 siguiendo la siguiente fórmula:

Y = α · YDeepLab + β · YHRNet + γ · YRDU−Net + λ · YU−Net

con α+β+γ+λ = 1. En general, se ha dado más peso a las predicciones de los modelos

DeepLab y HRNet por obtener mejores resultados. Un ejemplo de caso probado es

(α, β, γ, λ) = (0.4, 0.4, 0.1, 0.1).

Para la implementación, se ha desarrollado un algoritmo análogo al anterior, pero

que en vez de la función max, aplica la suma ponderada, multiplicando las predicciones

de cada modelo por su peso, sumándolas por clases, y asignando a cada ṕıxel la clase

con la probabilidad total más alta.
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Caṕıtulo 4

Estrategias de ensemble
supervisado

En este caṕıtulo se describen las técnicas de ensemble basadas en aprendizaje

supervisado que han sido desarrolladas para mejorar la segmentación automática de

blastocistos. A diferencia de las estrategias no supervisadas del Caṕıtulo 3, estas

técnicas se basan en el entrenamiento de modelos de aprendizaje automático capaces

de aprender cómo combinar de forma óptima las predicciones de los modelos base

(DeepLab, HRNet, U-Net y RDU-Net).

En total, se han explorado tres algoritmos supervisados:

1. Regresión Loǵıstica.

2. Perceptrón Multicapa (MLP, por sus siglas en inglés Multilayer Perceptron).

3. Random Forest.

Estos algoritmos requieren como entrada un conjunto de datos en forma de una

matriz de dimensiones (n muestras, n atributos). En este caso, cada muestra

representa un ṕıxel y sus atributos son la combinación de las probabilidades de los

modelos base para ese ṕıxel. Además se requiere un vector de etiquetas (ground truth)

asociadas a cada muestra para el entrenamiento, de tamaño (n muestras). Por tanto,

ha sido necesario construir conjuntos de datos espećıficos a partir de las salidas de

probabilidad de los modelos base, para poder representar el problema en el formato

requerido por los algoritmos supervisados. A continuación, se describe el proceso de

construcción de conjuntos de datos y los experimentos realizados con los distintos

algoritmos.
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4.1. Construcción de conjuntos de datos

Para construir el conjunto de datos que se utilizará en las técnicas de ensemble

supervisado, se emplearán los dos conjuntos de datos de partida (Saeedi y Quirón).

El conjunto de entrenamiento se formará a partir de las imágenes del conjunto de

entrenamiento de Saeedi, y el conjunto de evaluación se formará a partir del conjunto

de test de Saeedi y el conjunto ı́ntegro de Quirón (los mismos que se han utilizado

para evaluar el resto de estrategias no supervisadas).

El proceso de construcción de los conjuntos de datos comienza con la obtención de

las predicciones de los modelos base (DeepLab, HRNet, U-Net y RDU-Net) para cada

imagen. Después, las predicciones de cada modelo se concatenan para cada ṕıxel, y

todos los ṕıxeles de todas las imágenes se concatenan para formar el conjunto de datos

de partida para los modelos de ensemble supervisados. De esta manera, cada ṕıxel se

representa como un vector de 14 atributos donde:

− 12 atributos (4 clases x 3 modelos) se corresponden a las probabilidades de

pertenecer a cada una de las cuatro clases (fondo, ZP, TE, MCI) según los modelos

DeepLab, HRNet y U-Net.

− 2 atributos se corresponden a las probabilidades de TE y MCI del modelo

RDU-Net.

Por tanto, los conjuntos de datos implementados tienen la estructura

(n pı́xeles dataset, 14). A continuación, se describen las distintas variantes de

conjuntos de datos construidos y su propósito.

4.1.1. Conjuntos de datos de entrenamiento

Para el entrenamiento de los modelos, se ha construido un conjunto completo

utilizando todos los datos disponibles, y varios conjuntos de tamaño reducido para

agilizar el entrenamiento y la selección de hiperparámetros, sin comprometer la calidad

del aprendizaje.

