

Trabajo Fin de Grado

Integración de funcionalidades avanzadas de

QoS en un entorno SDWLAN

Integration of QoS advanced functionalities in a

SDWLAN environment

Autor

Sergio Espinosa Fumanal

Director

José Ruiz Mas

Departamento de Ingeniería Electrónica y Comunicaciones

Escuela de Ingeniería y Arquitectura

Universidad de Zaragoza

 2025

2

3

A mi familia,

por su constante apoyo y confianza,

por enseñarme el valor del esfuerzo y acompañarme en cada paso.

A mis amigos,

porque no todo es trabajar ni estudiar: siempre queda tiempo para quedar, hacer

deporte y tomar algo, y con vosotros todo eso sabe mejor.

A Cristina,

que me apoya incondicionalmente, me motiva cuando es necesario y apaga los

fuegos cuando no todo va bien. Eres lo que me empuja a seguir adelante sabiendo

que siempre habrá alguien a mi lado.

A mis compañeros,

que me han demostrado que lo que no saca uno solo, lo sacamos todos juntos.

Porque no han faltado buenos momentos, dentro y fuera de clase.

A mis profesores,

en quienes he encontrado la motivación de aprender para resolver mis dudas sobre

lo que, desde niño, siempre me ha parecido magia. Especialmente a Ángela y

Pepe, por vuestra dedicación diaria y preocupación.

Por último, a mis abuelos,

que, estén o no presentes, me enseñan el valor de la vida y en quienes encuentro el

reflejo de lo que realmente es el éxito.

Y a todas las personas que, de un modo u otro,

han formado parte de este camino.

4

5

RESUMEN

Actualmente, es prácticamente inimaginable una vida sin conexión a Internet. Con

la aparición de nuevas tecnologías y el aumento del número de dispositivos electrónicos

surge la necesidad de evolucionar los medios de acceso a Internet para mejorar la

experiencia de usuario al mismo tiempo que los servicios consumidos se vuelven más

exigentes. Más concretamente, son las conexiones inalámbricas las que han

experimentado una evolución significativa en los últimos años, permitiendo mayor

velocidad, menor latencia y una mejor eficiencia en la gestión de los recursos de red.

Tecnologías como el avance hacia Redes Definidas por Software (Software Defined

Network, SDN) y Virtualización de Funciones de Red (Network Functions Virtualization,

NFV) han transformado la manera en que se gestionan y optimizan las infraestructuras

inalámbricas. Bajo este contexto, surge la necesidad de desarrollar soluciones avanzadas

que permitan mejorar la asignación de recursos en redes WLAN, garantizando calidad de

servicio (QoS, Quality of Service) y eficiencia en entornos con alta demanda de

conectividad.

Por ello, se plantea la incorporación de soluciones avanzadas en un entorno de

Redes de Área Local Inalámbricas Definidas por Software (Software-Defined Wireless

Local Area Network, SDWLAN) dentro de un proyecto de investigación centrado en la

optimización de redes WLAN coordinadas basadas en arquitecturas programables.

6

ÍNDICE

RESUMEN .. 5

1. INTRODUCCIÓN .. 13

1.1 Contexto y ubicación del trabajo .. 13

1.2 Objetivos ... 13

1.3 Herramientas ... 14

1.3.1 Kubernetes .. 14

1.3.2 Docker .. 15

1.3.3 Iperf .. 15

1.3.4 Iptables ... 16

1.3.5 Matlab .. 16

1.3.6 Wpa_Supplicant ... 16

1.3.7 Wireshark ... 16

1.4 Estructura de la memoria .. 17

2. ESTADO DEL ARTE - ANTECEDENTES .. 18

2.1 IEEE 802.11 .. 18

2.2 Arquitecturas SDN para redes WLAN ... 20

2.2.1 APs virtuales y arquitecturas SDWN ... 20

2.2.2 Arquitectura SDWN NeWLAN ... 22

2.3 Onoe – Algoritmo de Control de Tasa .. 29

2.4 Slicing – Segmentación de Red y Diferenciación de Tráficos 30

2.4.1 Scheduling .. 32

3. ESCENARIO Y ASPECTOS DE LA INTEGRACIÓN 40

7

3.1 Escenario de trabajo .. 40

3.1.1 Escenario de trabajo - Nivel físico ... 40

3.1.2 Escenario de Trabajo - Nivel lógico ... 42

3.2 Aspectos relevantes a considerar en la integración 45

3.2.1 Modificación del llenado del buffer del kernel 46

3.2.2 Aparición de nuevos tráficos .. 50

3.2.3 Actualización del sistema de slices y colas por handover 53

4. PRUEBAS Y RESULTADOS ... 57

4.1 Experimento 0 – Control de tasa y adwrr con pesos estáticos 57

4.2 Experimento 1 - Variantes de adwrr intra-slice 64

4.3 Experimento 2 – Variantes de adwrr inter-slice 69

4.4 Experimento 3 – Funcionamiento de slicing con handover 74

5. CONCLUSIONES Y LÍNEAS FUTURAS ... 86

5.1 Conclusiones ... 86

5.2 Líneas futuras .. 88

BIBLIOGRAFÍA .. 90

ANEXO A – Tabla de información de índices MCS .. 92

ANEXO B – Pseudocódigo de algoritmos ADWRR .. 93

Redistribución Intra-Slice ... 96

Redistribución Inter-Slice ... 99

8

ÍNDICE DE FIGURAS

Figura 1. Componentes funcionales y protocolos. AP virtual y controladores 23

Figura 2. Plano de datos y plano de control ... 24

Figura 3. Plano de datos. Tráfico uplink: de la STA a Internet .. 25

Figura 4. Estructura de la cabecera IP y DSCP ... 31

Figura 5. Arquitectura de la solución de slicing en el AP .. 32

Figura 6. Reparto airtime. Asignación quantum estática ... 36

Figura 7. Esquema gráfico del escenario a nivel físico .. 41

Figura 8. Esquema gráfico del escenario a nivel software ... 42

Figura 9. Representación del espacio de usuario y el kernel del S.O. .. 46

Figura 10. Esquema de funcionamiento - Control del tamaño del buffer del driver 48

Figura 11. Paquetes no capturados en una realización de una prueba de slicing 49

Figura 12. Captura de Wireshark – Intercambio DHCP con valor DSCP 4.............................. 52

Figura 13. Captura de Wireshark – Cabecera IP del paquete DHCP Discover 52

Figura 14. Instrucción de código bloqueante ... 53

Figura 15. Instrucción de código no bloqueante con medición de tiempo de ejecución 54

Figura 16. Diagrama de flujo del borrado de paquetes en las colas.. 56

Figura 17. Experimento 0. Airtime consumido por cada slice y sus respectivas colas 59

9

Figura 18. Experimento 0. Throughput utilizado por cada slice y sus respectivas colas 60

Figura 19. Experimento 0. Retransmisiones experimentadas ... 61

Figura 20. Experimento 0. Variación MCS de la STA 2 (slice 2, cola 0) 64

Figura 21. Experimento 1. Distribución de airtime por slice ... 66

Figura 22. Experimento 1. Distribución de airtime del slice 1 y slice 2 66

Figura 23. Representación de estadísticas del slice 3 – Experimento 1 68

Figura 24. Representación de estadísticas – Experimento 2 ... 74

Figura 25. Escenario de trabajo para handover a nivel lógico .. 75

Figura 26. Representación de gráficas – Experimento 3 .. 80

Figura 27. Diagrama de tiempos de la antena Wi-Fi Realtek .. 81

Figura 28. Diagrama de tiempos de la antena Wi-Fi Mediatek ... 81

Figura 29. Estadísticas obtenidas con la llamada a la instrucción bloqueante 82

Figura 30. Estadísticas obtenidas con la llamada a la instrucción no bloqueante 84

