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RESUMEN

Este trabajo se centra en la segmentacién automatica de blastocistos a partir de
iméagenes de microscopio, un proceso de gran utilidad para la seleccién de blastocistos
en los tratamientos de fecundacion in witro.

Se desarrollan y comparan diferentes estrategias de ensemble learning para
combinar las predicciones de varios modelos pre-entrenados de segmentacion semantica
(DeepLab, HRNet, U-Net y RDU-Net), con el objetivo de mejorar la precisién
y robustez de la segmentacién de las tres principales estructuras del blastocisto:
la Zona Pelicida (ZP), el Trofoectodermo (TE) y la Masa Celular Interna
(MCI). Las estrategias desarrolladas incluyen técnicas no supervisadas basadas en
operaciones sobre las méscaras (post-procesamiento, OR, AND, voto mayoritario)
y las probabilidades de salida (softmaz, maz, suma ponderada), asi como enfoques
supervisados (Regresién Logistica, Perceptron Multicapa y Random Forest).

Estas estrategias se han evaluado en dos conjuntos de datos distintos, y destaca
el rendimiento de uno de los perceptrones multicapa, que alcanza el mejor equilibrio
entre precision y recall, con buena generalizaciéon. Estos resultados se han comparado
con los del estado del arte, obteniéndose las mejores métricas para la segmentacion de
la ZP, el segundo puesto para el TE, y el tercero para la MCI.

Ademss, se ha creado un repositorio publico? que incluye el cédigo, las métricas y
los mejores modelos entrenados, con el fin de fomentar la reproducibilidad y extension

del trabajo.

2https://github.com/816410unizar/Blastocyst-Seg-Ensemble


https://github.com/816410unizar/Blastocyst-Seg-Ensemble
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Capitulo 1

Introduccién y objetivos

La infertilidad es un problema de salud creciente a nivel mundial que afecta
aproximadamente del 10 al 17.5% de la poblacién adulta, tanto a hombres como a
mujeres [1, 2]. En este contexto, las técnicas de reproduccién asistida, especialmente
la Fecundacién In Vitro (FIV), se han convertido en herramientas fundamentales para
ofrecer soluciones reproductivas eficaces a millones de parejas. Se prevé que el nimero
de personas nacidas globalmente gracias a la FIV y otros tratamientos reproductivos

aumente a unos cuatrocientos millones para el ano 2100 [1].

La FIV es una técnica de reproduccion asistida que comienza con la
hiperestimulacién de los ovarios para extraer multiples ovocitos. A continuacién, los
ovocitos son fecundados en una placa de cultivo y los embriones resultantes se cultivan
hasta el dia 5 o 6, cuando alcanzan el estadio de blastocisto. En este momento se
selecciona el blastocisto més viable para su posterior transferencia al ttero. Si el proceso

tiene éxito, dicho blastocisto se implantara correctamente y dara lugar al embarazo.

Este trabajo se centra en el momento de la seleccién de blastocistos, una etapa

clave para maximizar las probabilidades de implantacion y el éxito reproductivo.

1.1. La seleccion de blastocistos en la FIV

El blastocisto es el estadio que alcanza el embrién cinco o seis dias tras la
fecundacion, cuando presenta una estructura celular compleja con varias zonas
diferenciadas: la Zona Pelicida (ZP), el Trofoectodermo (TE), la Masa Celular Interna
(MCI), y la cavidad conocida como Blastocele (BC) (Figura 1.1).
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Figura 1.1: Estructuras del blastocisto (Fuente: [3]).

No todos los embriones cultivados en la FIV desarrollan el mismo potencial
de implantacién, y es de vital importancia seleccionar el blastocisto con mejores
caracteristicas para maximizar las probabilidades de éxito reproductivo, ya que, segin
el Consorcio Europeo de Monitorizacién de la FIV [4], tan solo el 34 % de transferencias
embrionarias al ttero logran el embarazo, y solo un 26 % culminan en un parto exitoso.

Actualmente, existen principalmente dos métodos para la seleccién de blastocistos:
el Test Genético Preimplantacional para Aneuploidias (PGT-A, por sus siglas en inglés
Preimplantation Genetic Testing for Aneuploidy) [5] y la evaluacién morfolégica [6].

El PGT-A permite detectar anomalias genéticas en los embriones antes de su
transferencia al utero, diferenciando entre embriones euploides (con el niimero correcto
de cromosomas) y aneuploides (con alteraciones cromosémicas). Cabe destacar que el
PGT-A no garantiza la implantacion de los embriones euploides, por lo que siempre se
complementa con una evaluacién morfolégica visual de los blastocistos llevada a cabo
por los embridlogos. Esta segunda técnica consiste en clasificar los embriones segin
sus caracteristicas observables como el grado de expansion del blastocisto, la forma, el
tamano, o el grado de desarrollo de estructuras como el TE y la MCIL.

A pesar de su utilidad clinica, ambos métodos presentan limitaciones importantes.
El PGT-A, aunque eficaz para descartar embriones no viables, es un procedimiento de
uso limitado por ser costoso, invasivo y conllevar riesgos, ya que implica la extraccion de
células del embrion en un estado muy inicial. En particular, es especialmente importante
no extraer células pertenecientes a la regién de la MCI, ya que las células de esta zona
formarén el futuro cuerpo del feto [7]. En cuanto a la evaluacién morfolégica, el principal
problema de este método es que conlleva una gran subjetividad, ya que depende del
criterio y experiencia del embriélogo, y no se basa en estandares universales o métricas
cuantitativas objetivas [8].

En este contexto, las técnicas para la segmentacion de blastocistos, que incluyen
desde métodos de procesamiento de imagenes hasta algoritmos de deep learning,

ofrecen una alternativa prometedora, ya que permiten delimitar automaticamente las



estructuras del blastocisto a partir de imdgenes de microscopio (Figura 1.2). De esta
manera, se consigue informacion objetiva y cuantitativa sobre su morfologia, como
por ejemplo la localizacion exacta y tamano de la MCI, cuyo papel es crucial en el
desarrollo embrionario. Esta informaciéon puede utilizarse tanto para ayudar en la toma
de decisiones clinicas, como para futuros estudios sobre la morfologia y seleccion de

blastocistos, aumentando las probabilidades de éxito de los tratamientos de FIV.

Figura 1.2: Imégen de blastocisto al microscopio (izq.) y su segmentacién por un modelo
de Deep learning (der.).

1.2. Objetivos y alcance

Este Trabajo de Fin de Grado (TFG) busca combinar los resultados de
varios modelos pre-entrenados de deep learning utilizados para la segmentacién de
blastocistos, con la intenciéon de generar méscaras mas precisas y robustas que las
obtenidas por modelos individuales, optimizando asi los resultados actuales del estado

del arte en el &mbito de la segmentacion de blastocistos para la FIV.

1.2.1. Objetivos

Maés concretamente, los objetivos de este TFG se pueden resumir en:

— Optimizar la segmentacion automatica de las principales estructuras del
blastocisto (ZP, TE, y MCI).

— Implementar, evaluar y comparar diferentes estrategias de ensemble learning [9],
tanto no supervisadas como supervisadas, aplicadas a modelos de segmentacion

de blastocistos.

A través de estos objetivos se pretende proporcionar informacion morfolégica
objetiva y cuantitativa del blastocisto, util para la toma de decisiones en la FIV, como la

seleccién de embriones o la aplicacion de técnicas como el PGT-A. Ademas, se sentaran



las bases para futuros estudios sobre la morfologia del blastocisto y para el desarrollo

de sistemas automaticos de prediccion del embrién éptimo a implantar.

1.2.2. Alcance

Este TFG toma como punto de partida cuatro modelos de segmentaciéon
seméntica [10] (DeepLab, HRNet, U-Net y RDU-Net), pre-entrenados por Villota et
al. [11] y disponibles en su repositorio publico [12]. Se han obtenido las salidas de estos
modelos para imagenes de blastocistos de dos conjuntos de datos distintos (descritos en
la Seccién 2.3.1), y a partir de estas salidas, tanto a nivel de méascaras de segmentacién
como a nivel de tensores de probabilidades, se han disenado e implementado desde cero

diversas estrategias de ensemble learning, que se resumen en:

— Técnicas de post-procesamiento de mascaras individuales.

— Uso de operadores légicos para hibridar varios modelos (OR, AND, voto

mayoritario).
— Combinacién de post-procesamiento y operadores logicos.

— Operadores sobre la salida de probabilidades de varios modelos (softmaz, marz,

suma ponderada, reescalado de probabilidades).

— Algoritmos supervisados sobre la salida de probabilidades de varios modelos,
entrenando los pardmetros (Regresién Logistica, Perceptrén Multicapa, Random
Forest).

Estas técnicas se han evaluado sobre los dos conjuntos de datos utilizados, y los
resultados se han comparado con los obtenidos por los principales estudios del estado

del arte.

1.3. Herramientas utilizadas

Este trabajo ha sido implementado en su totalidad en Jupyter Notebooks utilizando
el lenguaje de programacion Python. Para asistir en la implementacion, se han

empleado diversas librerias de Python, entre las que destacan:

— PyTorch y TensorFlow/Keras: para cargar los modelos de segmentacién
pre-entrenados, obtener sus probabilidades de salida, y procesarlas aplicando

operaciones como softmax o argmarz.



— Torchvision y PIL (Pillow): para cargar y transformar (reescalar, normalizar,
cambiar formato a RGB...) las imdgenes de entrada para los modelos, y para

reescalar las probabilidades de salida con interpolacién bilineal.