Para cada uno de estos conjuntos, se ha generado también un vector de etiquetas de

ground truth (denominado y train), que asocia a cada ṕıxel un valor entero entre 0 y

3, correspondiente a su clase real (fondo: 0, ZP: 1, TE: 2, MCI: 3) según las anotaciones

de Saeedi. En concreto, los conjuntos de entrenamiento construidos son:

Conjunto completo. Para construir este conjunto, se incluyen todos los ṕıxeles de

todas las imágenes del conjunto de entrenamiento de Saeedi. El conjunto resultante

tiene n muestras = 38 663 787, con 14 atributos por muestra.
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Conjunto reducido de ṕıxeles con incertidumbre. Este conjunto incluye

únicamente los ṕıxeles en los que al menos uno de los modelos base presenta

incertidumbre, es decir, cuando la probabilidad máxima asignada por ese modelo es

inferior a un umbral predefinido de 0.7. En este caso, el conjunto resultante tiene

n muestras = 3506 331.

Esta estrategia permite reducir en un orden de magnitud el tamaño del conjunto

completo a la hora de realizar el entrenamiento, descartando los ṕıxeles en los que

todos los modelos están seguros de su predicción. La hipótesis subyacente es que, si el

algoritmo supervisado aprende a clasificar correctamente los ṕıxeles con incertidumbre,

generalizará bien a aquellos en los que hay alta confianza.

Conjunto reducido de ṕıxeles conflictivos. Incluye únicamente los ṕıxeles

conflictivos, es decir, aquellos en los que al menos dos modelos base no están de acuerdo

en su predicción de clase. El conjunto resultante tiene n muestras = 2460 378.

Este conjunto representa una versión aún más reducida que el anterior, centrada solo

en los casos en los que hay desacuerdo entre modelos, que podŕıan aportar información

más discriminatoria para el entrenamiento.

Conjunto reducido combinado. Este conjunto incluye tanto los ṕıxeles con

incertidumbre como los conflictivos, permitiendo incluir casos donde puede haber alta

certeza pero desacuerdo, o incertidumbre sin conflicto. El conjunto resultante tiene

n muestras = 4207 767.

De esta manera se obtiene una representación más completa incluyendo ambos casos

problemáticos.

Conjunto reducido ampliado. Este conjunto es una extensión del conjunto

combinado que incluye también una muestra aleatoria del 5% de los ṕıxeles en los que

no hay ni incertidumbre ni conflicto, con el objetivo de aportar cierta representación

del conjunto general. Para este caso n muestras = 5930 468.

La hipótesis es que esta combinación mejorará la capacidad de los algoritmos

entrenados para generalizar tanto en casos ambiguos como en situaciones más claras.

4.1.2. Conjuntos de evaluación

Se han construido los dos siguientes conjuntos para evaluar el rendimiento de los

modelos supervisados entrenados y compararlos con el resto de estrategias de ensemble

implementadas.
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Conjunto de evaluación público (Saeedi). Construido a partir de todos los

ṕıxeles de las imágenes del conjunto de test de Saeedi. El conjunto resultante tiene

n muestras = 6725 389.

Conjunto de evaluación privado (Quirón). Construido a partir de todos los

ṕıxeles de las imágenes del conjunto ı́ntegro de Quirón. En este caso n muestras =

6247 000.

Para evaluar los modelos entrenados, se obtienen sus predicciones sobre estos

conjuntos de datos. Estas predicciones tienen la forma de un vector unidimensional

de tamaño (n pı́xeles dataset), que contiene para cada ṕıxel de entrada, la etiqueta

de clase predicha como un número entero entre 0 y 3 (fondo: 0, ZP: 1, TE: 2, MCI:

3). Con el fin de comparar estas predicciones con el resto de técnicas de ensemble,

se ha implementado una función que transforma el vector de predicciones en imágenes

segmentadas, manteniendo el tamaño original de cada imagen. Esta conversión permite

evaluar los resultados usando las métricas habituales y facilita la visualización del

rendimiento del modelo.

4.2. Modelos entrenados

Utilizando los conjuntos de datos previamente descritos, se han entrenado y

evaluado varios modelos de clasificación supervisada con el objetivo de predecir la

clase de cada ṕıxel a partir de las salidas combinadas de los modelos base. Todos los

modelos se han implementado utilizando la libreŕıa de Python Scikit-learn [36].