10

ÍNDICE DE TABLAS

Tabla 1. Ejemplo de funcionamiento de scheduling.. 35

Tabla 2. Asociación entre puerto destino y DSCP .. 39

Tabla 3. Experimento 0. Parámetros de interés .. 58

Tabla 4. Experimento 1. Parámetros de interés .. 65

Tabla 5. Experimento 2. Parámetros de interés .. 70

Tabla 6. Experimento 3. Parámetros de interés AP1 .. 76

Tabla 7. Experimento 3. Parámetros de interés AP2 .. 76

Tabla 8. Información de índices MCS ... 92

Tabla 9. Variables ADWRR .. 94

Tabla 10. Variables de la redistribución Intra-Slice .. 96

Tabla 11. Variables de la redistribución Inter-Slice ... 99

ÍNDICE DE ECUACIONES

Ecuación 1. Cálculo de Airtime medio .. 19

Ecuación 2. Cálculo del número medio de transmisiones .. 20

Ecuación 3. Cálculo del quantum de una cola a partir del quantum del slice 34

Ecuación 4. Cálculo del grado de satisfacción del slice ‘s’ y de la cola ‘i’ 37

Ecuación 5. Control del tamaño del buffer del driver .. 48

11

LISTA DE ACRÓNIMOS

ACK Acknowledge frame, trama Wi-Fi

AMSDU Aggregated MAC Service Data Unit

AP Access Point

BSSID Basic Service Set Identifier

CSA Channel Switch Announcement

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

DIFS Distributed Interframe Space

DSCP Differentiated Services Code Point, campo de la cabecera IP

evolución del campo ToS GRE Generic Routing Encapsulation

LVAP Light Virtual Access Point

MBR Maximum Bit Rate

MCS Modulation Coding Scheme

MSDU MAC Service Data Unit

NFV Network Functions Virtualization

QoS Quality of Service

RSSI Received Signal Strength Indicator

SDN Software Defined Network

SDWLAN Software Defined Wireless Local Area Network

SDWN Software-Defined Wireless Network

SIFS Short Interframe Space

SLA Service Level Agreement

SSID Service Set Identifier

ToS Type of Service, campo de la cabecera IP

WLAN Wireless Local Area Network

12

GLOSARIO

Airtime Tiempo de ocupación del medio inalámbrico durante una

transmisión (o tiempo dado para realizar transmisiones).

Déficit Tiempo (μs) que puede utilizar un slice/cola para transmitir

Handover Proceso donde un cliente Wi-Fi cambia de un punto de acceso a

otro, manteniendo su conexión y logrando una movilidad

transparente sin interrupciones.

Nodo Equipo físico donde se despliega uno o varios pods

Pesos Ponderación usada por las colas para repartirse el quantum de un

slice.

Pod En Kubernetes, conjunto de contenedores que comparten recursos

de red y almacenamiento

Quantum Cantidad fija de tiempo (μs) que se añade periódicamente al déficit

de un slice/cola garantizando tiempo de transmisión.

Scheduling Algoritmos que definen cómo se extraen paquetes de las colas.

Slice Porción o partición lógica de los recursos del punto de acceso para

asignar recursos específicos a conjuntos de tráficos.

Thread Hilo de ejecución que opera en paralelo al código principal

Throughput Tasa de transmisión de datos efectiva lograda, fundamental para

medir el rendimiento del sistema. Se mide en Mbps.

13

1. INTRODUCCIÓN

1.1 CONTEXTO Y UBICACIÓN DEL TRABAJO

El crecimiento de tecnologías emergentes y el aumento de dispositivos conectados

han impulsado la evolución de las redes inalámbricas, lo que ha exigido nuevas soluciones

que mejoren la eficiencia y la calidad del servicio. En este contexto, las arquitecturas

basadas en SDN (Software Defined Network) y NFV (Network Functions Virtualization)

han adquirido protagonismo como herramientas clave para optimizar la gestión de

recursos en entornos WLAN (Wireless Local Area Network) cada vez más complejos.

En este trabajo se plantea la integración de distintas soluciones en un escenario

SDWN (Software-Defined Wireless Network) como parte de un proyecto de investigación

más amplio centrado en la optimización de redes WLAN coordinadas basadas en

arquitecturas programables (Software-Defined Wireless Local Area Network,

SDWLAN). En trabajos anteriores [1][2][3], se han abordado soluciones tanto desde el

punto de vista de arquitecturas de red programables y virtualizadas, como soluciones

específicas que incorporan funcionalidades básicas, hasta llegar a abordar soluciones más

avanzadas relacionadas con la asignación de recursos de red y garantía de QoS. La

finalidad de este trabajo es integrar estas funcionalidades, afrontando los desafíos

inherentes al despliegue del escenario de trabajo y operación conjunta en un entorno real.

1.2 OBJETIVOS

El objetivo principal de este Trabajo Fin de Grado es integrar dos funcionalidades

avanzadas, el algoritmo de control de tasa Onoe y un sistema de slicing, en un entorno

SDWLAN. Esta integración busca mejorar la gestión de recursos inalámbricos y acercar

el sistema a condiciones reales de funcionamiento, superando las limitaciones de entornos

experimentales anteriores.

Para alcanzar este objetivo general, se establecen los siguientes objetivos

específicos:

➢ Analizar y evaluar soluciones SDWLAN existentes, especialmente aquellas

desarrolladas previamente en proyectos anteriores, con el fin de comprender su

14

arquitectura, sus ventajas y sus limitaciones.

➢ Comprender el funcionamiento de las funcionalidades a integrar, es decir, el

algoritmo de control de tasa Onoe y el sistema de slicing, analizando tanto su

diseño como su comportamiento esperado.

➢ Desplegar un entorno funcional contenerizado, en una infraestructura basada en

Kubernetes, que permita aplicar las funcionalidades mencionadas sobre puntos de

acceso reales.

➢ Implementar y adaptar el algoritmo de control de tasa Onoe, permitiendo que se

ejecute en un entorno con múltiples dispositivos conectados y adaptándose

dinámicamente a las condiciones del canal inalámbrico.

➢ Diseñar e integrar un sistema de slicing que gestione el airtime, garantizando una

asignación justa y configurable de los recursos entre diferentes flujos o

dispositivos conectados al punto de acceso.

➢ Identificar y mitigar conflictos o ajustes derivados de la convivencia entre ambas

funcionalidades, garantizando que la integración conjunta de control de tasa y

slicing no interfiera negativamente en el rendimiento global del sistema.

➢ Realizar pruebas experimentales en un entorno real, observando el

comportamiento de la solución desplegada y evaluando su efectividad en

diferentes situaciones de carga y uso.

En conjunto, este trabajo pretende continuar la investigación en redes SDN para

entornos Wi-Fi para que pueda servir como base para futuras mejoras y funcionalidades

más complejas.

1.3 HERRAMIENTAS

A continuación, se detallan las herramientas utilizadas en este trabajo.

1.3.1 Kubernetes

Kubernetes es un sistema de orquestación de contenedores diseñado para

automatizar el despliegue y la gestión de infraestructuras de redes. En este proyecto, se

emplea para construir la infraestructura SDWLAN, gestionando la ejecución de pods

(unidad de despliegue más pequeña en Kubernetes) dentro de nodos (máquinas físicas

donde se ejecutan los pods).

15

En este caso, los nodos son ordenadores de propósito general equipados con los

periféricos necesarios, como las tarjetas Wi-Fi. Por lo tanto, Kubernetes facilita el

despliegue dinámico de los pods requeridos en el escenario de trabajo (por ejemplo, un

punto de acceso, un router o un controlador) y su eliminación cuando ya no sean

necesarios.

Es importante destacar que los elementos clave del escenario, como los puntos de

acceso y los routers, no son dispositivos físicos independientes, sino unidades de software

(pods) desplegadas en nodos físicos que comparten recursos con el resto de pods

desplegados en el nodo.

1.3.2 Docker

Docker es una herramienta que permite empaquetar aplicaciones junto con todas

sus dependencias en contenedores, asegurando un funcionamiento consistente en

cualquier entorno. Al ser una solución portátil, resulta de gran utilidad para utilizar y

replicar la aplicación de manera remota en varios equipos simultáneamente.

En este proyecto, Docker se ha utilizado para contenerizar cada uno de los

elementos de la red de nuestro escenario de trabajo. Principalmente, se ha trabajado en la

contenerización del código en C que compone el punto de acceso OdinAP, para facilitar

su ejecución en diferentes equipos.

Gracias a este enfoque, el despliegue del software es más ágil y escalable,

permitiendo que se ejecute simultáneamente en varios dispositivos de manera eficaz.