— OpenCV: para el procesamiento de imégenes y mascaras de segmentacion
(lectura y escritura de imagenes, extracciéon de componentes conexas, reescalado,

etc.).

— Scikit-learn: para el entrenamiento de los modelos supervisados (Regresién

Logistica, Perceptrén Multicapa y Random Forest).

— NumPy: para operaciones matriciales, funciones matematicas, uso de operadores
l6gicos (OR, AND), etc.

— Pandas: para la organizacion de los archivos de métricas y resultados.

— Pathlib y os: para cargar y guardar archivos.

1.4. Desarrollo temporal

La Figura 1.3 a continuacién muestra un cronograma con la planificacién y el
desarrollo temporal del trabajo. Cada mes se divide en cuatro semanas, y para cada

tarea se muestra el tiempo inicialmente planificado (azul), el tiempo real empleado

(rojo), y las coincidencias entre ambos (morado).

DICIEMBRE MARZO

NOVIEMBRE ENERO FEBRERO
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- Planificado
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varios modelos

Redaccion de la
memoria

Figura 1.3: Cronograma con la planificacién y ejecucién temporal del TFG.




1.5.

El

Estructura de la memoria

documento se ha estructurado en seis capitulos:

Capitulo 1: Introduccidon y objetivos. En este primer capitulo se introduce el
tema de la seleccion de blastocistos en la FIV, y se explican las técnicas actuales
para realizar esta tarea y sus limitaciones. Después, se describen los objetivos y
el alcance de este TFG, se detallan las herramientas utilizadas y se presenta un

cronograma con el desarrollo temporal.

Capitulo 2: Estado del arte y punto de partida. En este capitulo se resumen
los principales estudios realizados en el drea de la segmentacion automatica
de blastocistos. A continuacion, se explica el punto de partida de este TFG,
enmarcado como una extension de uno de los estudios mas relevantes del estado

del arte. En la explicacién se incluyen los datasets y modelos empleados.

Capitulo 3: Estrategias de ensemble no supervisado. En este capitulo
se explican las estrategias de ensemble implementadas que no requieren de
entrenamiento adicional. Estas técnicas se basan en post-procesado de méscaras,
operadores ldégicos (OR, AND, voto mayoritario) y operadores sobre las
probabilidades de salida de los modelos base (softmaz, maz, suma ponderada,

reescalado de probabilidades).

Capitulo 4: Estrategias de ensemble supervisado. En este capitulo se
explican las estrategias de ensemble implementadas que se basan en aprendizaje
supervisado. Se detalla el proceso de construcciéon de los datasets para el
aprendizaje y se explican los diferentes modelos entrenados (Regresién Logistica,

Perceptrén Multicapa, Random Forest).

Capitulo 5: Resultados y analisis. En este capitulo se presentan y discuten
los resultados obtenidos para cada una de las estrategias de ensemble, resaltando
los mejores modelos. Las métricas se comparan primero con las del estudio previo
en el que se basa este trabajo, y posteriormente con las del resto de estudios del

estado del arte.

Capitulo 6: Conclusiones. En este tltimo capitulo se resumen las principales
aportaciones del trabajo, se discuten sus limitaciones y se plantean posibles lineas

de mejora y trabajo futuro.



Capitulo 2

Estado del arte y punto de partida

En los dultimos anos, se han seguido dos principales enfoques en el ambito
de la segmentacién automatica de blastocistos: los métodos de procesamiento de
imégenes, y los que utilizan modelos de deep learning, principalmente redes neuronales
convolucionales (CNNs, por sus siglas en inglés, Convolutional Neural Networks). Por
lo general, los métodos de deep learning son mas recientes y obtienen mejores resultados

que los anteriores.

2.1. Trabajos previos

Aunque no muy numerosos, existen diversos trabajos de investigacién que buscan
segmentar de forma automatica las principales estructuras del blastocisto: ZP, TE y
MCI.

Entre las principales aportaciones en este area, cabe destacar las siguientes: en 2014,
Singh et al. [13], utilizaron un algoritmo de contornos de nivel para segmentar la regién
del TE. Posteriormente, Kheradmand et al. [14], entrenaron en 2016 una red neuronal
cuyo fundamento es aplicar Transformadas de Coseno Discretas (DCT, por sus siglas
en inglés Discrete Cosine Transform) a imégenes para clasificar las componentes del
blastocisto (ZP, TE y MCI), y en 2017 [15] utilizaron una Fully Convolutional Network
(FCN) para segmentar la MCI. Ese mismo afo, Saeedi et al. [16] desarrollaron un
algoritmo que combina informacion de textura con caracteristicas fisicas para segmentar
automaticamente el TE y la MCI. Entre 2017 y 2018, Rad et al. llevaron a cabo
tres estudios: en el primero [17], usaron un método basado en texturas (Gabor [18]
y DCT) y contornos de nivel para segmentar la MCI, en el segundo [19], utilizaron
una red neuronal jerdrquica (Hierarchichal Neural Network, HNN) para segmentar la
ZP, y en el tercero [20], utilizaron un ensemble de redes de tipo Dilated U-Net para la
segmentacién de la MCI. En 2019, Harun et al. [21], implementaron una red profunda

de tipo Residual Dilated U-Net para segmentar el TE y otra para la MCI. Finalmente,
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en 2023, Farias et al. [22] propusieron un proceso de extraccién de caracteristicas a
partir de imagenes de blastocistos para entrenar una red neuronal que clasifica cada
pixel en ZP, TE, MCI, BC y fondo.

Maés recientemente, en 2024, destaca el trabajo de Villota et al. [11], que ademés
de implementar y comparar diversos modelos de deep learning para la segmentacion
de blastocistos, tiene como objetivo replicar y evaluar trabajos previos cuyo cédigo no
estaba disponible ptblicamente. En dicho estudio, se entrenan arquitecturas estandares
de segmentacién como DeepLab [23], HRNet [24], U-Net [25] y Residual Dilated U-Net
(tratando de replicar el trabajo de Harun [21]), y se obtienen resultados competitivos
para la segmentacién de las tres principales estructuras del blastocisto (ZP, TE y MCI).
El trabajo de Villota et al. destaca especialmente por proporcionar su cédigo y modelos
en un repositorio de GitHub publico [12], facilitando la reproducibilidad y extensién

de sus resultados.

La mayoria de los estudios previamente mencionados utilizan para el entrenamiento
y/o evaluacién el conjunto de datos propuesto por Saeedi et al. [16], cuya descripcién

se puede encontrar en la Seccién 2.3.1.

2.2. Resumen de resultados previos

A continuacion se resumen los resultados del estado del arte para la segmentacion
automatica de las tres principales estructuras del blastocisto (ZP, TE y MCI). Las
Tablas 2.1, 2.2 y 2.3 muestran los valores obtenidos en los estudios previos para métricas
como Accuracy, Precision, Recall, Dice Coefficient y Jaccard Index. La definicion

cuantitativa de estas métricas asi como su interpretaciéon puede encontrarse en [26].

Cabe destacar que no es una comparacioén perfecta, ya que no todos los estudios
utilizan el conjunto de datos propuesto por Saeedi et al. [16] para la evaluacion.
Algunos utilizan otros datasets privados [14, 15, 17, 13], o diferentes particiones de
dicho conjunto [19]. Ademads, ninguno de estos trabajos, excepto el de Villota et al.,
ofrece acceso a sus modelos o al codigo, lo cual imposibilita una evaluacién reproducible
e imparcial. Por ello, en las tablas solo se reflejan los resultados tal y como fueron

reportados en las publicaciones originales.



Accuracy Precision Recall Dice Coef. Jaccard Idx.
Kheradmand et al. [14] 0.92 0.80 0.81 - 0.64
Rad et al. [19] 0.95 0.79 0.91 - 0.74
Farias et al. [22] 0.94 0.85 0.69 0.75 -
Villota et al. [11] 0.97 0.92 0.84 0.87 0.78

Tabla 2.1: Resultados del estado del arte para la segmentacién de la ZP (Mejor en

negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.
Singh et al. [13] 0.87 0.71 0.83 0.77 0.62
Kheradmand et al. [14] 0.90 0.69 0.80 0.74 0.59
Saeedi et al. [16] 0.86 0.69 0.89 0.77 -
Harun et al. [21] 0.98 0.92 0.93 0.92 0.85
Farias et al. [22] 0.93 0.80 0.59 0.67 -
Villota et al. [11] 0.97 0.88 0.84 0.85 0.75

Tabla 2.2: Resultados del estado del arte para la segmentacién del TE (Mejor en

negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Kheradmand et al. [14] 0.93 0.76 0.56 0.64 0.48
Kheradmand et al. [15] 0.96 - - 0.87 0.77
Saeedi et al. [16] 0.91 0.77 0.84 0.79 -

Saeedi et al. (DLRS) [16] 0.93 0.84 0.78 0.83 -

Rad et al. [17] ; 0.79 087 0.83 0.70
Rad et al. [20] 0.98 0.89 0.92 0.90 0.82
Harun et al. [21] 0.99 0.95 0.94 0.94 0.89
Farias et al. [22] 0.96 0.87 0.62 0.67 -

Villota et al. [11] 0.98 0.88 0.87 0.87 0.79

Tabla 2.3: Resultados del estado del arte para la segmentacién de la MCI (Mejor en

negrita).

Como se puede observar, el trabajo de Villota et al. obtiene los mejores resultados

para la segmentacion de la ZP, mientras que el de Harun et al. reporta un mejor

rendimiento en la segmentacion del TE y la MCI. Sin embargo, los resultados de Harun

no son facilmente reproducibles. De hecho, el estudio de Villota et al. intenté replicar

el modelo de Harun y no consiguié alcanzar el mismo rendimiento, aunque sus modelos

basados en DeepLab y HRNet si superan al resto de estudios analizados.