Para cada modelo, se han realizado varios experimentos con los distintos conjuntos

de entrenamiento anteriormente presentados. En general, se han utilizado los conjuntos

de tamaño reducido para explorar combinaciones de hiperparámetros de forma eficiente,

y posteriormente se han realizado pruebas finales sobre el conjunto completo.

A continuación, se describen los modelos entrenados y los hiperparámetros

utilizados:

Regresión Loǵıstica. La Regresión Loǵıstica [37] es un modelo de clasificación que

ajusta una función lineal a los datos de entrada y luego transforma la salida usando

una función sigmoide [38] (para clasificación binaria) o softmax [34] (para clasificación

multiclase), obteniendo las probabilidades de pertenencia a cada clase. Es un modelo

sencillo y eficiente, aunque solo modela relaciones lineales en los datos, por lo que puede

no ser suficiente para capturar patrones complejos. En este trabajo se han entrenado

modelos de Regresión Loǵıstica multiclase con diferentes configuraciones metodológicas
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entre las que destacan:

− Técnicas de regularización: se ha evaluado el modelo sin regularización, con

regularización L2 (Ridge) [39] y combinando regularización L1 (Lasso) [40] y

L2. La regularización L2 añade a la función de pérdida la suma de los cuadrados

de los coeficientes, penalizando que los pesos crezcan demasiado, lo que ayuda

a reducir el sobreajuste. L1 penaliza la suma de los valores absolutos de los

coeficientes, intentando anular los coeficientes menos relevantes. Esto puede

actuar como una selección automática de atributos y reducir la colinealidad. La

libreŕıa de Scikit-learn permite controlar la fuerza de la regularización a través

del hiperparámetro C. Se han hecho pruebas con los siguientes valores C=1.0,

0.1, 0.01.

− Algoritmos de optimización: se han probado los algoritmos de optimización

L-BFGS y SAGA [41]. Ambos son adecuados para clasificación multiclase y

conjuntos de datos grandes, y saga permite combinar regularización L1 y L2.

Perceptrón Multicapa (MLP). El MLP [42] (del inglés, MultiLayer Perceptron)

es un modelo de red neuronal compuesto por varias capas de neuronas interconectadas,

una capa de entrada, una o varias capas ocultas intermedias, y una capa de salida.

A diferencia de la Regresión Loǵıstica, el MLP puede modelar relaciones no lineales

complejas mediante el uso de funciones de activación no lineales como la unidad

lineal rectificada (ReLU, por sus siglas en inglés Regularized Linear Unit) [43]. Sin

embargo, tiene un mayor coste computacional y requiere un ajuste cuidadoso de los

hiperparámetros. Las principales configuraciones metodológicas probadas son:

− Arquitectura de la red: se han probado varias configuraciones de capas ocultas,

como (128, 64), (256, 128) y (128, 64, 32). Cuantas más capas y neuronas,

mayor capacidad para modelar patrones complejos, aunque también hay mayor

riesgo de sobreajuste.

− Algoritmo de optimización: se ha utilizado Adam [44], un algoritmo basado en

descenso de gradiente estocástico que ajusta automáticamente el learning rate

durante el entrenamiento.

− Regularización: se ha aplicado regularización L2 para evitar el sobreajuste con

diferentes coeficientes de penalización (alpha=0.0001, 0.01, 0.1, 0.5, 0.7,

1.0).

− Escalado de atributos: como paso previo al entrenamiento, se han normalizado

los datos de entrada (media 0 y varianza 1) para mejorar la convergencia.

28



− Early stopping : se ha utilizado el parámetro de early stopping para detener

automáticamente el entrenamiento cuando no haya mejora en el conjunto de

validación durante 10 iteraciones seguidas, para evitar sobreajuste. También se

ha establecido una tolerancia, que indica la mı́nima mejora que tiene que haber

en cada época para que se considere que el modelo está aprendiendo. Se han

probado los siguientes valores de tolerancia, tol=0.0001, 0.00001.