1.3.3 Iperf

Para la generación de tráfico en el entorno Wi-Fi se ha utilizado Iperf, un software

de Linux que posibilita la generación de tráfico desde un equipo a otro a partir de la

dirección IP.

En este trabajo se utilizan opciones que permiten personalizar la generación de

tráfico como la duración del flujo, el tamaño de los paquetes generados, la velocidad de

transmisión y el puerto destino. La opción que permite especificar el puerto destino hará

que, con la herramienta iptables, se puedan marcar diferentes tipos de tráfico usando el

campo DSCP (Differentiated Services Code Point) de la cabecera IP.

16

1.3.4 Iptables

Iptables es la herramienta de Linux que se ha utilizado para asignar un valor

determinado a DSCP. Para ello se utiliza la tabla mangle, con la que es sencillo modificar

los paquetes que pasen por la interfaz de red de un dispositivo (para marcarlos con un

valor determinado).

1.3.5 Matlab

Para llevar a cabo una valoración de los resultados y obtener unas medidas precisas

se utiliza Matlab como herramienta de creación de representaciones gráficas. Con ella se

analizan principalmente aspectos como el throughput, el porcentaje de airtime (referido

al tiempo empleado para la transmisión de la información en el medio radio), el número

de paquetes transmitidos, etc.

Es posible crear las gráficas mencionadas anteriormente gracias a la exportación de

los resultados recopilados tras la ejecución de Iperf. Estos resultados se exportan en

archivos de texto y son procesados a posteriori para observar cómo ha funcionado la

prueba.

1.3.6 Wpa_Supplicant

Wpa_Supplicant es una herramienta de software utilizada principalmente en

sistemas operativos Linux para gestionar la conexión de clientes Wi-Fi (STAs). Funciona

como un cliente de asociación y autenticación que se puede ejecutar en segundo plano,

encargándose de establecer y mantener la conexión entre el dispositivo y un punto de

acceso inalámbrico.

Además, esta herramienta permite configurar los parámetros de la red con la que se

va a establecer la conexión, permitiendo especificar el SSID (Service Set Identifier), la

contraseña, el método de autenticación, etc.

En entornos de desarrollo o pruebas como SDWN, su presencia es esencial para

conseguir el comportamiento de un cliente real que se conecta a la red desplegada.

1.3.7 Wireshark

Wireshark es una herramienta de análisis de protocolos de red ampliamente

utilizada para capturar y examinar en detalle el tráfico que circula por una interfaz de red.

17

Permite observar y clasificar los paquetes según su protocolo, dirección de origen y

destino, número de secuencia, tiempos de transmisión, entre muchos otros parámetros.

Concretamente, en este proyecto Wireshark se ha utilizado para registrar y analizar

el comportamiento del sistema durante las pruebas de validación. La herramienta ha

permitido obtener métricas relevantes como la tasa de transmisión de paquetes, la

presencia de retransmisiones o la variación del tráfico en diferentes momentos de la

ejecución. Estos datos han sido fundamentales para evaluar el rendimiento global del

sistema y comprobar el impacto de las modificaciones implementadas en distintos

escenarios de prueba.

1.4 ESTRUCTURA DE LA MEMORIA

En este primer capítulo se han introducido el contexto en el que se enmarca este

TFG y los objetivos que se persiguen.

El capítulo 2, Estado del arte - Antecedentes, comienza con una visión general de

la tecnología de red Wi-Fi y la infraestructura SDN a desarrollar, describiendo la

evolución de su arquitectura e identificando sus partes fundamentales. Posteriormente, se

explican detalladamente las funcionalidades de control de tasa (Onoe) y de segmentación

de red (diferenciación de tráficos) a integrar en nuestro entorno de red Wi-Fi virtualizado.

El capítulo 3, Escenario y aspectos de la integración, describe el escenario de

trabajo tanto desde un punto de vista físico como lógico, resaltando los aspectos más

relevantes a considerar en la integración de las nuevas funcionalidades. Se abordan

aspectos tales como la modificación del llenado del buffer del kernel (control de tasa), la

aparición de nuevos tráficos o los efectos del handover en las funcionalidades integradas,

todos relacionados con el hecho de trabajar en un entorno experimental que incorpora

elementos de red Wi-Fi reales.

En el capítulo 4, Pruebas y resultados, se presentan las pruebas realizadas en

nuestro entorno experimental real y los resultados obtenidos que validan la integración

realizada. Finalmente, esta memoria concluye con un capítulo 5 de Conclusiones y líneas

futuras propuestas a partir de este trabajo.

También se incluyen dos anexos que contienen información complementaria. El

18

Anexo A aporta información de índices de MCS (Modulation Coding Scheme) a

considerar en las distintas versiones Wi-Fi y en el control de tasa aplicado. El Anexo B

contiene información sobre los algoritmos de scheduling empleados en la parte de

segmentación de red y diferenciación de tráficos.

2. ESTADO DEL ARTE - ANTECEDENTES

Este capítulo presenta los fundamentos teóricos y las soluciones existentes que

sirven de base para el desarrollo del presente Trabajo Fin de Grado. Se abordarán los

estándares de redes inalámbricas, las arquitecturas de Redes Definidas por Software para

WLAN, y los algoritmos específicos de control de tasa y segmentación de red.

2.1 IEEE 802.11

El estándar IEEE 802.11 establece las especificaciones para redes inalámbricas de

área local (WLAN). Desde su introducción en 1997, ha evolucionado para responder a

las crecientes demandas de conectividad, ofreciendo mayor velocidad, capacidad y

eficiencia. Este estándar opera en bandas de frecuencia como 2.4 GHz, 5 GHz y, más

recientemente, 6 GHz, empleando técnicas de modulación como OFDM (Orthogonal

Frequency Division Multiplexing) para optimizar la transmisión de datos en el medio

inalámbrico. En este trabajo, se ha utilizado específicamente la versión 802.11n, conocida

como Wi-Fi 4, operando en las bandas de 2.4 GHz y 5 GHz, aunque el sistema también

es compatible con 802.11ac (Wi-Fi 5). Esta versión introduce mejoras como canales más

anchos (hasta 40 MHz, y en versiones posteriores como 802.11ac, hasta 160 MHz) y

MIMO (Multiple Input Multiple Output), permitiendo mayores tasas de transmisión y una

mejor gestión del espectro.

El protocolo de acceso al medio (MAC) de 802.11 se basa en CSMA/CA (Carrier

Sense Multiple Access with Collision Avoidance), que coordina el acceso al canal

mediante escucha previa y tiempos de espera aleatorios (backoff) para minimizar

colisiones. El airtime, o tiempo de ocupación del medio inalámbrico, es un factor crítico

en este contexto, ya que depende de la tasa de transmisión (definida por el esquema de

modulación y codificación, MCS), las interferencias y los tiempos asociados al protocolo

MAC. En entornos con alta densidad de dispositivos o tráfico variable, la gestión del

19

airtime puede volverse compleja, afectando al rendimiento y a la latencia de la red. Estas

características son especialmente relevantes en aplicaciones que requieren garantía de

QoS, como el streaming o las comunicaciones en tiempo real.

Versiones recientes como 802.11ax (Wi-Fi 6) incorporan avances como OFDMA

(Orthogonal Frequency Division Multiple Access) y MU-MIMO (Multi-User Multiple

Input Multiple Output) para mejorar la eficiencia y atender simultáneamente a múltiples

dispositivos. A pesar de estos avances en recientes versiones Wi-Fi, la utilización de redes

virtualizadas SDN sigue siendo limitada en arquitecturas basadas en 802.11. De ahí que

surja la necesidad de explorar soluciones avanzadas Wi-Fi basadas en entornos

virtualizados y softwarizados.

Para ello, es necesario contar previamente con funcionalidades básicas como el

control de tasa para optimizar el uso del airtime al adaptar dinámicamente el MCS a las

condiciones del canal, así como lograr una mayor eficiencia en la transmisión. A partir

de ahí se pueden plantear funcionalidades avanzadas como el slicing que permitan atender

con mayor prioridad a ciertos flujos que lo requieran, mejorando la asignación de dicho

airtime según las necesidades específicas de los usuarios.