Por lo tanto, podemos concluir que el trabajo de Villota et al. es actualmente la

referencia mas sélida del estado del arte, debido a su completitud, buenos resultados y

facil reproducibilidad.



2.3. Punto de partida de este trabajo

El punto de partida de este TFG sera el trabajo realizado por Villota et al. [11],
debido a que es la propuesta mas reciente y completa dentro de la literatura actual,
y ademas es el inico que publica su coédigo abiertamente. Por lo tanto, este trabajo
tomara como referencia sus resultados con el objetivo de mejorarlos mediante el uso de

técnicas de ensemble learning [9].

2.3.1. Conjuntos de datos

Para este trabajo se cuenta con dos conjuntos de datos distintos.

Conjunto piblico. El primero es el publicado por Saeedi et al. en  [16],
que contiene 249 imagenes de microscopio de embriones humanos en estadio de
blastocisto (Figura 2.1), anotadas manualmente por especialistas del Pacific Centre for
Reproductive Medicine (PCRM) en Canadd. Las anotaciones incluyen la segmentacién
de las estructuras ZP, TE e MCI, asi como informacion adicional sobre el grado de
calidad del TE e MCI, y el resultado de la implantacién. Este dataset se ha consolidado
como el mas utilizado en la literatura para la segmentacién de blastocistos, habiendo
sido empleado en la mayoria de trabajos recientes, incluyendo el de Villota et al. El
conjunto de datos se obtuvo mediante solicitud directa a los autores por parte del grupo
de investigaciéon TME Lab! del Instituto de Investigacién en Ingenierfa de Aragén
(I3A), Universidad de Zaragoza. En cuanto a la divisién del dataset, para mantener la
coherencia con el estudio de Villota et al. y poder comparar los resultados obtenidos en
el ensemble, se ha utilizado la misma divisién que en dicho estudio, utilizando el 85 %
de las imagenes como conjunto de entrenamiento y el 15 % como conjunto de test. A

lo largo de este trabajo nos referiremos a este dataset como SAEEDI.

Figura 2.1: Imagen del dataset SAEEDI junto a sus anotaciones de segmentacion.

https://tmelab.unizar.es/
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Conjunto privado. El segundo conjunto de datos utilizado es un conjunto privado
proporcionado por embridlogos del Hospital Quirénsalud de Zaragoza al grupo de
investigacion TME Lab. El dataset contiene 25 imagenes microscopicas de blastocistos
y sus anotaciones con la segmentacién de las estructuras ZP, TE e MCI (Figura 2.2).
Este conjunto solamente sera empleado para evaluacion, con el objetivo de comprobar
que las técnicas de ensemble implementadas generalizan bien a datos provenientes de
una fuente distinta no vista durante el entrenamiento. A lo largo de este trabajo nos

referiremos a este dataset como QUIRON.

Figura 2.2: Imagen del dataset QUIRON junto a sus anotaciones de segmentacién.

2.3.2. Modelos de deep learning

En este trabajo se han utilizado los modelos entrenados publicados por Villota et
al. [11], disponibles en su repositorio de GitHub [12]. Se han descargado los pesos de
los modelos, y se han utilizado para obtener predicciones sobre los datasets SAEEDI
y QUIRON, con el objetivo de aplicar técnicas de ensemble learning [9] sobre estas
salidas para optimizar la precision y robustez de la segmentacion. En concreto, las
arquitecturas utilizadas para el ensemble son DeepLab [23], High-Resolution Network
(HRNet) [24], U-Net [25] y Residual Dilated U-Net (RDU-Net) [21]. Todas ellas son
arquitecturas de redes neuronales convolucionales (CNNs) [27], y son comunmente
utilizadas en tareas de segmentaciéon seméntica [10]. A continuaciéon se describe
brevemente cada una de estas arquitecturas.

La arquitectura U-Net fue una de las primeras en lograr un éxito rotundo en tareas
de segmentacién [28]. Se trata de una arquitectura muy utilizada en el campo de la
segmentacién biomédica [29], diseniada para ser eficaz en tareas con conjuntos de datos
limitados [30] como la nuestra. Tiene una estructura en forma de “U” (Figura 2.3)
compuesta por dos partes principales: un codificador (encoder) que captura informacién
contextual y reduce la resolucién espacial, y un decodificador (decoder) simétrico que
aumenta la resolucién con capas de upsampling y genera el mapa de segmentacién.

Otra caracteristica de U-Net es el uso de conexiones de salto (skip connections),
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que conectan directamente capas del encoder con el decoder, y ayudan a preservar

informacion perdida durante la reduccién del encoder.
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Figura 2.3: Arquitectura U-Net (Fuente: [30]).

DeepLab (Figura 2.4) es una arquitectura de CNN que destaca por
usar convoluciones dilatadas (dilated/atrous convolutions), que permiten extraer
caracteristicas de las imagenes de entrada sin reducir la resolucién espacial de los
mapas de atributos. Ademas, utiliza un médulo llamado Atrous Spatial Pyramid Pooling
(ASPP), que aplica miiltiples convoluciones dilatadas con diferentes tasas de dilatacién
en paralelo, permitiendo extraer caracteristicas a distintas escalas. Esta arquitectura se
ha consolidado como una de las méas robustas para tareas de segmentacion en imagenes

complejas.
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Figura 2.4: Esquema general del flujo de la arquitectura DeepLab (Fuente: [31]).

High-Resolution Network (HRNet) se llama de esta manera porque es capaz de
mantener representaciones de alta resolucion a lo largo de todo el pipeline de la red,
mientras que otras arquitecturas como U-Net reducen la resolucion espacial. Esto se

consigue mediante la combinacién de multiples convoluciones paralelas con distintas
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resoluciones, que intercambian informacién entre si. Estas caracteristicas hacen que
HRNet logre una segmentacion precisa, especialmente en imagenes que contengan
detalles finos importantes, como en la segmentacién de blastocistos.

Por dltimo, RDU-Net es una variante de U-Net que incorpora bloques residuales
y convoluciones dilatadas. Los bloques residuales utilizan skip connections y ayudan a

mitigar el problema del desvanecimiento del gradiente en redes profundas [32].

2.3.3. Estructura de los datos

Para la segmentacion de blastocistos, estos modelos toman como entrada imagenes
de blastocistos al microscopio junto con sus anotaciones (ground truth). Para el
conjunto de SAEEDI, las anotaciones consisten en mascaras segmentadas donde cada
una de las principales estructuras del blastocisto toma un valor de intensidad de pixel
distinto (fondo: 0, ZP: 75, TE: 255, MCI: 150), como se puede observar en la Figura 2.5.
Estos valores se convierten en etiquetas enteras (0, 1, 2, 3) para representar cada clase

durante el entrenamiento.

Imagen de entrada Ground truth

Figura 2.5: Ejemplo de entrada para los modelos, incluyendo la imagen de blastocisto
al microscopio y su méascara de segmentacion (ground truth).

Estos modelos generan como salida un tensor de probabilidades para cada imagen de
entrada, que contiene para cada pixel las probabilidades de pertenecer a cada una de las
4 clases (fondo, ZP, TE y MCI). Por lo tanto, para poder comparar las predicciones de
los modelos con las etiquetas del ground truth, el tensor de probabilidades se transforma
en una mascara segmentada con el mismo formato que el usado en las anotaciones de
SAEEDI. Para ello, primero se aplica la funciéon argmaz, que selecciona para cada pixel
la clase con la probabilidad mas alta, y después se crea la méscara de segmentacion
asignando a cada pixel su valor de intensidad correspondiente (fondo: 0, ZP: 75, TE:
255, MCI: 150), como se muestra en la Figura 2.6.

A partir de las salidas de los cuatro modelos descritos, tanto a nivel de mascaras de
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segmentacion como a nivel de probabilidades de salida, se han implementado distintas

estrategias de ensemble learning [9], con el objetivo de mejorar los resultados obtenidos

por cada modelo individual.

Entrada Salidas Mascara de segmentacion
fondo ZP TE MCI
0.9900.005 [0.003 |0.002

fondo ZP TE MCI
0.001]0.210 |0.785 |0.005

fondo ZP TE MCI
0.001{0.004]10.010/0.985

Figura 2.6: Proceso de construccion de las méscaras de segmentacion a partir de las
salidas de probabilidad de los modelos.
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Capitulo 3

Estrategias de ensemble no
supervisado

En este capitulo se describen las distintas técnicas de ensemble no supervisado
desarrolladas para mejorar la segmentacion automatica de blastocistos. A diferencia de
las estrategias basadas en aprendizaje supervisado descritas en el Capitulo 4, estas
técnicas no requieren de entrenamiento adicional, ya que se basan en procesar y
combinar las salidas individuales de los cuatro modelos entrenados y publicados en
el estudio de Villota et al. [11, 12] (DeepLab, HRNet, U-Net y RDU-Net). Todas las
técnicas han sido implementadas en notebooks de Jupyter en Python.

En total, se han planteado cuatro enfoques de ensemble no supervisado:

1. Post-procesado de mascaras individuales.
2. Operadores l6gicos para hibridar varios modelos (OR, AND, voto mayoritario).
3. Combinacion de post-procesado y operadores logicos.

4. Operadores sobre la salida de probabilidades de varios modelos (softmazx, maz,

suma ponderada, reescalado de probabilidades).