Random Forest. Random Forest [45] (bosque aleatorio) es un modelo basado en

entrenar múltiples árboles de decisión independientes (ver Figura 4.1). Cada árbol se

entrena con diferentes subconjuntos aleatorios del conjunto original, y en cada decisión,

se considera solo un subconjunto aleatorio de atributos. La clasificación final se obtiene

combinando las salidas de todos los árboles por voto mayoritario.

Figura 4.1: Esquema del modelo Random Forest (Fuente: [46]).

Esto resulta en un modelo eficiente y robusto al sobreajuste. Entre los

hiperparámetros probados destacan:

− n estimators=50, 100: número de árboles en el bosque.

− max depth=5, 10, 15, 20, 30: profundidad máxima de los árboles. Menos

profundidad ayuda a evitar el sobreajuste.

− min samples split=2, 5: número mı́nimo de muestras para dividir un nodo.

− min samples leaf=1, 2: número mı́nimo de muestras para considerarse hoja.
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Caṕıtulo 5

Resultados y análisis

5.1. Comparación con los modelos base

Las Tablas 5.1, 5.2, 5.3, 5.4, 5.5 y 5.6 a continuación resumen los resultados más

relevantes obtenidos en los conjuntos de test Saeedi y Quirón para cada una de las

estructuras del blastocisto (ZP, TE, MCI), utilizando tanto las técnicas de ensemble no

supervisado como las supervisadas. Los resultados se comparan con el mejor modelo

base del estudio de Villota et al. [11], que puede considerarse el mejor modelo público

del estado del arte.

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.967 0.922 0.837 0.872 0.783

OR(V3-DL, V3-HR) 0.969 0.896 0.894 0.891 0.809

OR(RP-DL, RP-HR) 0.969 0.897 0.892 0.890 0.808

Max(DL, HR) 0.970 0.915 0.877 0.891 0.811

Sum(0.4DL, 0.6HR) 0.970 0.909 0.878 0.889 0.808

RegLog comb 0.970 0.905 0.886 0.891 0.811

MLP conf 256 0.969 0.873 0.918 0.891 0.808

MLP comb 0.968 0.878 0.911 0.890 0.807

MLP completo 0.969 0.899 0.889 0.890 0.809

RandFor comb 0.969 0.900 0.889 0.890 0.809

Tabla 5.1: Resultados en el conjunto de test de Saeedi para la segmentación de la ZP
(Mejor en negrita).
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Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.968 0.834 0.739 0.780 0.648

OR(V3-DL, V3-HR) 0.970 0.814 0.808 0.809 0.685

OR(RP-DL, RP-HR) 0.970 0.816 0.804 0.807 0.684

Max(DL, HR) 0.970 0.858 0.741 0.793 0.665

Sum(0.4DL, 0.6HR) 0.970 0.843 0.767 0.800 0.675

RegLog comb 0.971 0.839 0.783 0.807 0.684

MLP conf 256 0.967 0.747 0.903 0.815 0.693

MLP comb 0.968 0.759 0.887 0.815 0.694

MLP completo 0.971 0.808 0.830 0.816 0.696

RandFor comb 0.970 0.822 0.805 0.811 0.688

Tabla 5.2: Resultados en el conjunto de Quirón para la segmentación de la ZP (Mejor
en negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.970 0.876 0.838 0.854 0.748

OR(V3-DL, V3-HR) 0.971 0.838 0.908 0.868 0.770

OR(RP-DL, RP-HR) 0.971 0.827 0.922 0.868 0.770

Max(DL, HR) 0.973 0.864 0.890 0.873 0.780

Sum(0.4DL, 0.6HR) 0.973 0.861 0.890 0.872 0.777

RegLog comb 0.973 0.865 0.888 0.873 0.779

MLP conf 256 0.970 0.823 0.921 0.866 0.767

MLP comb 0.970 0.815 0.931 0.866 0.767

MLP completo 0.972 0.866 0.875 0.868 0.771

RandFor comb 0.973 0.861 0.884 0.869 0.774

Tabla 5.3: Resultados en el conjunto de test de Saeedi para la segmentación del TE
(Mejor en negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.964 0.855 0.727 0.781 0.647