Estas funcionalidades tienen el objetivo de optimizar la asignación de recursos en

la red, garantizando una distribución eficiente del tiempo de ocupación del medio

inalámbrico (airtime) desde el AP (Access Point) hasta las estaciones conectadas (STAs).

Es decir, el enfoque del trabajo se centrará en los flujos de tráfico downlink, cuyo airtime

se calcula según lo indicado en la Ecuación 1.

𝐴𝑖𝑟𝑡𝑖𝑚𝑒 = 𝑛𝑇𝑥̅̅ ̅̅ ̅ ∙ (𝑇𝐵𝑎𝑐𝑘𝑜𝑓𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑇𝐷𝐼𝐹𝑆 + 𝑇𝐷𝐴𝑇𝐴 + 𝑇𝑆𝐼𝐹𝑆 + 𝑇𝐴𝐶𝐾)

Ecuación 1. Cálculo de Airtime medio

Más detalladamente, el airtime es el tiempo que requiere una trama unicast para

enviarse por la interfaz inalámbrica y recibir la confirmación del ACK, teniendo en cuenta

el número medio de retransmisiones.

Como se muestra en la Ecuación 2, el parámetro 𝑛𝑇𝑥̅̅ ̅̅ ̅ (número medio de

transmisiones, incluyendo la transmisión original) se calcula como la inversa de la

probabilidad de recibir el ACK a una tasa determinada. Esta probabilidad dependerá de

20

la tasa; cuanto mayor sea la tasa, menor será la probabilidad de ACK y, cuanto menor sea

la tasa, mayor será la probabilidad de ACK.

𝑛𝑇𝑥̅̅ ̅̅ ̅ = 1 𝑝𝐴𝐶𝐾(𝑅)⁄

Ecuación 2. Cálculo del número medio de transmisiones

El resto de los tiempos de la Ecuación 1 pertenecen al protocolo de acceso a la red

CSMA/CA: 𝑇𝐵𝑎𝑐𝑘𝑜𝑓𝑓 es un tiempo aleatorio previo a la transmisión, 𝑇𝐷𝐼𝐹𝑆 es el

Distributed InterFrame Space, 𝑇𝐷𝐴𝑇𝐴 es el tiempo de transmisión que depende de la tasa

de transmisión utilizada, 𝑇𝑆𝐼𝐹𝑆 es el Short InterFrame Space y 𝑇𝐴𝐶𝐾 es el tiempo de

transmisión de la trama ACK.

De esta forma, el sistema será capaz de adaptarse dinámicamente a las condiciones

del canal modificando los parámetros característicos de las transmisiones inalámbricas

que determinan la velocidad de transmisión. Al mismo tiempo, el sistema también podrá

diferenciar entre distintas clases de tráfico y usuarios con el objetivo de repartir el airtime

según criterios de prioridad de usuarios, inelasticidad de tráficos, etc.

2.2 ARQUITECTURAS SDN PARA REDES WLAN

2.2.1 APs virtuales y arquitecturas SDWN

Como se menciona en [4], SDN es un paradigma de diseño de redes que separa el

plano de control del plano de datos, lo que permite una gestión centralizada,

programabilidad y automatización. Esta separación mejora la agilidad, la escalabilidad y

la eficiencia operativa, al permitir que el control de la red sea gestionado de forma lógica

desde un único punto mediante software.

Una arquitectura SDN suele estar compuesta por tres planos principales: el plano

de aplicación, el plano de control y el plano de datos. En el centro de esta arquitectura se

encuentra un controlador centralizado, encargado de tomar decisiones sobre el

funcionamiento de la red. Este controlador se comunica con los dispositivos del plano de

datos mediante protocolos estandarizados como OpenFlow. Gracias al desacoplo entre el

control y el envío de datos, el plano de control se encarga de la lógica y la toma de

decisiones, mientras que el plano de datos se dedica exclusivamente al envío de paquetes.

21

Además, SDN aporta programabilidad a la red al abstraer el hardware subyacente

y permitir el control a través de APIs. Las APIs northbound (que conectan el plano de

control con el plano de aplicación) permiten que las aplicaciones definan políticas de alto

nivel sobre el comportamiento de la red, mientras que las APIs southbound (que conectan

el plano de control con el plano de datos) facilitan la interacción del plano de control con

los dispositivos físicos, asegurando la correcta ejecución de instrucciones.

Suresh et al. [5] propuso Odin, una arquitectura SDWN diseñada para redes WLAN

empresariales, que introduce el concepto de puntos de acceso virtuales para simplificar el

desarrollo de aplicaciones y gestionar la movilidad de las estaciones (STAs) entre

diferentes APs físicos. Esto se consigue mediante la abstracción denominada LVAP

(Light Virtual Access Point). Cuando una STA se conecta por primera vez, el controlador

SDN le asigna un LVAP único, en lugar de asociarse directamente a un AP físico. Este

LVAP contiene un SSID virtual, un BSSID (Basic Service Set Identifier) virtual, la

dirección MAC de la STA y su dirección IP.

Gracias a esta abstracción, cuando la STA se mueve fuera del alcance del AP, el

controlador migra dinámicamente el LVAP a otro punto de acceso, manteniendo la misma

identidad de red (SSID y dirección IP). Esto permite una movilidad totalmente

transparente para la STA, sin necesidad de realizar procesos de reasociación o

reautenticación.

Sin embargo, la arquitectura Odin propuesta en [5] tiene dos limitaciones

principales: en primer lugar, asume que todos los APs operan en el mismo canal, lo que

impide una planificación de canales eficaz y, en segundo lugar, se enfrenta a problemas

de escalabilidad, ya que no es posible utilizar tramas beacon de difusión. En su lugar, el

punto de acceso debe enviar tramas beacon unicast con una dirección MAC específica a

cada STA (cada LVAP solo puede atender a una STA). Además, el punto de acceso debe

ser capaz de generar los ACK (trama Acknowledge) Wi-Fi correspondientes para cada

STA.

Para superar estas limitaciones y siguiendo este paradigma de AP virtual, en los

últimos años se han propuesto varias propuestas de arquitectura para SDWN. La

arquitectura EmPOWER introducida en [6] integra múltiples tecnologías de acceso radio

y proporciona un conjunto de abstracciones de programación para modelar aspectos clave

22

de las redes inalámbricas tales como la movilidad y/o el control de tasa [7][8], pero sin

abordar sus problemas de escalabilidad Wi-Fi. Ante esta limitación, la arquitectura

BIGAP [9] propone utilizar un único BSSID global compartido por todos los APs de un

mismo conjunto de servicio extendido (ESS). Desde el punto de vista de la STA, toda la

red se percibe como si fuera un único punto de acceso, lo que reduce la sobrecarga de

señalización y mejora la escalabilidad tanto en número de usuarios como en densidad de

APs. Soluciones más recientes basadas en SDN [10][11][12] integran mecanismos de

traspaso y soporte multicanal con herramientas de supervisión y otras funcionalidades

inteligentes. Ejemplo de ello son el uso del CSA (Channel Switch Announcement) y el

estándar IEEE 802.11h, lo que permite que los APs trabajen en canales distintos sin perder

sincronización.

Cada una de las propuestas mencionadas emplea un controlador central responsable

de la gestión de la red. Sin embargo, todas ellas asumen que los elementos de red, como

los AP y los routers residen en la misma red física. Además, no abordan la gestión basada

en SDN del segmento cableado, aspecto crítico cuando se desea que estos elementos se

distribuyan en distintas ubicaciones físicas. Este control del segmento cableado basado

en SDN debe permitir crear y gestionar la comunicación entre los puntos de acceso y el

router a partir de túneles GRE (Generic Routing Encapsulation) cuando estos elementos

están distribuidos en distintas ubicaciones físicas que pertenecen a redes IP distintas.

Nuestra arquitectura SDWN denominada NeWLAN, punto de partida y soporte de

este trabajo, forma parte de la evolución descrita incorporando las mejoras mencionadas

anteriormente, integrando mecanismos de movilidad avanzada, puntos de acceso

virtuales, reducción de la sobrecarga de señalización mediante BIGAP, y control

unificado tanto del segmento inalámbrico como del cableado. Esta combinación de

elementos permite ofrecer una solución escalable, flexible y fácilmente desplegable para

entornos reales con múltiples dispositivos y puntos de acceso distribuidos.