En las siguientes secciones se describe detalladamente en qué consiste cada

estrategia, asi como su légica e implementacion.

3.1. Post-procesado de mascaras individuales

Antes de comenzar con la combinacién de modelos, se ha implementado un
algoritmo de procesamiento de imagenes disenado para eliminar cierto ruido presente
en las mascaras de prediccion generadas por los modelos base.

Como se puede observar en la Figura 3.1, algunas mascaras de prediccion contienen
imperfecciones, principalmente en forma de pequenos grupos de pixeles aislados que

son ruido y realmente no forman parte de ninguna de las estructuras del blastocisto.
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Deeplab HRNet U-Net RDU-Net

Sllellcl[a]

Figura 3.1: Ejemplos de predicciones con ruido de los distintos modelos utilizados.

Ademas, otra imperfeccién en las predicciones (excepto en las del modelo RDU-Net)
es que contienen un suavizado o degradado de pixeles en los bordes de cada estructura,
como se observa en la Figura 3.2. Este efecto no estd presente en el ground truth
(anotaciones de referencia), y afecta negativamente a la precision de los bordes. La
causa del suavizado es un resize (reescalado) realizado en el cédigo original para la
obtencion de las mascaras, al transformar las méascaras del tamano fijo de salida de los

modelos al tamano original de la imagen de entrada.

Figura 3.2: Ejemplo de suavizado de bordes en una prediccion.

Para mitigar estos problemas, tanto los pixeles aislados con ruido como el
suavizado de bordes, se han implementado tres versiones de un mismo algoritmo de
post-procesado. El algoritmo base se centra en el problema de los pixeles aislados, y
consiste en conservar para cada estructura (ZP, TE, MCI) las componentes conexas
cuya area supere un umbral minimo establecido, es decir, descarta los agrupamientos de
pixeles aislados pequenos que suelen representar ruido. El umbral de area minima se ha
determinado de forma empirica, buscando un equilibrio entre eliminar imperfecciones
y conservar las regiones relevantes. Para el desarrollo de este algoritmo se ha utilizado
la librerfa de visién por computador OpenC'V [33] en Python.

Las tres versiones implementadas comparten este algoritmo base de eliminacion
de componentes conexas pequenas, y solo se diferencian en los pasos de preproceso
aplicados para corregir el suavizado de bordes antes de aplicar el algoritmo. A

continuacion se describen dichas variantes.
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V1: Sin preprocesado. En esta primera versién, se aplica directamente el algoritmo
base de eliminaciéon de componentes conexas pequenas sin ningin paso previo de
preprocesado. Esta version presenta un problema; los pixeles del suavizado de bordes se
eliminan ya que no coinciden exactamente con los valores definidos para las estructuras
(fondo: 0, ZP: 75, TE: 255, MCI: 150). Como resultado, quedan huecos entre las

estructuras, como se puede observar en la Figura 3.3.

Figura 3.3: Ejemplo de bordes de estructuras tras aplicar algoritmo V1.

V2: Eliminacién previa del suavizado. Esta variante busca resolver el problema
anterior eliminando primero el suavizado de bordes antes de aplicar el algoritmo base.
Para eliminar el suavizado, todos los pixeles que no coinciden exactamente con los
valores esperados, son reemplazados por el valor de la estructura mas cercana al pixel.
Para determinar dicha estructura, se busca en las cuatro direcciones cardinales (arriba,
abajo, izquierda, derecha).

Aunque esta solucién elimina los huecos entre estructuras (ver Figura 3.4), presenta
dos inconvenientes: tiene un mayor coste computacional y sobreestima el area de las

estructuras, ya que todos los pixeles del degradado se asignan a la estructura mas

cercana, incluso aquellos que deberian considerarse como fondo.

Figura 3.4: Ejemplo de bordes de estructuras tras aplicar algoritmo V2.
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V3: Eliminacién eficiente del suavizado. La tercera versiéon busca mantener los
beneficios de la V2 pero con una implementacion maés eficiente y precisa. Para ello, los
pixeles del suavizado de bordes se reasignan al valor mas cercano en intensidad entre
los cuatro valores vélidos (0, 75, 150, 255), sin necesidad de inspeccionar direcciones
vecinas. Este enfoque reduce el coste computacional y mejora la precisiéon en la

separacién de estructuras, como se puede ver en la Figura 3.5.

b

Figura 3.5: Ejemplo de bordes de estructuras tras aplicar algoritmo V3.

Para demostrar la efectividad de esta versién, en la Figura 3.6 se muestran los

resultados de aplicar el algoritmo V3 a las predicciones ruidosas originales.

Predicciones ruidosas originales

Sllellel[a]

Predicciones tras aplicar algoritmo V3

Figura 3.6: Comparacion de predicciones antes y después de aplicar el algoritmo V3

Cabe destacar que esta solucion tampoco es perfecta. Debido a las similitudes en los
valores, algunos de los pixeles entre la ZP y el TE son asignados erréneamente al valor
de la MCI, y por tanto son eliminados por el algoritmo base al no superar el umbral
de area minima, dejando pequenos huecos entre las estructuras. En la Seccién 3.4 se

propone una mejor solucién a este problema.
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3.2. Operadores l6gicos hibridando varios modelos

La siguiente estrategia de ensemble no supervisado implementada consiste en
combinar las mascaras de prediccion generadas por los distintos modelos utilizando
operadores légicos clasicos (OR, AND) y la técnica de voto mayoritario. Estas técnicas
son comunmente utilizadas en tareas de ensemble, ya que permiten fusionar la
informacion de varios modelos para aprovechar sus puntos fuertes y compensar sus
debilidades. Dependiendo del método utilizado, se puede priorizar la exhaustividad
(recall) o la precisién [26] de la segmentacion. A continuacién, se describen las diferentes

técnicas aplicadas, su proposito y su implementacion.

Operador l6gico OR. El operador OR es 1til para aumentar el recall, aunque puede
bajar la precisién. Aplicando este operador a las salidas de varios modelos se consigue
que un pixel se considere perteneciente a una estructura si al menos uno de los modelos
lo ha predicho como tal. Esta estrategia es 1util para asegurar que se incluyan todos los
pixeles predichos de regiones relevantes. Es el caso de la MCI, esta estructura formara
el futuro cuerpo del feto, y su segmentacién completa es fundamental, especialmente
si se desea aplicar técnicas invasivas como el PGT-A, que requieren extraer células del
embrién sin danar dicha estructura.

Se han implementado y evaluado diversas combinaciones de modelos,
principalmente utilizando los dos modelos que mejores resultados obtienen en el estudio

de Villota et al. (DeepLab y HRNet). En concreto, se ha implementado:

— DeepLab OR HRNet.
— DeepLab OR RDU-Net.

— DeepLab OR HRNet OR U-Net.

DeepLab OR HRNet OR RDU-Net.

Para la implementacion, se ha desarrollado un algoritmo que itera sobre las mascaras
de prediccion de los modelos implicados y aplica la operacion OR para cada una de
las estructuras del blastocisto (ZP, TE, ICM) por separado. Después, los resultados
de cada estructura se recombinan en una sola imagen final, resolviendo los posibles
conflictos con prioridad MCI > TE > ZP. Es decir, si un mismo pixel es asignado
simultaneamente a varias estructuras, se le termina asignando la estructura de mayor
prioridad. Como ya se ha comentado, la prioridad se establece teniendo en cuenta que

la segmentacién de la MCI es especialmente critica.
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Operador logico AND. El operador AND tiene el efecto contrario, aumenta la
precisién a costa del recall. Con este operador se consigue que un pixel solo se incluya
en una estructura si todos los modelos implicados coinciden en su prediccién. Es una
estrategia mas conservadora, 1til para evitar falsos positivos.

Como aplicar AND con modelos de bajo rendimiento puede perjudicar el resultado,

los experimentos se han centrado en combinar inicamente los mejores modelos:

— DeepLab AND HRNet.

— DeepLab AND RDU-Net (buscando una segmentacién precisa de la MCI).

La implementacién es similar a la anterior, aplicando el AND por separado a cada
estructura, y combinando los resultados en una sola imagen final, sin necesidad de

priorizar estructuras, ya que el AND no produce conflictos.

Voto mayoritario. El voto mayoritario es otra técnica comun de ensemble que ofrece
un equilibrio entre OR y AND. Con esta técnica se consigue que un pixel solo se incluya
en una estructura si la mayoria de modelos participantes coinciden en su prediccién.
Esta estrategia permite corregir errores aislados cometidos por un modelo concreto.
Para evitar empates frecuentes si utilizaramos los cuatro modelos, se ha limitado el

voto mayoritario a grupos de tres. Las combinaciones implementadas han sido:

— VotoMayoritario(DeepLab, HRNet, U-Net).

— VotoMayoritario(DeepLab, HRNet, RDU-Net).

Del mismo modo que los anteriores, el algoritmo implementado itera sobre las mascaras
de los modelos implicados y aplica el criterio de mayoria para cada estructura por

separado, combinando los resultados al final.

3.3. Combinacién de post-procesado y operadores
légicos

La siguiente estrategia de ensemble no supervisado consiste en hibridar las dos
estrategias previas, buscando reducir el ruido en las predicciones y al mismo tiempo
combinar las salidas de varios modelos. Para ello, primero se han obtenido las méscaras
“limpias” resultantes de aplicar el mejor algoritmo de post-procesado (el algoritmo
denotado como V3) a las predicciones de cada modelo. Estas méascaras corregidas se han
combinado entre si utilizando operadores l6gicos y voto mayoritario, del mismo modo

que en la Seccién 3.2. Ademads, también se ha experimentado con algunas variantes en
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las que no se aplica el post-procesado a todos los modelos, y otras en las que se combinan
operaciones de OR con AND. Mas concretamente, las combinaciones implementadas

son las siguientes:

— V3-DeepLab OR V3-HRNet (denominado como OR(V3-DL, V3-HR) en el
Capitulo 5).