OR(V3-DL, V3-HR) 0.967 0.820 0.815 0.812 0.690

OR(RP-DL, RP-HR) 0.967 0.812 0.828 0.815 0.694

Max(DL, HR) 0.967 0.857 0.763 0.802 0.676

Sum(0.4DL, 0.6HR) 0.967 0.851 0.768 0.803 0.677

RegLog comb 0.967 0.855 0.764 0.803 0.677

MLP conf 256 0.966 0.805 0.828 0.811 0.690

MLP comb 0.966 0.794 0.849 0.816 0.696

MLP completo 0.968 0.820 0.827 0.819 0.700

RandFor comb 0.967 0.859 0.758 0.801 0.673

Tabla 5.4: Resultados en el conjunto de Quirón para la segmentación del TE (Mejor
en negrita).
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Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.983 0.885 0.873 0.872 0.795

OR(V3-DL, V3-HR) 0.983 0.873 0.920 0.889 0.808

OR(RP-DL, RP-HR) 0.983 0.868 0.924 0.889 0.807

Max(DL, HR) 0.983 0.902 0.894 0.890 0.810

Sum(0.4DL, 0.6HR) 0.983 0.900 0.889 0.886 0.806

RegLog comb 0.984 0.911 0.883 0.887 0.811

MLP conf 256 0.983 0.892 0.895 0.881 0.806

MLP comb 0.984 0.899 0.892 0.883 0.809

MLP completo 0.984 0.907 0.890 0.890 0.813

RandFor comb 0.983 0.902 0.880 0.880 0.805

Tabla 5.5: Resultados en el conjunto de test de Saeedi para la segmentación de la
MCI (Mejor en negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.981 0.828 0.721 0.732 0.649

OR(V3-DL, V3-HR) 0.982 0.765 0.759 0.745 0.662

OR(RP-DL, RP-HR) 0.982 0.801 0.763 0.747 0.662

Max(DL, HR) 0.980 0.752 0.695 0.701 0.627

Sum(0.4DL, 0.6HR) 0.981 0.789 0.709 0.713 0.638

RegLog comb 0.980 0.756 0.692 0.700 0.626

MLP conf 256 0.982 0.808 0.755 0.746 0.662

MLP comb 0.982 0.812 0.750 0.743 0.661

MLP completo 0.982 0.815 0.743 0.736 0.656

RandFor comb 0.980 0.757 0.690 0.698 0.623

Tabla 5.6: Resultados en el conjunto deQuirón para la segmentación de la MCI (Mejor
en negrita).

A continuación, se describen los resultados según el tipo de ensemble utilizado.

5.1.1. Métodos no supervisados que operan con máscaras.

En primer lugar, respecto a los métodos de ensemble no supervisados que operan

directamente sobre las máscaras de segmentación, el modelo con mejor rendimiento

es OR(V3-DL, V3-HR), que aplica la operación OR entre las máscaras de DeepLab y

HRNet tras un preprocesado con el algoritmo V3. Este modelo mejora ligeramente la

accuracy respecto al mejor modelo de Villota et al., pero destaca especialmente por

el aumento en recall : de 0.83 a 0.89 en ZP, de 0.83 a 0.90 en TE y de 0.87 a 0.92

en MCI, para el conjunto de Saeedi. Se obtienen mejoras similares en el conjunto de

Quirón, sugiriendo que el modelo generaliza bien a conjuntos de datos con distinta

procedencia. La mejora en la accuracy se debe principalmente al preprocesado, que
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elimina imperfecciones como el suavizado de bordes y agrupaciones pequeñas de ṕıxeles

erróneos. Por otro lado, el aumento del recall se debe a la operación OR, que permite

incluir ṕıxeles predichos por cualquiera de los dos modelos base. Los otros métodos de

combinación de máscaras no han obtenido tan buenos resultados; el operador AND por

ser más restrictivo a la hora de incluir ṕıxeles y el voto mayoritario por incorporar la

información de modelos de peor rendimiento como U-Net o RDU-Net.