2.2.2 Arquitectura SDWN NeWLAN

Las principales características y novedades de la propuesta NeWLAN (Fig. 1) se

resumen en esta sección. Estas incluyen la gestión basada en SDN del plano de datos

dentro del segmento cableado de la red, la eliminación de la necesidad de infraestructura

de red dedicada o servidores exclusivos, y el aprovechamiento de redes superpuestas

23

(overlay networks) e implementaciones contenerizadas para lograr una mayor

flexibilidad y eficiencia. Asimismo, abarca la gestión de movilidad para soportar

traspasos (handovers) dentro de la red de acceso Wi-Fi.

En trabajos anteriores, se buscaba integrar mecanismos de coordinación que

mejoraran las capacidades de los puntos de acceso (APs) Wi-Fi gestionados de forma

centralizada. Para ello se incluyeron herramientas de monitorización y funcionalidades

adicionales que permitían una gestión de red inteligente utilizando APs comerciales de

bajo coste. Al aprovechar la información de red recopilada por los controladores

centrales, se demostró el potencial para tomar decisiones informadas sobre la asignación

de recursos. Por tanto, para un funcionamiento adecuado, es esencial usar dos redes

separadas: una para el control y otra para los datos.

Figura 1. Componentes funcionales y protocolos. AP virtual y controladores

24

El plano de control se encarga de la funcionalidad radio y configura la conmutación

y el encaminamiento dentro del plano de datos (Fig. 2). Para esto, se utilizan dos

controladores centrales: un controlador OpenFlow estándar (basado en Ryu) para

configurar el segmento cableado de la ruta de datos, y un controlador personalizado, Odin,

para gestionar el segmento inalámbrico. El controlador OpenFlow supervisa los switches

virtuales desplegados a lo largo de la ruta de datos, mientras que el controlador Odin

interactúa con los Agentes Odin ubicados en los APs para gestionar todas las

funcionalidades radio y las aplicaciones de gestión inalámbrica personalizadas.

Figura 2. Plano de datos y plano de control

Plano de Datos

El plano de datos se encarga de establecer la conectividad para las STAs a través

de puntos de acceso Wi-Fi. Las STAs que quieran conectarse se asocian con cualquiera

25

de los APs desplegados siguiendo los procedimientos inalámbricos estándar.

Una vez que la STA se asocia, se establece la ruta de datos inalámbrica, lo que

permite la configuración de la ruta completa, incluyendo la asignación de direcciones IP

mediante DHCP y la conexión cableada entre el AP y el router de acceso a Internet. Este

router funciona como servidor DHCP y realiza traducción de direcciones de red (NAT),

proporcionando acceso a Internet.

Para permitir el despliegue en cualquier ubicación, independientemente de la

infraestructura de red subyacente, se establece una red overlay con una ruta de datos

cableada tunelizada. Esta conexión utiliza túneles GRE configurados sobre las interfaces

físicas.

Esta arquitectura se ilustra en las Fig. 1 y Fig. 2, y la configuración del plano de

datos con túneles se detalla en Fig. 3.

Figura 3. Plano de datos. Tráfico uplink: de la STA a Internet

Plano de Control

El enfoque de redes SDWN introduce la programabilidad a través de controladores

centralizados que permiten la gestión de APs virtuales, switches y otros elementos de red,

26

optimizando la gestión de recursos.

El protocolo Odin supera las limitaciones de OpenFlow en la capa MAC de IEEE

802.11 como son la gestión de LVAP o la configuración de parámetros de transmisión

inalámbrica. Este protocolo facilita la comunicación entre el controlador y los APs,

manejando todos los intercambios de control y gestión. Utiliza conexiones TCP para

información relacionada con la gestión como son la asociación, los traspasos o

heterogeneidad de las redes WLAN y utiliza conexiones UDP para informes periódicos

y notificaciones.

Los agentes Odin, que se ejecutan en los APs inalámbricos, proporcionan la

información necesaria para que el controlador orqueste la red Wi-Fi y recupere métricas

relevantes. Las operaciones críticas en tiempo real del protocolo MAC de Wi-Fi, como

las confirmaciones IEEE 802.11 (ACKs), siguen siendo gestionadas por el hardware de

la tarjeta Wi-Fi. Por otro lado, las funciones no críticas en tiempo real, como la gestión

de asociaciones de clientes, se implementan en software tanto en el controlador como en

los agentes.

La arquitectura utiliza la abstracción LVAP, que permite controlar a la STA y

asegurar traspasos de nivel 2 sin interrupciones. Para reducir la sobrecarga en el medio

inalámbrico, se implementa una solución basada en el concepto BIGAP. Esta arquitectura

utiliza un único BSSID global compartido por todos los APs de un mismo conjunto de

servicio extendido (ESS). Desde la perspectiva de la STA, toda la red se percibe como si

fuera un único y gran AP, lo que reduce la sobrecarga de señalización inalámbrica y

mejora la escalabilidad en redes Wi-Fi. Para lograr esto, BIGAP asigna diferentes canales

de frecuencia radio a los APs y, durante el proceso de traspaso, aprovecha la

funcionalidad DFS (Dynamic Frequency Selection) de IEEE 802.11 para que la STA

perciba que el AP al que está conectada está simplemente cambiando de canal.

El establecimiento de la ruta de datos inalámbrica se logra cuando el agente Odin

en el AP sigue los procedimientos estandarizados de asociación y autenticación de

802.11. Durante el intercambio de esta señalización, el agente Odin se comunica con el

controlador Odin para registrar la STA en la red y crear el LVAP correspondiente. Esta

información incluye la dirección IP asignada a la STA, lo que requiere señalización

DHCP. El agente Odin interviene para finalizar la creación del LVAP capturando el

27

mensaje DHCP ACK y notificándolo al controlador Odin.

El controlador SDN Ryu establece y mantiene una red virtual en el segmento

cableado. Esto lo hace interconectando switches virtuales. Las rutas de datos inalámbrica

y cableada se controlan por separado, usando el controlador Odin para el segmento

inalámbrico y el controlador SDN Ryu para el segmento cableado.

Durante la conexión física en el despliegue, al iniciar los APs y el router, los

switches virtuales se conectan al controlador SDN Ryu y completan el handshake inicial

de OpenFlow. Este proceso permite al controlador identificar las direcciones IP de los

nodos que alojan las funciones virtuales e iniciar la creación de túneles GRE, que se

añaden como puertos a los switches virtuales.

Para minimizar los retrasos causados por el restablecimiento de la ruta de datos

cableada durante un traspaso, el controlador SDN Ryu debe ser notificado para actualizar

las reglas de flujo y lograr un traspaso sin interrupciones (seamless handover). Cuando

una STA se asocia con un nuevo AP, se crea una nueva regla de flujo en la tabla del switch

virtual correspondiente. Para evitar esperar a que las reglas antiguas expiren, la

implementación propuesta activa explícitamente las modificaciones necesarias de las

reglas de flujo. El nuevo AP que atiende a la STA genera paquetes ARP "gratuitos" en

nombre de la STA después del traspaso. Estos paquetes de difusión se reenvían al

controlador SDN Ryu, que instruye a los switches virtuales relevantes para que inunden

la red, actualizando proactivamente la tabla de flujo con la nueva ruta de reenvío, incluso

en ausencia de tráfico unicast.

2.2.2.1 OdinAP – Punto de acceso

NeWLAN utiliza APs virtuales diseñados a medida, implementados como una

aplicación standalone de espacio de usuario (OdinAP) desarrollada en C, lo que permite

alcanzar un mayor rendimiento y throughput en la transmisión de datos. OdinAP está

preparado para ser contenerizado (con Docker) y desplegado en ordenadores de propósito

general, lo que facilita su uso en entornos distribuidos gestionados por plataformas como

Kubernetes.

Para gestionar las comunicaciones tanto a nivel de datos como a nivel de control,

OdinAP hace uso de varios sockets. Un socket es una interfaz software que permite el

28

intercambio de datos entre procesos, ya sea dentro del sistema o entre sistemas remotos a

través de la red. Estos sockets nos permiten establecer conexiones TCP o UDP con otros

equipos y son fundamentales para establecer comunicaciones con el controlador SDN

Ryu.