— V3-DeepLab OR V3-RDU-Net.
— DeepLab OR V3-RDU-Net.
— (V3-HRNet AND RDU-Net) OR V3-DeepLab.

— (V3-HRNet AND Deeplab) OR V3-RDU-Net.

VotoMayoritario(V3-DeepLab, V3-HRNet, V3-RDU-Net).

— VotoMayoritario(DeepLab, V3-HRNet, V3-RDU-Net).

Estas combinaciones se han elegido en funcién de los resultados previos, tratando de

optimizar ain mas las mejores estrategias.

3.4. Operadores sobre la salida de probabilidades
de varios modelos

La tultima estrategia de ensemble no supervisado implementada se basa en operar
sobre las probabilidades de salida de los modelos. Los modelos utilizados no generan
mascaras segmentadas directamente, sino que devuelven un tensor tridimensional de
probabilidades con la forma (n_clases, alto_img, ancho_img), que contiene para cada
pixel de la imagen de entrada, la probabilidad de pertenecer a cada una de las
cuatro posibles clases (fondo, ZP, TE y MCI). Para obtener la méscara final de la
segmentacion, a este tensor, se aplica al tensor la funcién argmaz, que asigna a cada
pixel la clase con la probabilidad més alta. El modelo RDU-Net es un caso especial
que utiliza dos variantes, una para predecir la probabilidad de TE y otra para la de
MCI. En esta seccién, se exploran diferentes técnicas de ensemble aplicadas a estas
probabilidades de salida, antes de ser convertidas en méscaras de segmentacion.

Todas las técnicas desarrolladas tienen una base comun: se obtiene el tensor de
probabilidades de cada modelo y se aplica la funcién softmaz [34]. Esta funcién
normaliza las probabilidades de modo que sumen 1 en cada pixel. A continuacion,
en lugar de aplicar la funcién argmaz inmediatamente, se realiza primero el reescalado
con interpolacién bilineal [35] del propio tensor de probabilidades, asi al convertirlo

a mascaras segmentadas no hace falta reescalar las mascaras, y por lo tanto no se
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genera el suavizado de bordes de estructuras descrito en la Seccion 3.1, logrando asi
una segmentacién mas precisa. Esta operacion de reescalado de probabilidades se ha

aplicado a todos los métodos de ensemble descritos a continuacién.

Combinacién de probabilidades reescaladas. Como la operacion reescalado de
probabilidades logra una mejor segmentacién, se han vuelto a combinar las mascaras
de los mejores modelos tras aplicar este reescalado, de manera similar a la seccion 3.3.
En particular, se han probado las siguientes combinaciones, buscando maximizar el

recall de las estructuras (ZP, TE y especialmente MCI):

— RP-DeepLab OR RP-HRNet (denominado como OR(RP-DL, RP-HR) en el
Capitulo 5)

— RP-DeepLab OR RP-HRNet OR RP-RDU-Net

— RP-DeepLab OR RP-HRNet OR RP-RDU-Net OR RP-U-Net

Donde el prefijo RP- indica que se ha aplicado previamente el reescalado

probabilistico.

Operaciéon max. FEsta estrategia de ensemble consiste en combinar las
probabilidades de salida de varios modelos, eligiendo para cada pixel, la clase que
indica el modelo que mas seguro de su prediccion esté, es decir, la clase asociada a
la probabilidad maxima de entre todos los modelos. Esta técnica es ttil para resolver
ambigiiedades en pixeles conflictivos, ya que tiende a descartar predicciones erréneas
de baja confianza, aunque es menos eficaz cuando alguno de los modelos realiza
predicciones incorrectas con seguridad. Por lo tanto, las combinaciones implementadas
aplicando esta estrategia se centran en los mejores modelos (DeepLab y HRNet), y son

las siguientes:

max(Deeplab, HRNet) (denominado como Max(DL, HR) en el Capitulo 5)
— max(DeepLab, RDU-Net)

— max(HRNet, RDU-Net)

— max(DeepLab, HRNet, RDU-Net)

— max(DeepLab, HRNet, U-Net)

Para la implementacion, se ha desarrollado un algoritmo que itera sobre las imagenes
de un directorio de entrada, obtiene los tensores de probabilidad de los modelos

implicados, y los procesa aplicando la operacién max. En concreto, para cada pixel
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de una imagen, primero se mantiene la probabilidad maxima por clase de entre todos

los modelos, y luego se asigna al pixel la clase con la probabilidad mas alta.

Suma ponderada. Esta estrategia de ensemble consiste en combinar las
probabilidades de salida de varios modelos aplicando una suma ponderada, es decir,
se multiplican las probabilidades de cada modelo por un peso especifico asignado
previamente, y se suman clase por clase. Posteriormente, se asigna a cada pixel la
clase con la probabilidad total més alta. Esta técnica es til para combinar varios
modelos pudiendo ajustar la influencia de cada uno segin su rendimiento. En este
caso, se han implementado multiples combinaciones de 2, 3 y 4 modelos, probando

diversas configuraciones de pesos que suman 1 siguiendo la siguiente formula:
Y = a - Ypeeprab + 5 - YirNet + 7 - YRDU-Net + A - YU_Net

con a+B+v+A = 1. En general, se ha dado mas peso a las predicciones de los modelos
DeepLab y HRNet por obtener mejores resultados. Un ejemplo de caso probado es
(o, B,7,A) = (0.4, 04, 0.1, 0.1).

Para la implementacion, se ha desarrollado un algoritmo andlogo al anterior, pero
que en vez de la funcién max, aplica la suma ponderada, multiplicando las predicciones
de cada modelo por su peso, sumandolas por clases, y asignando a cada pixel la clase

con la probabilidad total mas alta.
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Capitulo 4

Estrategias de ensemble
supervisado

En este capitulo se describen las técnicas de ensemble basadas en aprendizaje
supervisado que han sido desarrolladas para mejorar la segmentacién automatica de
blastocistos. A diferencia de las estrategias no supervisadas del Capitulo 3, estas
técnicas se basan en el entrenamiento de modelos de aprendizaje automatico capaces
de aprender cémo combinar de forma déptima las predicciones de los modelos base

(DeepLab, HRNet, U-Net y RDU-Net).

En total, se han explorado tres algoritmos supervisados:
1. Regresiéon Logistica.
2. Perceptrén Multicapa (MLP, por sus siglas en inglés Multilayer Perceptron).

3. Random Forest.

Estos algoritmos requieren como entrada un conjunto de datos en forma de una
matriz de dimensiones (n_muestras, n_atributos). En este caso, cada muestra
representa un pixel y sus atributos son la combinacién de las probabilidades de los
modelos base para ese pixel. Ademads se requiere un vector de etiquetas (ground truth)
asociadas a cada muestra para el entrenamiento, de tamano (n_muestras). Por tanto,
ha sido necesario construir conjuntos de datos especificos a partir de las salidas de
probabilidad de los modelos base, para poder representar el problema en el formato
requerido por los algoritmos supervisados. A continuacién, se describe el proceso de
construccién de conjuntos de datos y los experimentos realizados con los distintos

algoritmos.
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4.1. Construccion de conjuntos de datos

Para construir el conjunto de datos que se utilizarda en las técnicas de ensemble
supervisado, se emplearan los dos conjuntos de datos de partida (SAEEDI y QUIRON).
El conjunto de entrenamiento se formara a partir de las imagenes del conjunto de
entrenamiento de SAEEDI, y el conjunto de evaluacion se formara a partir del conjunto
de test de SAEEDI y el conjunto integro de QUIRON (los mismos que se han utilizado
para evaluar el resto de estrategias no supervisadas).

El proceso de construccion de los conjuntos de datos comienza con la obtencién de
las predicciones de los modelos base (DeepLab, HRNet, U-Net y RDU-Net) para cada
imagen. Después, las predicciones de cada modelo se concatenan para cada pixel, y
todos los pixeles de todas las imagenes se concatenan para formar el conjunto de datos
de partida para los modelos de ensemble supervisados. De esta manera, cada pixel se

representa como un vector de 14 atributos donde:

— 12 atributos (4 clases x 3 modelos) se corresponden a las probabilidades de
pertenecer a cada una de las cuatro clases (fondo, ZP, TE, MCT) segun los modelos
DeepLab, HRNet y U-Net.

— 2 atributos se corresponden a las probabilidades de TE y MCI del modelo
RDU-Net.

Por tanto, los conjuntos de datos implementados tienen la estructura
(n_pixeles_dataset, 14). A continuacion, se describen las distintas variantes de

conjuntos de datos construidos y su proposito.

4.1.1. Conjuntos de datos de entrenamiento

Para el entrenamiento de los modelos, se ha construido un conjunto completo
utilizando todos los datos disponibles, y varios conjuntos de tamano reducido para
agilizar el entrenamiento y la selecciéon de hiperparametros, sin comprometer la calidad
del aprendizaje.