5.1.2. Métodos no supervisados que operan con
probabilidades.

En cuanto a los métodos no supervisados que operan sobre las probabilidades de

salida de los modelos base, destacan los modelos: OR(RP-DL, RP-HR), Max(DL, HR)

y Sum(0.4DL, 0.6HR). El que mejor rendimiento demuestra es OR(RP-DL, RP-HR),

que es similar al anterior OR(V3-DL, V3-HR), pero en este caso, en vez de aplicar el

preprocesamiento V3, se aplica un reescalado de las probabilidades al tamaño original

de la imagen. Este modelo obtiene un rendimiento muy similar al anterior, pero con un

aumento del recall aún mayor, especialmente en TE (de 0.83 a 0.92) y MCI (de 0.87 a

0.92), lo que lo convierte en uno de los modelos con mayor recall en general.

Respecto a las otras estrategias de combinación de probabilidades, el modelo

Max(DL, HR), que selecciona el valor máximo entre las predicciones de DeepLab y

HRNet, es uno de los mejores en cuanto a accuracy en el conjunto de Saeedi. Sin

embargo, su rendimiento es peor en el conjunto de Quirón (especialmente para la

MCI, ver Tabla 5.6), sugiriendo que no generaliza tan bien como otros métodos. Por

otro lado, el mejor modelo de suma ponderada, Sum(0.4DL, 0.6HR), que combina las

probabilidades de DeepLab y HRNet con pesos 0.4 y 0.6, obtiene un rendimiento muy

similar al de Max(DL, HR), aunque ligeramente peor en el conjunto de Saeedi.

5.1.3. Métodos supervisados.

En cuanto a los métodos que utilizan aprendizaje supervisado, las variantes del MLP

son las que mejores resultados obtienen. Entre ellas, destaca el modelo MLP completo,

que es un perceptrón con dos capas ocultas de 128 y 64 neuronas, entrenado con

el datastet completo de entrenamiento, con una fuerte regularización L2 y early

stopping para evitar el sobreajuste y mejorar la generalización. Este modelo presenta un

rendimiento balanceado entre accuracy y recall, con buena generalización al conjunto de

Quirón. Es el modelo con mayor accuracy e ı́ndice de Jaccard [26] en la segmentación

de la ZP y TE en Quirón (Tablas 5.2 y 5.4), y en la de MCI en Saeedi (Tabla 5.5).

Las otras variantes, MLP conf 256 (256 y 128 neuronas) y MLP comb (128

33



y 64 neuronas) han sido entrenadas con el conjunto de ṕıxeles conflictivos y el

conjunto combinado, respectivamente. Ambos modelos ofrecen alternativas con un

recall superior, aunque a costa de una ligera pérdida de accuracy.

Respecto a los otros dos enfoques de aprendizaje supervisado, Regresión Loǵıstica

(RegLog comb) obtiene resultados similares al modelo Max(DL, HR), con buena

accuracy pero menor recall, y mal resultado en la segmentación de la MCI en Quirón.

Por su parte, Random Forest (RandFor comb) muestra un rendimiento similar a la

regresión, aunque ligeramente peor.

5.1.4. Mejores modelos.

En conclusión, podemos considerar que el mejor modelo global implementado es

el MLP completo, ya que demuestra un equilibrio sólido entre accuracy y recall,

obteniendo resultados consistentes en ambos conjuntos de evaluación. No obstante,

si se desea priorizar el recall, que es especialmente cŕıtico en estructuras como la MCI,

el modelo OR(RP-DL, RP-HR) es la mejor opción, al obtener el mayor recall en la

segmentación de la MCI en ambos conjuntos.

A continuación, la Figura 5.1 muestra un ejemplo donde se comparan visualmente

las máscaras generadas por los mejores modelos respecto al estudio base de Villota et

al. [11] y al ground truth.
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Figura 5.1: Comparación de resultados de segmentación para imágenes de ejemplo de
ambos datasets de evaluación (Saeedi y Quirón).

Como podemos observar en la Figura 5.1, los mejores modelos implementados

consigen mejorar notablemente los resultados del estudio base de Villota et al.,

especialmente en cuanto al recall de estructuras como el TE o la MCI, logrando una

segmentación más cercana al ground truth, con contornos mejor definidos y menos

omisiones.