Los sockets utilizados son los siguientes:

➢ Interfaz inalámbrica principal → Funciona en modo monitor para poder inyectar

las tramas Wi-Fi en el medio inalámbrico y escuchar aquellas que deba transmitir

por la interfaz Ethernet hacia el router.

➢ Interfaz inalámbrica auxiliar → Funciona en modo monitor para poder, entre otras

funcionalidades, escuchar las tramas enviadas y recibidas por la interfaz

inalámbrica principal. Ello permite monitorizar la transmisión de OdinAP para

realizar el control de tasa1.

➢ Interfaz inalámbrica auxiliar 2 → Funciona en modo monitor para poder escuchar

en un canal dado las tramas enviadas por STAs pertenecientes a nuestra

infraestructura Wi-Fi. Su función es monitorizar la transmisión para realizar los

traspasos de STAs entre APs.

➢ Socket TCP (plano de control) → Permanece a la espera de conexiones TCP del

controlador. Realiza el three-way-handshake y crea un nuevo socket TCP para

crear la sesión TCP.

➢ Socket UDP (plano de control) → Envía información de control al controlador

sobre UDP (notificaciones e informes periódicos).

➢ Socket de la interfaz TAP (plano de datos) → Recibe y envía tramas de datos por/a

la interfaz fija (Ethernet) del AP (conexión con red cableada). Corresponde a la

interfaz TAP de OdinAP.

1 Lo ideal sería poder aplicar el algoritmo de control de tasa a partir de valores proporcionados por

el driver a través del Radiotap TX Flags. Pero no todos los drivers lo implementan y por ello la utilización

de esta interfaz para control de tasa permite ser independientes del driver de la tarjeta de red inalámbrica

utilizada.

29

2.2.2.2 Router DHCP y NAT

Para proporcionar conectividad entre la red WLAN privada e internet utilizamos un

pod que actúa como router. Además de encaminar el tráfico, este pod también actúa como

servidor DHCP y realiza traducciones NAT. El servicio DHCP ofrece a los host

direcciones de la red 192.168.137.0/24 excepto la 192.168.137.131, que está configurada

de manera estática.

El router está configurado para traducir direcciones IP privadas a direcciones IP

públicas con el fin de poder acceder a internet, pero no a la inversa. Además, este pod va

a ser el encargado de marcar el tráfico, indicando el valor del campo DSCP que debe tener

cada paquete que encamina. Este campo nos ayudará a diferenciar tráficos y aplicar

políticas de slicing en los puntos de acceso.

2.3 ONOE – ALGORITMO DE CONTROL DE TASA

Onoe (On Demand Transmission Opportunity Enhancement) es el algoritmo de

control de tasa implementado en un entorno experimental propio denominado Inymon [1],

desarrollado con el fin de poder crear y probar soluciones en entornos Wi-Fi antes de su

incorporación a entornos Wi-Fi con STAs reales. El algoritmo Onoe fue diseñado por

Mad Wifi (Multiband Atheros Driver for Wi-Fi), un controlador de código abierto para

sistemas Linux, especialmente para tarjetas inalámbricas que utilizan chipsets de Atheros.

Este algoritmo de control funciona en lazo abierto, es decir, que ajusta la tasa de

transmisión basándose únicamente en sus propias mediciones y estadísticas, sin utilizar

retroalimentación directa del receptor. Además, la implementación de este algoritmo se

plantea como una solución independiente del driver de la tarjeta de red del punto de

acceso, pues en ocasiones esta no proporciona los valores de pérdidas y retransmisiones.

Para obtener sus propias mediciones se utiliza una interfaz auxiliar, denominada

también “interfaz espía”. Se trata de una segunda interfaz Wi-Fi física cuya función es

monitorizar los números de secuencia de los paquetes capturados en el canal Wi-Fi donde

se esté dando servicio. A partir de los números de secuencia, el sistema podrá saber si se

ha retransmitido un paquete (repetición del número de secuencia) o si un paquete ha sido

recibido correctamente (se observa un número de secuencia mayor al de dicho paquete).

Esta monitorización no permite diferenciar si la retransmisión ha sido producida por una

30

colisión o por una pérdida, sin embargo, proporciona al sistema una adaptabilidad

adecuada independientemente del dispositivo receptor.

Para realizar dicho control, Onoe se basa en un sistema de créditos evaluados en

ventanas temporales de un tiempo dado. Al finalizar cada intervalo, se evalúa el

rendimiento calculando estadísticas según el número de paquetes enviados correctamente

y el número de retransmisiones. Se sumará un crédito si se obtiene un porcentaje de

retransmisiones inferior a un valor dado (10% en nuestro caso). Cuando se acumulen 10

créditos, se aumentará la tasa de transmisión y se reiniciará el contador. En cambio, si el

porcentaje de retransmisiones en dicha ventana temporal es superior a un valor dado (50%

en nuestro caso), se restablecerán los créditos a 0 y se reducirá la tasa de transmisión. En

consecuencia, este mecanismo disminuye la sensibilidad ante posibles variaciones rápidas

de las condiciones del canal a cambio de una actualización más lenta de la tasa de

transmisión.

Para aumentar o disminuir la tasa de transmisión se modifica dinámicamente el

MCS, el número de spatial streams (flujos espaciales, para el uso de MIMO) y la

codificación de canal. Para obtener los detalles completos de los diferentes MCS y su

configuración se recomienda consultar la Tabla 8 del Anexo A.

Dado que Onoe es un algoritmo que se aplica de forma local, el control de tasa

funcionará únicamente en un sentido de la comunicación (downlink). Este es el algoritmo

(ya probado en [1]) que debemos integrar en el punto de acceso y evaluar con STAs reales

en este TFG.

2.4 SLICING – SEGMENTACIÓN DE RED Y DIFERENCIACIÓN DE TRÁFICOS

Slicing o segmentación de red es el concepto utilizado para que la transmisión

downlink en un entorno SDWLAN (desde el punto de acceso hasta la STA) se adapte a las

necesidades de los tráficos y haga un uso eficiente de los recursos de la red. El objetivo

de esta técnica es conseguir proporcionar un trato diferenciado a ciertos flujos de datos

que envía el punto de acceso por el medio inalámbrico. La manera en la que se ha

implementado permite aplicar diversos criterios para establecer distintos niveles de

prioridad en la transmisión.

En este contexto, podríamos considerar tráfico prioritario a aquel que cumple

31

condiciones como:

➢ Tráfico inelástico: paquetes con restricciones temporales que requieren latencias

bajas.

➢ Usuarios premium: paquetes asociados a usuarios con privilegios que desean tener

una prioridad que mejore la experiencia de los servicios que estén utilizando.

Para poder realizar una identificación de los tipos de tráfico se necesita un elemento

en la red que los marque previamente. En el escenario empleado, es el router el elemento

encargado de realizar dicha clasificación. Esta se lleva a cabo utilizando el campo DSCP

de la cabecera IP (Fig. 4), compuesto por 6 bits. Su utilidad es precisamente clasificar y

gestionar el tráfico de red, permitiendo aplicar scheduling o políticas de calidad de

servicio (QoS).

Figura 4. Estructura de la cabecera IP y DSCP

Para desarrollar el esquema de prioridades mencionado anteriormente se ha

utilizado el entorno experimental Inymon, dando lugar a la propuesta de RAN slicing

(sistema de slices y colas en entorno radio) descrita en [3]. La Fig. 5 representa el sistema

desarrollado para varios puntos de acceso, extraída del trabajo mencionado, y que

debemos integrar en el punto de acceso y evaluar con STAs reales en este TFG.

El término slice se puede entender como una porción o partición lógica de los

recursos del punto de acceso que permite asignar recursos específicos a conjuntos de

tráficos. Cada slice está formado por un conjunto de colas (un máximo de 8 para nuestro

sistema) donde los paquetes quedarán a la espera de ser enviados por la interfaz

32

inalámbrica. De esta manera, cada paquete esperará en la cola y slice que le corresponda

según la prioridad que se le haya asignado en el marcado. Para el desencolado de los

paquetes, se utiliza un thread (hilo) que se ejecuta en paralelo al resto del código y cuyo

objetivo es extraer los paquetes de las colas siguiendo las políticas establecidas de reparto

de recursos. El funcionamiento de ese thread se detallará más adelante en las secciones

posteriores.