Para cada uno de estos conjuntos, se ha generado también un vector de etiquetas de
ground truth (denominado y_train), que asocia a cada pixel un valor entero entre 0 y
3, correspondiente a su clase real (fondo: 0, ZP: 1, TE: 2, MCI: 3) segun las anotaciones

de SAEEDI. En concreto, los conjuntos de entrenamiento construidos son:

Conjunto completo. Para construir este conjunto, se incluyen todos los pixeles de
todas las imagenes del conjunto de entrenamiento de SAEEDI. El conjunto resultante

tiene n_muestras = 38663 787, con 14 atributos por muestra.
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Conjunto reducido de pixeles con incertidumbre. Este conjunto incluye
unicamente los pixeles en los que al menos uno de los modelos base presenta
incertidumbre, es decir, cuando la probabilidad méxima asignada por ese modelo es
inferior a un umbral predefinido de 0.7. En este caso, el conjunto resultante tiene
n_muestras = 3506 331.

Esta estrategia permite reducir en un orden de magnitud el tamano del conjunto
completo a la hora de realizar el entrenamiento, descartando los pixeles en los que
todos los modelos estan seguros de su prediccion. La hipotesis subyacente es que, si el
algoritmo supervisado aprende a clasificar correctamente los pixeles con incertidumbre,

generalizard bien a aquellos en los que hay alta confianza.

Conjunto reducido de pixeles conflictivos. Incluye tnicamente los pixeles
conflictivos, es decir, aquellos en los que al menos dos modelos base no estan de acuerdo
en su prediccion de clase. El conjunto resultante tiene n_muestras = 2460 378.

Este conjunto representa una version atin mas reducida que el anterior, centrada solo
en los casos en los que hay desacuerdo entre modelos, que podrian aportar informacién

mas discriminatoria para el entrenamiento.

Conjunto reducido combinado. Este conjunto incluye tanto los pixeles con
incertidumbre como los conflictivos, permitiendo incluir casos donde puede haber alta
certeza pero desacuerdo, o incertidumbre sin conflicto. El conjunto resultante tiene
n muestras = 4207 767.

De esta manera se obtiene una representacion mas completa incluyendo ambos casos

problematicos.

Conjunto reducido ampliado. Este conjunto es una extension del conjunto
combinado que incluye también una muestra aleatoria del 5% de los pixeles en los que
no hay ni incertidumbre ni conflicto, con el objetivo de aportar cierta representacién
del conjunto general. Para este caso n_muestras = 5930 468.

La hipdtesis es que esta combinacion mejorara la capacidad de los algoritmos

entrenados para generalizar tanto en casos ambiguos como en situaciones mas claras.

4.1.2. Conjuntos de evaluacién

Se han construido los dos siguientes conjuntos para evaluar el rendimiento de los
modelos supervisados entrenados y compararlos con el resto de estrategias de ensemble

implementadas.
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Conjunto de evaluacién publico (Saeedi). Construido a partir de todos los
pixeles de las imagenes del conjunto de test de SAEEDI. El conjunto resultante tiene

n_muestras = 6725 3R9.

Conjunto de evaluacién privado (Quirén). Construido a partir de todos los
pixeles de las imagenes del conjunto integro de QUIRON. En este caso n_muestras =
6247 000.

Para evaluar los modelos entrenados, se obtienen sus predicciones sobre estos
conjuntos de datos. Estas predicciones tienen la forma de un vector unidimensional
de tamano (n_pixeles dataset), que contiene para cada pixel de entrada, la etiqueta
de clase predicha como un niimero entero entre 0 y 3 (fondo: 0, ZP: 1, TE: 2, MCI:
3). Con el fin de comparar estas predicciones con el resto de técnicas de ensemble,
se ha implementado una funciéon que transforma el vector de predicciones en imagenes
segmentadas, manteniendo el tamano original de cada imagen. Esta conversién permite
evaluar los resultados usando las métricas habituales y facilita la visualizacion del

rendimiento del modelo.

4.2. Modelos entrenados

Utilizando los conjuntos de datos previamente descritos, se han entrenado y
evaluado varios modelos de clasificacion supervisada con el objetivo de predecir la
clase de cada pixel a partir de las salidas combinadas de los modelos base. Todos los
modelos se han implementado utilizando la libreria de Python Scikit-learn [36].

Para cada modelo, se han realizado varios experimentos con los distintos conjuntos
de entrenamiento anteriormente presentados. En general, se han utilizado los conjuntos
de tamano reducido para explorar combinaciones de hiperparametros de forma eficiente,
y posteriormente se han realizado pruebas finales sobre el conjunto completo.

A continuacién, se describen los modelos entrenados y los hiperpardametros

utilizados:

Regresién Logistica. La Regresion Logistica [37] es un modelo de clasificacion que
ajusta una funcién lineal a los datos de entrada y luego transforma la salida usando
una funcién sigmoide [38] (para clasificacién binaria) o softmaz [34] (para clasificacién
multiclase), obteniendo las probabilidades de pertenencia a cada clase. Es un modelo
sencillo y eficiente, aunque solo modela relaciones lineales en los datos, por lo que puede
no ser suficiente para capturar patrones complejos. En este trabajo se han entrenado

modelos de Regresion Logistica multiclase con diferentes configuraciones metodoldgicas
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entre las que destacan:

Técnicas de regularizacién: se ha evaluado el modelo sin regularizacién, con
regularizacion L, (Ridge) [39] y combinando regularizacion L, (Lasso) [40] y
L. La regularizacién Ly anade a la funcién de pérdida la suma de los cuadrados
de los coeficientes, penalizando que los pesos crezcan demasiado, lo que ayuda
a reducir el sobreajuste. L; penaliza la suma de los valores absolutos de los
coeficientes, intentando anular los coeficientes menos relevantes. Esto puede
actuar como una seleccion automatica de atributos y reducir la colinealidad. La
libreria de Scikit-learn permite controlar la fuerza de la regularizacion a través
del hiperpardmetro C. Se han hecho pruebas con los siguientes valores C=1.0,

0.1, 0.01.

Algoritmos de optimizacién: se han probado los algoritmos de optimizacion
L-BFGS y SAGA [41]. Ambos son adecuados para clasificacién multiclase y

conjuntos de datos grandes, y saga permite combinar regularizacion L; y Lo.

Perceptrén Multicapa (MLP). El MLP [42] (del inglés, MultiLayer Perceptron)

es un modelo de red neuronal compuesto por varias capas de neuronas interconectadas,

una capa de entrada, una o varias capas ocultas intermedias, y una capa de salida.

A diferencia de la Regresién Logistica, el MLP puede modelar relaciones no lineales

complejas mediante el uso de funciones de activacion no lineales como la unidad

lineal rectificada (ReLU, por sus siglas en inglés Regularized Linear Unit) [43]. Sin

embargo, tiene un mayor coste computacional y requiere un ajuste cuidadoso de los

hiperparametros. Las principales configuraciones metodologicas probadas son:

Arquitectura de la red: se han probado varias configuraciones de capas ocultas,
como (128, 64), (256, 128) y (128, 64, 32). Cuantas m&s capas y neuronas,
mayor capacidad para modelar patrones complejos, aunque también hay mayor

riesgo de sobreajuste.

Algoritmo de optimizacién: se ha utilizado Adam [44], un algoritmo basado en
descenso de gradiente estocastico que ajusta automaticamente el learning rate

durante el entrenamiento.

Regularizacion: se ha aplicado regularizaciéon Lo para evitar el sobreajuste con
diferentes coeficientes de penalizacién (alpha=0.0001, 0.01, 0.1, 0.5, 0.7,
1.0).

Escalado de atributos: como paso previo al entrenamiento, se han normalizado

los datos de entrada (media 0 y varianza 1) para mejorar la convergencia.
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— FEarly stopping: se ha utilizado el parametro de early_stopping para detener
automaticamente el entrenamiento cuando no haya mejora en el conjunto de
validacién durante 10 iteraciones seguidas, para evitar sobreajuste. También se
ha establecido una tolerancia, que indica la minima mejora que tiene que haber
en cada época para que se considere que el modelo estda aprendiendo. Se han

probado los siguientes valores de tolerancia, t01=0.0001, 0.00001.

Random Forest. Random Forest [45] (bosque aleatorio) es un modelo basado en
entrenar multiples drboles de decisién independientes (ver Figura 4.1). Cada arbol se
entrena con diferentes subconjuntos aleatorios del conjunto original, y en cada decision,
se considera solo un subconjunto aleatorio de atributos. La clasificacién final se obtiene

combinando las salidas de todos los drboles por voto mayoritario.

X dataset
N, features N, features N, features N, features
P . N S
TREE #1 TREE #2 TREE #3
CLASS C CLASS D CLASS B

| MAJORITY VOTING |

| FINAL CLASS |

Figura 4.1: Esquema del modelo Random Forest (Fuente: [46]).
Esto resulta en un modelo eficiente y robusto al sobreajuste. Entre los
hiperparametros probados destacan:
— n_estimators=50, 100: nuimero de arboles en el bosque.

— max_depth=5, 10, 15, 20, 30: profundidad méxima de los arboles. Menos

profundidad ayuda a evitar el sobreajuste.

min_samples_split=2, 5: nimero minimo de muestras para dividir un nodo.

— min_samples_leaf=1, 2: nimero minimo de muestras para considerarse hoja.
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Capitulo 5

Resultados y analisis

5.1. Comparacién con los modelos base

Las Tablas 5.1, 5.2, 5.3, 5.4, 5.5 y 5.6 a continuacién resumen los resultados més
relevantes obtenidos en los conjuntos de test SAEEDI y QUIRON para cada una de las
estructuras del blastocisto (ZP, TE, MCI), utilizando tanto las técnicas de ensemble no
supervisado como las supervisadas. Los resultados se comparan con el mejor modelo
base del estudio de Villota et al. [11], que puede considerarse el mejor modelo piiblico

del estado del arte.