El modelo MLP completo consigue aumentar el recall sin comprometer la accuracy,

logrando un buen equilibrio global. Por otro lado, el modelo OR(RP-DL, RP-HR),

aunque obtiene el recall más alto, tiende a ser más permisivo, lo que en ciertos casos

puede dar lugar a más falsos positivos, como en el caso de la primera muestra de la

Figura 5.1.
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5.2. Comparación con el estado del arte

A continuación, se comparan los resultados de los tres mejores modelos

implementados con el resto de estudios del estado del arte.

Como se puede observar en la Tabla 5.7, el modelo MLP completo obtiene la

segmentación de la ZP más balanceada y precisa, superando al resto de modelos del

estado del arte en cuanto a accuracy, recall, coeficiente de Dice y el ı́ndice de Jaccard.

Por otro lado, el modelo MLP comb obtiene el mayor recall para esta estructura,

aunque es menos preciso.

Accuracy Precision Recall Dice Coef. Jaccard Idx.
Kheradmand et al. [14] 0.92 0.80 0.81 - 0.64
Rad et al. [19] 0.95 0.79 0.91 - 0.74
Farias et al. [22] 0.94 0.85 0.69 0.75 -
Villota et al. [11] 0.97 0.92 0.84 0.87 0.78
OR(RP-DL, RP-HR) 0.97 0.90 0.89 0.89 0.81
MLP comb 0.97 0.88 0.91 0.89 0.81
MLP completo 0.97 0.90 0.89 0.89 0.81

Tabla 5.7: Comparación de resultados con el estado del arte para la segmentación de
la ZP (Mejor en negrita).

En cuanto a la segmentación del TE (Tabla 5.8), ninguno de los modelos

implementados logra superar las métricas obtenidas por Harun et al. [21], aunque

el modelo MLP comb iguala su recall. El modelo MLP completo se posiciona como

segundo mejor en términos generales, tras el modelo de Harun.

Accuracy Precision Recall Dice Coef. Jaccard Idx.
Singh et al. [13] 0.87 0.71 0.83 0.77 0.62
Kheradmand et al. [14] 0.90 0.69 0.80 0.74 0.59
Saeedi et al. [16] 0.86 0.69 0.89 0.77 -
Harun et al. [21] 0.98 0.92 0.93 0.92 0.85
Farias et al. [22] 0.93 0.80 0.59 0.67 -
Villota et al. [11] 0.97 0.88 0.84 0.85 0.75
OR(RP-DL, RP-HR) 0.97 0.83 0.92 0.87 0.77
MLP comb 0.97 0.82 0.93 0.87 0.77
MLP completo 0.97 0.87 0.87 0.87 0.77

Tabla 5.8: Comparación de resultados con el estado del arte para la segmentación del
TE (Mejor en negrita).

En la segmentación de la MCI (Tabla 5.9), las mejores métricas vuelven a ser las

de Harun et al. [21]. Le sigue Rad et al. [20], cuyos resultados son comparables a los

obtenidos por el modelo OR(RP-DL, RP-HR) desarrollado en este trabajo.
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Accuracy Precision Recall Dice Coef. Jaccard Idx.
Kheradmand et al. [14] 0.93 0.76 0.56 0.64 0.48
Kheradmand et al. [15] 0.96 - - 0.87 0.77
Saeedi et al. [16] 0.91 0.77 0.84 0.79 -
Saeedi et al. (DLRS) [16] 0.93 0.84 0.78 0.83 -
Rad et al. [17] - 0.79 0.87 0.83 0.70
Rad et al. [20] 0.98 0.89 0.92 0.90 0.82
Harun et al. [21] 0.99 0.95 0.94 0.94 0.89
Farias et al. [22] 0.96 0.87 0.62 0.67 -
Villota et al. [11] 0.98 0.88 0.87 0.87 0.79
OR(RP-DL, RP-HR) 0.98 0.87 0.92 0.89 0.81
MLP comb 0.98 0.90 0.89 0.88 0.81
MLP completo 0.98 0.91 0.89 0.89 0.81

Tabla 5.9: Comparación de resultados con el estado del arte para la segmentación de
la MCI (Mejor en negrita).
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Caṕıtulo 6

Conclusiones

En este trabajo se han desarrollado diferentes técnicas de ensemble de modelos de

deep learning que logran mejorar respecto al estado del arte la segmentación de las

principales estructuras del blastocisto: la ZP, el TE y la MCI. Se han implementado

estrategias tanto no supervisadas como supervisadas, para combinar las predicciones de

cuatro modelos base (DeepLab, HRNet, U-Net y RDU-Net), entrenados y publicados

por Villota et al. [11].