Figura 5. Arquitectura de la solución de slicing en el AP

2.4.1 Scheduling

Los algoritmos de scheduling empleados en este TFG (ver Anexo B) definen la

forma en la que se extraen los paquetes de las colas y determinan cuál es el criterio de

33

reparto de airtime excedente, es decir, el quantum que no sea utilizado por los slices y

colas. En el trabajo mencionado [3], se trabajó con dos algoritmos: Round Robin (RR) y

Airtime Deficit Weighted Round Robin (ADWRR). En nuestro caso, el análisis se centrará

en ADWRR por su mayor complejidad y flexibilidad en la asignación de recursos.

Según su ámbito de operación, es posible clasificar los algoritmos en 2 tipos:

➢ Algoritmo inter-slice, responsable de repartir los recursos entre los slices activos

(aquellos que tienen colas con paquetes en espera).

➢ Algoritmo intra-slice, responsable de repartir el quantum y el déficit entre las

colas activas de un mismo slice.

Ambos algoritmos son independientes entre sí, es decir, en la ejecución del sistema,

se puede configurar un algoritmo determinado para el reparto de recursos inter-slice y

otro algoritmo distinto para el reparto intra-slice.

2.4.1.1 ADWRR – Déficit, quantum y pesos

ADWRR es un algoritmo que, como su nombre indica, comparte los principios

básicos de Round Robin, otro algoritmo más básico y conocido en la planificación y

distribución de recursos. El objetivo de Round Robin es asegurar que todas las colas y

slices tengan la misma oportunidad de ser servidas de manera justa y ordenada. Para ello,

atenderá a cada cola o slice una cantidad fija de tiempo durante el cual puede ocupar el

medio radio antes de pasar a la siguiente cola o slice. De esta manera, se atiende a las

partes participantes de manera equitativa y siguiendo un orden circular. En el caso de

ADWRR, el algoritmo evoluciona para gestionar las colas y slices de manera más

controlada, pudiendo definir distintos criterios de reparto de recursos.

Para poder entender el funcionamiento del algoritmo ADWRR es imprescindible

presentar primero los conceptos de déficit, quantum y pesos. Se define déficit como el

tiempo en μs del que dispone una cola o slice para ocupar el medio inalámbrico. Cada

cola o slice tiene un contador denominado “DC” (Deficit Counter) que almacenará el

valor del déficit de cada estructura.

El quantum (Q) es una cantidad fija de tiempo asociada a un slice que se suma a su

déficit. Como los slices se visitan siguiendo un esquema rotativo, se sumará dicha

cantidad Q cada vez que se visite dicho slice. Este valor es específico para cada slice y

34

representa una garantía de tiempo de transmisión en el medio inalámbrico.

Una vez revisado el concepto de quantum, se puede explicar la función de los pesos.

Los pesos son parámetros asignados a cada cola dentro de un slice y su función es

distribuir el quantum asignado a dicho slice. Como se mencionó anteriormente, el

quantum es un valor que se asigna a cada slice, por lo que los pesos se utilizan para repartir

dicho quantum entre las colas que pertenecen a ese slice. Cada cola tiene un peso

específico, y el quantum que le corresponde se calcula como se muestra en la Ecuación

3:

𝑄[𝑠, 𝑖] = (
𝑊[𝑠, 𝑖]

∑ 𝑊[𝑠, 𝑗]𝑗 𝑛𝑜 𝑣𝑎𝑐í𝑎 ∈𝑠
) ∙ 𝑄[𝑠]

Ecuación 3. Cálculo del quantum de una cola a partir del quantum del slice

➢ Q[s,i]: Quantum para la cola i del slice s

➢ Q[s]: Quantum asignado al slice s

➢ W[s,i]: Peso asignado a la cola i del slice s

Se puede observar que el quantum del que podrá disponer la cola i será el del slice

multiplicado por un factor (menor o igual a 1) que se calculará ponderando el peso de la

propia cola con la suma de los pesos de las colas activas, es decir, que necesiten transmitir

paquetes. Por lo tanto, si una cola no está activa, no participará en el reparto de quantum

y este se repartirá entre las colas que estén activas.

Atendiendo al funcionamiento del scheduling, existen varios algoritmos y cada uno

de ellos realizará un reparto de recursos diferente. Sin embargo, todos ellos comparten un

funcionamiento base que se explica a continuación2.

El thread encargado de extraer los paquetes de las colas recorre secuencialmente

las colas activas de manera rotativa. Cuando una cola tiene el turno, el hilo extrae paquetes

hasta que esta se vacíe o su contador de déficit (DC) no disponga del valor suficiente para

2 Ver Anexo B. Para un análisis más detallado del funcionamiento de estos algoritmos consultar [3]

35

enviar el siguiente paquete. Durante la transmisión, se calcula el airtime (el tiempo en

microsegundos que el paquete ocupa en el medio) del paquete y se descuenta dicho valor

del contador DC, ajustando así la disponibilidad de recursos para las siguientes

transmisiones. En el momento en el que el thread no puede continuar extrayendo paquetes

de la cola, el contador DC se reinicia a cero y se avanza a la siguiente cola activa del slice,

y si no quedan más colas en ese slice, avanzará al siguiente. Cuando se avance a la última

cola del último slice se volverá a empezar desde el principio.

Para entender mejor el funcionamiento del scheduling, la Tabla 1 plantea un

ejemplo de scheduling inter-slice:

Tabla 1. Ejemplo de funcionamiento de scheduling

 SLICE 1 SLICE 2 SLICE 3

QUANTUM (μs) 3500 2500 4000

Cada slice tiene una asignación de quantum que le garantiza un porcentaje de

ocupación mínimo en caso de saturación del enlace radio. A continuación, se muestra

cómo se debe realizar el cálculo de dicho porcentaje.

𝐴𝑖𝑟𝑡𝑖𝑚𝑒(%)𝑆1 =
3500

3500 + 2500 + 4000
× 100 = 35%

𝐴𝑖𝑟𝑡𝑖𝑚𝑒(%)𝑆2 =
2500

3500 + 2500 + 4000
× 100 = 25%

𝐴𝑖𝑟𝑡𝑖𝑚𝑒(%)𝑆3 =
4000

3500 + 2500 + 4000
× 100 = 40%

Por lo tanto, si el tráfico del slice 3 aumenta, se puede garantizar que este utilice el

40% del tiempo de ocupación del canal durante la transmisión.

Sin embargo, en ciertos momentos, algunos slices pueden no requerir totalmente el

tiempo de transmisión que se les ha garantizado, utilizando solo una parte de su

asignación. En estos casos, el airtime no utilizado puede redistribuirse entre los slices

activos que necesiten aumentar su throughput de salida para igualarlo con el throughput

de entrada. De este modo, se evita el desperdicio de recursos y se optimiza el rendimiento

del punto de acceso.

36

Para la redistribución del airtime excedente, se pueden emplear tres algoritmos. La

principal diferencia entre ellos se encuentra en si la asignación de quantum es constante

o dinámica en el tiempo. En el caso de una asignación dinámica, también varía el criterio

de distribución, pudiendo priorizar ciertos slices o mantener un reparto equitativo entre

todos.

En el caso del scheduling intra-slice, ocurre lo mismo, pero en lugar de ajustar el

quantum, se modifica el valor de los pesos. Es decir, si una cola no requiere la totalidad

de su peso asignado, este puede reducirse y reasignarse a otra cola que sí lo necesite.

A continuación, se describen más detalladamente estos algoritmos.

2.4.1.2 ADWRR - Pesos o quantums estáticos

Esta variante de ADWRR mantiene una asignación fija del valor del quantum o de

los pesos, dependiendo si se aplica a nivel inter-slice o intra-slice. Para ilustrar su

funcionamiento, se muestra en Fig. 6 un experimento en el que se representa el porcentaje

de airtime utilizado por cada slice a lo largo del tiempo. A la derecha se representa el

quantum asignado con respecto al tiempo, que permanece constante.