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.967 0.922 0837  0.872 0.783
OR(V3-DL, V3-HR)  0.969 0896  0.894  0.891 0.809
OR(RP-DL, RP-HR)  0.969 0897  0.892  0.890 0.808
Max(DL, HR) 0.970 0915  0.877  0.891 0.811
Sum(0.4DL, 0.6HR)  0.970 0.909  0.878  0.889 0.808
RegLog_comb 0.970 0.905  0.886  0.891 0.811
MLP_conf_256 0.969 0873  0.918  0.891 0.808
MLP_comb 0.968 0878 0911  0.890 0.807
MLP_completo 0.969 0899  0.889  0.890 0.809
RandFor_comb 0.969 0.900  0.889  0.890 0.809

Tabla 5.1: Resultados en el conjunto de test de SAEEDI para la segmentacion de la ZP
(Mejor en negrita).
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Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.968 0.834 0.739 0.780 0.648
OR(V3-DL, V3-HR) 0.970 0.814 0.808 0.809 0.685
OR(RP-DL, RP-HR) 0.970 0.816 0.804 0.807 0.684
Max (DL, HR) 0.970 0.858 0.741 0.793 0.665
Sum(0.4DL, 0.6HR) 0.970 0.843 0.767 0.800 0.675
ReglLog_comb 0.971 0.839 0.783 0.807 0.684
MLP _conf_256 0.967 0.747 0.903 0.815 0.693
MLP_comb 0.968 0.759 0.887 0.815 0.694
MLP _completo 0.971 0.808 0.830 0.816 0.696
RandFor_comb 0.970 0.822 0.805 0.811 0.688

Tabla 5.2: Resultados en el conjunto de QUIRON para la segmentacién de la ZP (Mejor
en negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.970 0.876 0.838 0.854 0.748
OR(V3-DL, V3-HR) 0.971 0.838 0.908 0.868 0.770
OR(RP-DL, RP-HR) 0.971 0.827 0.922 0.868 0.770
Max (DL, HR) 0.973 0.864 0.890 0.873 0.780
Sum(0.4DL, 0.6HR) 0.973 0.861 0.890 0.872 0.777
Regl.og_comb 0.973 0.865 0.888 0.873 0.779
MLP _conf_256 0.970 0.823 0.921 0.866 0.767
MLP_comb 0.970 0.815 0.931 0.866 0.767
MLP _completo 0.972 0.866 0.875 0.868 0.771
RandFor_comb 0.973 0.861 0.884 0.869 0.774

Tabla 5.3: Resultados en el conjunto de test de SAEEDI para la segmentacion del TE
(Mejor en negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.964 0.855 0.727 0.781 0.647
OR(V3-DL, V3-HR) 0.967 0.820 0.815 0.812 0.690
OR(RP-DL, RP-HR) 0.967 0.812 0.828 0.815 0.694
Max(DL, HR) 0.967 0.857 0.763 0.802 0.676
Sum(0.4DL, 0.6HR) 0.967 0.851 0.768 0.803 0.677
ReglLog_comb 0.967 0.855 0.764 0.803 0.677
MLP _conf_256 0.966 0.805 0.828 0.811 0.690
MLP_comb 0.966 0.794 0.849 0.816 0.696
MLP _completo 0.968 0.820 0.827 0.819 0.700
RandFor_comb 0.967 0.859 0.758 0.801 0.673

Tabla 5.4: Resultados en el conjunto de QUIRON para la segmentaciéon del TE (Mejor
en negrita).
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Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.983 0.885 0.873 0.872 0.795
OR(V3-DL, V3-HR) 0.983 0.873 0.920 0.889 0.808
OR(RP-DL, RP-HR) 0.983 0.868 0.924 0.889 0.807
Max (DL, HR) 0.983 0.902 0.894 0.890 0.810
Sum(0.4DL, 0.6HR) 0.983 0.900 0.889 0.886 0.806
Reglog_comb 0.984 0.911 0.883 0.887 0.811
MLP _conf 256 0.983 0.892 0.895 0.881 0.806
MLP _comb 0.984 0.899 0.892 0.883 0.809
MLP completo 0.984 0.907 0.890 0.890 0.813
RandFor_comb 0.983 0.902 0.880 0.880 0.805

Tabla 5.5: Resultados en el conjunto de test de SAEEDI para la segmentacion de la
MCI (Mejor en negrita).

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Villota et al. [11] 0.981 0.828 0.721 0.732 0.649
OR(V3-DL, V3-HR) 0.982 0.765 0.759 0.745 0.662
OR(RP-DL, RP-HR) 0.982 0.801 0.763 0.747 0.662
Max(DL, HR) 0.980 0.752 0.695 0.701 0.627
Sum(0.4DL, 0.6HR) 0.981 0.789 0.709 0.713 0.638
Regl.og_comb 0.980 0.756 0.692 0.700 0.626
MLP_conf_256 0.982 0.808 0.755 0.746 0.662
MLP_comb 0.982 0.812 0.750 0.743 0.661
MLP _completo 0.982 0.815 0.743 0.736 0.656
RandFor_comb 0.980 0.757 0.690 0.698 0.623

Tabla 5.6: Resultados en el conjunto de QUIRON para la segmentacién de la MCI (Mejor
en negrita).

A continuacién, se describen los resultados segun el tipo de ensemble utilizado.

5.1.1. Meétodos no supervisados que operan con mascaras.

En primer lugar, respecto a los métodos de ensemble no supervisados que operan
directamente sobre las mascaras de segmentacién, el modelo con mejor rendimiento
es OR(V3-DL, V3-HR), que aplica la operacién OR entre las mascaras de DeepLab y
HRNet tras un preprocesado con el algoritmo V3. Este modelo mejora ligeramente la
accuracy respecto al mejor modelo de Villota et al., pero destaca especialmente por
el aumento en recall: de 0.83 a 0.89 en ZP, de 0.83 a 0.90 en TE y de 0.87 a 0.92
en MCI, para el conjunto de SAEEDI. Se obtienen mejoras similares en el conjunto de
QUIRON, sugiriendo que el modelo generaliza bien a conjuntos de datos con distinta

procedencia. La mejora en la accuracy se debe principalmente al preprocesado, que
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elimina imperfecciones como el suavizado de bordes y agrupaciones pequenas de pixeles
erréneos. Por otro lado, el aumento del recall se debe a la operacién OR, que permite
incluir pixeles predichos por cualquiera de los dos modelos base. Los otros métodos de
combinacion de mascaras no han obtenido tan buenos resultados; el operador AND por
ser mas restrictivo a la hora de incluir pixeles y el voto mayoritario por incorporar la

informacion de modelos de peor rendimiento como U-Net o RDU-Net.

5.1.2. Meétodos no supervisados que operan con
probabilidades.

En cuanto a los métodos no supervisados que operan sobre las probabilidades de
salida de los modelos base, destacan los modelos: OR(RP-DL, RP-HR), Max(DL, HR)
y Sum(0.4DL, 0.6HR). El que mejor rendimiento demuestra es OR(RP-DL, RP-HR),
que es similar al anterior OR(V3-DL, V3-HR), pero en este caso, en vez de aplicar el
preprocesamiento V3, se aplica un reescalado de las probabilidades al tamano original
de la imagen. Este modelo obtiene un rendimiento muy similar al anterior, pero con un
aumento del recall ain mayor, especialmente en TE (de 0.83 a 0.92) y MCI (de 0.87 a
0.92), lo que lo convierte en uno de los modelos con mayor recall en general.

Respecto a las otras estrategias de combinaciéon de probabilidades, el modelo
Max(DL, HR), que selecciona el valor méaximo entre las predicciones de DeepLab y
HRNet, es uno de los mejores en cuanto a accuracy en el conjunto de SAEEDI. Sin
embargo, su rendimiento es peor en el conjunto de QUIRON (especialmente para la
MCI, ver Tabla 5.6), sugiriendo que no generaliza tan bien como otros métodos. Por
otro lado, el mejor modelo de suma ponderada, Sum(0.4DL, 0.6HR), que combina las
probabilidades de DeepLab y HRNet con pesos 0.4 y 0.6, obtiene un rendimiento muy

similar al de Max(DL, HR), aunque ligeramente peor en el conjunto de SAEEDI.

5.1.3. Meétodos supervisados.

En cuanto a los métodos que utilizan aprendizaje supervisado, las variantes del MLP
son las que mejores resultados obtienen. Entre ellas, destaca el modelo MLP _completo,
que es un perceptréon con dos capas ocultas de 128 y 64 neuronas, entrenado con
el datastet completo de entrenamiento, con una fuerte regularizacién L2 y early
stopping para evitar el sobreajuste y mejorar la generalizacién. Este modelo presenta un
rendimiento balanceado entre accuracy y recall, con buena generalizacién al conjunto de
QUIRON. Es el modelo con mayor accuracy e indice de Jaccard [26] en la segmentacién
de la ZP y TE en QUIRON (Tablas 5.2 y 5.4), y en la de MCI en SAEEDI (Tabla 5.5).

Las otras variantes, MLP_conf 256 (256 y 128 neuronas) y MLP_comb (128
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y 64 neuronas) han sido entrenadas con el conjunto de pixeles conflictivos y el
conjunto combinado, respectivamente. Ambos modelos ofrecen alternativas con un
recall superior, aunque a costa de una ligera pérdida de accuracy.