De todos los enfoques desarrollados, los modelos basados en aprendizaje supervisado

han obtenido el mejor rendimiento, especialmente el modelo MLP completo, un MLP

con dos capas ocultas y fuerte regularización. Este modelo ha aprendido a combinar

de manera óptima las probabilidades de salida de los modelos base, mejorando

considerablemente la precisión global de la segmentación. Tiene sentido que el mejor

modelo sea un MLP, ya que este tipo de red neuronal (con al menos una capa oculta)

es un aproximador universal de funciones continuas [47], capaz de replicar funciones

simples como operaciones lógicas (OR, AND, XOR, etc.), además de capturar patrones

más complejos en los datos que los métodos no supervisados no pueden modelar.

Sin embargo, si el objetivo cĺınico es maximizar el recall de la segmentación para no

omitir regiones relevantes (como en el caso de la MCI, que es crucial para el desarrollo

del embrión), podŕıa utilizarse el modelo OR(RP-DL, RP-HR). Este modelo combina

las máscaras de DeepLab y HRNet tras reescalar sus probabilidades de salida, logrando

el mayor recall en la segmentación de la MCI en ambos datasets evaluados.

Es importante destacar que el hecho de que se hayan empleado conjuntos de datos

de evaluación no usados para el entrenamiento confirma que ambos modelos no están

sobreajustados y arrojan unos resultados confiables.

En comparación con el estado del arte, las métricas obtenidas superan notablemente

a las del estudio base de Villota et al. [11] en la segmentación de las tres estructuras

(ZP, TE y MCI), y solo el trabajo de Harun et al. [21] presenta métricas superiores

para el TE y la MCI. Cabe destacar que dicho estudio no publica su código, y aunque
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su metodoloǵıa ha sido replicada en trabajos posteriores, como el de Villota et al., no

se han logrado reproducir sus resultados. Por lo tanto, este trabajo aporta, hasta la

fecha, los mejores resultados con código abierto y reproducibles, en el ámbito de la

segmentación automática de blastocistos. El código, las métricas y los mejores modelos

entrenados se pueden encontrar en el siguiente repositorio público:

https://github.com/816410unizar/Blastocyst-Seg-Ensemble.

De esta manera, se facilita la reproducibilidad y extensión de los resultados por

parte de la comunidad investigadora.

En cuanto a las limitaciones de este trabajo, la principal es que se basa en los

modelos publicados por Villota et al., que fueron entrenados en un conjunto de datos

relativamente pequeño (249 imágenes de blastocistos). Esto puede reducir la capacidad

de generalización de los modelos a otros datasets más diversos. Además, si se hubiera

contado con más capacidades computacionales, habŕıa sido posible entrenar modelos

supervisados más complejos y optimizar aún más los hiperparámetros.

Como trabajo futuro, seŕıa interesante aplicar las estrategias de ensemble

desarrolladas en conjuntos de datos más grandes y variados, aśı como reentrenar los

modelos supervisados en ellos. Otra ĺınea de trabajo podŕıa centrarse en integrar

las técnicas desarrolladas en software cĺınico de apoyo directo a los embriólogos.

Adicionalmente, se podŕıa desarrollar una metodoloǵıa capaz de predecir el grado de

calidad de cada estructura del blastocisto (presente en las anotaciones de Saeedi) a

partir de caracteŕısticas morfológicas cuantitativas extráıdas de la segmentación. Esto

contribuiŕıa a determinar de forma objetiva cuál es el embrión con mayor potencial de

implantación en la fecundación in vitro.
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