Respecto a los otros dos enfoques de aprendizaje supervisado, Regresién Logistica
(RegLog-comb) obtiene resultados similares al modelo Max(DL, HR), con buena
accuracy pero menor recall, y mal resultado en la segmentacion de la MCI en QUIRON.
Por su parte, Random Forest (RandFor_comb) muestra un rendimiento similar a la

regresion, aunque ligeramente peor.

5.1.4. Mejores modelos.

En conclusién, podemos considerar que el mejor modelo global implementado es
el MLP _completo, ya que demuestra un equilibrio sélido entre accuracy y recall,
obteniendo resultados consistentes en ambos conjuntos de evaluacién. No obstante,
si se desea priorizar el recall, que es especialmente critico en estructuras como la MCI,
el modelo OR(RP-DL, RP-HR) es la mejor opcién, al obtener el mayor recall en la
segmentacion de la MCI en ambos conjuntos.

A continuacién, la Figura 5.1 muestra un ejemplo donde se comparan visualmente
las mascaras generadas por los mejores modelos respecto al estudio base de Villota et

al. [11] y al ground truth.
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Saeedi test Quirén

Blastocisto al
microscopio

Ground truth

Villota et al.

MLP_completo

OR(RP-DL,RP-HR)

Figura 5.1: Comparacién de resultados de segmentacion para imagenes de ejemplo de
ambos datasets de evaluacién (SAEEDI y QUIRON).

Como podemos observar en la Figura 5.1, los mejores modelos implementados
consigen mejorar notablemente los resultados del estudio base de Villota et al.,
especialmente en cuanto al recall de estructuras como el TE o la MCI, logrando una
segmentacion mas cercana al ground truth, con contornos mejor definidos y menos
omisiones.

El modelo MLP _completo consigue aumentar el recall sin comprometer la accuracy,
logrando un buen equilibrio global. Por otro lado, el modelo OR(RP-DL, RP-HR),
aunque obtiene el recall mas alto, tiende a ser més permisivo, lo que en ciertos casos
puede dar lugar a mas falsos positivos, como en el caso de la primera muestra de la

Figura 5.1.
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5.2. Comparaciéon con el estado del arte

A continuaciéon, se comparan los resultados de los tres mejores modelos
implementados con el resto de estudios del estado del arte.

Como se puede observar en la Tabla 5.7, el modelo MLP_completo obtiene la
segmentacion de la ZP mas balanceada y precisa, superando al resto de modelos del
estado del arte en cuanto a accuracy, recall, coeficiente de Dice y el indice de Jaccard.
Por otro lado, el modelo MLP_comb obtiene el mayor recall para esta estructura,

aunqgque es menos pI‘eCiSO.

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Kheradmand et al. [14] 0.92 0.80 0.81 - 0.64
Rad et al. [19] 0.95 0.79 0.91 - 0.74
Farias et al. [22] 0.94 0.85 0.69 0.75 -

Villota et al. [11] 0.97 0.92 0.84 0.87 0.78
OR(RP-DL, RP-HR) 0.97 0.90 0.89 0.89 0.81
MLP _comb 0.97 0.88 0.91 0.89 0.81
MLP_completo 0.97 0.90 0.89 0.89 0.81

Tabla 5.7: Comparacién de resultados con el estado del arte para la segmentacién de
la ZP (Mejor en negrita).

En cuanto a la segmentacion del TE (Tabla 5.8), ninguno de los modelos
implementados logra superar las métricas obtenidas por Harun et al. [21], aunque
el modelo MLP _comb iguala su recall. El modelo MLP_completo se posiciona como

segundo mejor en términos generales, tras el modelo de Harun.

Accuracy Precision Recall Dice Coef. Jaccard Idx.

Singh et al. [13] 0.87 0.71 0.83 0.77 0.62
Kheradmand et al. [14] 0.90 0.69 0.80 0.74 0.59
Saeedi et al. [16] 0.86 0.69 0.89 0.77 -

Harun et al. [21] 0.98 0.92 0.93 0.92 0.85
Farias et al. [22] 0.93 0.80 0.59 0.67 -

Villota et al. [11] 0.97 0.88 0.84 0.85 0.75
OR(RP-DL, RP-HR) 0.97 0.83 0.92 0.87 0.77
MLP _comb 0.97 0.82 0.93 0.87 0.77
MLP_completo 0.97 0.87 0.87 0.87 0.77

Tabla 5.8: Comparacion de resultados con el estado del arte para la segmentacién del
TE (Mejor en negrita).

En la segmentacion de la MCI (Tabla 5.9), las mejores métricas vuelven a ser las
de Harun et al. [21]. Le sigue Rad et al. [20], cuyos resultados son comparables a los
obtenidos por el modelo OR(RP-DL, RP-HR) desarrollado en este trabajo.
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Accuracy Precision Recall Dice Coef. Jaccard Idx.

Kheradmand et al. [14] 0.93 0.76 0.56 0.64 0.48
Kheradmand et al. [15] 0.96 - - 0.87 0.77
Saeedi et al. [16] 0.91 0.77 0.84 0.79 -

Saeedi et al. (DLRS) [16] 0.93 0.84 0.78 0.83 -

Rad et al. [17] ; 0.79 087 0.83 0.70
Rad et al. [20] 0.98 0.89 0.92 0.90 0.82
Harun et al. [21] 0.99 0.95 0.94 0.94 0.89
Farias et al. [22] 0.96 0.87 0.62 0.67 -

Villota et al. [11] 0.98 0.88 0.87 0.87 0.79
OR(RP-DL, RP-HR) 0.98 0.87 0.92 0.89 0.81
MLP_comb 0.98 0.90 0.89 0.88 0.81
MLP completo 0.98 0.91 0.89 0.89 0.81

Tabla 5.9: Comparacién de resultados con el estado del arte para la segmentacién de
la MCI (Mejor en negrita).
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Capitulo 6

Conclusiones

En este trabajo se han desarrollado diferentes técnicas de ensemble de modelos de
deep learning que logran mejorar respecto al estado del arte la segmentacién de las
principales estructuras del blastocisto: la ZP, el TE y la MCI. Se han implementado
estrategias tanto no supervisadas como supervisadas, para combinar las predicciones de
cuatro modelos base (DeepLab, HRNet, U-Net y RDU-Net), entrenados y publicados
por Villota et al. [11].

De todos los enfoques desarrollados, los modelos basados en aprendizaje supervisado
han obtenido el mejor rendimiento, especialmente el modelo MLP_completo, un MLP
con dos capas ocultas y fuerte regularizacion. Este modelo ha aprendido a combinar
de manera Optima las probabilidades de salida de los modelos base, mejorando
considerablemente la precision global de la segmentacion. Tiene sentido que el mejor
modelo sea un MLP, ya que este tipo de red neuronal (con al menos una capa oculta)
es un aproximador universal de funciones continuas [47], capaz de replicar funciones
simples como operaciones légicas (OR, AND, XOR, etc.), ademds de capturar patrones
mas complejos en los datos que los métodos no supervisados no pueden modelar.

Sin embargo, si el objetivo clinico es maximizar el recall de la segmentacion para no
omitir regiones relevantes (como en el caso de la MCI, que es crucial para el desarrollo
del embrién), podria utilizarse el modelo OR(RP-DL, RP-HR). Este modelo combina
las méascaras de DeepLab y HRNet tras reescalar sus probabilidades de salida, logrando
el mayor recall en la segmentacion de la MCI en ambos datasets evaluados.

Es importante destacar que el hecho de que se hayan empleado conjuntos de datos
de evaluacion no usados para el entrenamiento confirma que ambos modelos no estan
sobreajustados y arrojan unos resultados confiables.

En comparacién con el estado del arte, las métricas obtenidas superan notablemente
a las del estudio base de Villota et al. [11] en la segmentacién de las tres estructuras
(ZP, TE y MCI), y solo el trabajo de Harun et al. [21] presenta métricas superiores
para el TE y la MCI. Cabe destacar que dicho estudio no publica su codigo, y aunque
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su metodologia ha sido replicada en trabajos posteriores, como el de Villota et al., no
se han logrado reproducir sus resultados. Por lo tanto, este trabajo aporta, hasta la
fecha, los mejores resultados con codigo abierto y reproducibles, en el ambito de la
segmentacion automatica de blastocistos. El codigo, las métricas y los mejores modelos

entrenados se pueden encontrar en el siguiente repositorio ptblico:
https://github.com/816410unizar/Blastocyst-Seg-Ensemble.

De esta manera, se facilita la reproducibilidad y extensién de los resultados por
parte de la comunidad investigadora.

En cuanto a las limitaciones de este trabajo, la principal es que se basa en los
modelos publicados por Villota et al., que fueron entrenados en un conjunto de datos
relativamente pequeno (249 imagenes de blastocistos). Esto puede reducir la capacidad
de generalizacion de los modelos a otros datasets mas diversos. Ademas, si se hubiera
contado con mas capacidades computacionales, habria sido posible entrenar modelos
supervisados mas complejos y optimizar ain mas los hiperparametros.

Como trabajo futuro, seria interesante aplicar las estrategias de ensemble
desarrolladas en conjuntos de datos mas grandes y variados, asi como reentrenar los
modelos supervisados en ellos. Otra linea de trabajo podria centrarse en integrar
las técnicas desarrolladas en software clinico de apoyo directo a los embridlogos.
Adicionalmente, se podria desarrollar una metodologia capaz de predecir el grado de
calidad de cada estructura del blastocisto (presente en las anotaciones de SAEEDI) a
partir de caracteristicas morfologicas cuantitativas extraidas de la segmentacion. Esto
contribuiria a determinar de forma objetiva cudl es el embriéon con mayor potencial de

implantacién en la fecundacion in vitro.
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