En este caso, se ha configurado el quantum de forma que el slice 1 tenga garantizado

el 30 % del airtime, el slice 2 del 20 % y el slice 3 del 50 %. Durante los primeros 13

segundos del experimento, todos los slices hacen uso completo del airtime que les ha sido

asignado, por lo que ninguno puede ceder recursos.

Figura 6. Reparto airtime. Asignación quantum estática

Sin embargo, en el instante t=13, el slice 1 reduce su demanda y pasa a utilizar

solo el 20 % del airtime, liberando un 10 % que puede ser aprovechado por otros slices

que aún se encuentren insatisfechos. Ese 10 % excedente se redistribuye

37

proporcionalmente entre los slices activos en ese momento (aquellos con paquetes

pendientes en sus colas), es decir, los slices 2 y 3. La cantidad de airtime adicional que

recibe cada uno dependerá de su quantum nominal, como se muestra en los siguientes

cálculos.

𝐸𝑥𝑡𝑟𝑎 𝐴𝑖𝑟𝑡𝑖𝑚𝑒(%)𝑆2 = 10% ×
2000

2000 + 5000
≈ 2.857%

𝐸𝑥𝑡𝑟𝑎 𝐴𝑖𝑟𝑡𝑖𝑚𝑒(%)𝑆3 = 10% ×
5000

2000 + 5000
≈ 7.143%

2.4.1.3 ADWRR - Igual ratio de satisfacción

Esta variante del algoritmo ADWRR busca realizar un reparto del airtime excedente

que consiga un grado de satisfacción similar para todos los slices o colas insatisfechas.

En este caso, se define el ratio de satisfacción (Degree of Satisfaction, DS) como el

cociente del throughput de salida 𝑅𝑜𝑢𝑡 entre el throughput demandado por el flujo en el

punto de acceso 𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑. Cabe destacar que 𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 puede tomar valores

superiores al throughput de entrada si la cola/slice ha almacenado paquetes durante un

periodo de tiempo y ahora tienen los recursos necesarios de airtime para vaciar las colas

al mismo tiempo que se envía el tráfico entrante.

El valor del throughput de salida 𝑅𝑜𝑢𝑡 puede estar limitado por un SLA (Service

Level Agreement) y se puede configurar con el parámetro MBR (Maximum Bit Rate). Este

parámetro afectará al calcular el valor del ratio de satisfacción DS (ver Ecuación 4) tanto

para los algoritmos inter-slice como para los intra-slice.

DS[s] =

{

 𝑅𝑜𝑢𝑡[𝑠]

𝑚𝑖𝑛(𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑[𝑠] , 𝑀𝐵𝑅[𝑠])
 , 𝑠𝑖 ℎ𝑎𝑦 𝑠𝑙𝑖𝑐𝑒𝑠 𝑖𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑒𝑐ℎ𝑜𝑠

𝑅𝑜𝑢𝑡[𝑠]

𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑[𝑠]
 , 𝑠𝑖 𝑡𝑜𝑑𝑜𝑠 𝑙𝑜𝑠 𝑠𝑙𝑖𝑐𝑒𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑒𝑐ℎ𝑜𝑠

DS[s, i] =

{

𝑅𝑜𝑢𝑡[𝑠, 𝑖]

𝑚𝑖𝑛(𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑[𝑠, 𝑖] , 𝑀𝐵𝑅[𝑠, 𝑖])
 , 𝑠𝑖 ℎ𝑎𝑦 𝑐𝑜𝑙𝑎𝑠 𝑖𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑒𝑐ℎ𝑎𝑠

𝑅𝑜𝑢𝑡[𝑠, 𝑖]

𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑[𝑠, 𝑖]
 , 𝑠𝑖 𝑡𝑜𝑑𝑎𝑠 𝑙𝑎𝑠 𝑐𝑜𝑙𝑎𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑒𝑐ℎ𝑎𝑠

Ecuación 4. Cálculo del grado de satisfacción del slice ‘s’ y de la cola ‘i’

38

Cuando 𝑀𝐵𝑅 > 𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑, el MBR no influye en el cálculo, ya que no se alcanza

el throughput límite de salida. Sin embargo, si 𝑀𝐵𝑅 < 𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑, el grado de

satisfacción se calculará tomando MBR como referencia (pues se supone que la tasa de

salida no puede superar dicho valor). En cambio, si tan solo hay una cola o slice activos

en ese momento, se realizará siempre el cálculo teniendo en cuenta 𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 puesto que

se omite MBR, permitiendo una mayor calidad de servicio cuando los recursos estén

infrautilizados.

Cada segundo se monitorizan los valores de DS de cada slice y de cada cola. Si

alguna de estas estructuras deja de utilizar los recursos garantizados, estos podrán ser

reasignados a otra cola o slice que los necesite. La redistribución se realiza asignando los

recursos a la estructura con el menor ratio de satisfacción DS, priorizando así aquellas

con mayor necesidad de recursos. De este modo, se abandona el reparto proporcional

basado en pesos y se adopta un enfoque centrado en las necesidades individuales de cada

estructura.

Para llevar a cabo la distribución de recursos, se ajusta el quantum asignado a cada

slice Q[s] en el caso del algoritmo inter-slice, o los pesos de las colas W[s,i] en los

algoritmos intra-slice, lo que a su vez modifica el airtime recibido por cada cola Q[s,i].

Según lo explicado anteriormente, un slice o una cola no pueden ceder recursos y

recibir al mismo tiempo. Para que una estructura pueda ceder recursos, su grado de

satisfacción (DS) debe ser igual a 1 o estar muy próximo a este valor, considerando un

pequeño margen de tolerancia. Por otro lado, para recibir recursos de otras estructuras,

debe ser la que presente el menor grado de satisfacción.

Una descripción más detallada del funcionamiento de este algoritmo se puede

encontrar en el Anexo B.

2.4.1.4 ADWRR - Preferencia al índice menor

Esta variante de ADWRR busca redistribuir el airtime excedente entre las

estructuras con un grado de satisfacción inferior a 1 (DS < 1), siguiendo un orden de

prioridad basado en su índice. En el caso de un algoritmo inter-slice, los slices con índices

más bajos tienen mayor prioridad; por ejemplo, el slice 1 tendrá preferencia sobre el slice

2. De manera similar, en un algoritmo intra-slice, la prioridad dentro de un slice se asigna

39

según el índice de las colas, donde la cola 0 será siempre la más prioritaria.

Por lo tanto, cuando se ceda airtime, este se asignará primero a las estructuras con

menor grado de satisfacción, comenzando por el slice y cola de menor índice. Una vez

que estas estructuras alcancen un nivel adecuado de satisfacción, se considerarán

“satisfechas”, permitiendo así continuar con la redistribución hacia las siguientes.

2.4.1.5 Particularidades de la implementación

En el sistema desarrollado, los 3 bits más significativos del campo DSCP se han

dedicado al número de slice, mientras que los 3 bits menos significativos se dedican a las

colas de dicho slice. En este caso, para simplificar la clasificación de tráfico, se ha

realizado una asociación experimental entre el número del puerto destino y un valor

DSCP determinado (ver Tabla 2).

Tabla 2. Asociación entre puerto destino y DSCP

Slice Cola DSCP PUERTO Slice Cola DSCP PUERTO

0 0 0 5000 2 0 16 5016

0 1 1 5001 2 1 17 5017

0 2 2 5002 2 2 18 5018

0 3 3 5003 2 3 19 5019

0 4 4 5004 2 4 20 5020

0 5 5 5005 2 5 21 5021

0 6 6 5006 2 6 22 5022

0 7 7 5007 2 7 23 5023

1 0 8 5008 3 0 24 5024

1 1 9 5009 3 1 25 5025

1 2 10 5010 3 2 26 5026

1 3 11 5011 3 3 27 5027

1 4 12 5012 3 4 28 5028

1 5 13 5013 3 5 29 5029

1 6 14 5014 3 6 30 5030

1 7 15 5015 3 7 31 5031

Se ha utilizado la herramienta de Linux iptables, que facilita el proceso de marcado

de paquetes. Este marcado se ha implementado en la interfaz del router que conecta con

el punto de acceso. De este modo, en nuestras pruebas, todos los paquetes que lleguen al

punto de acceso desde el router estarán ya marcados.

40

3. ESCENARIO Y ASPECTOS DE LA

INTEGRACIÓN

3.1 ESCENARIO DE TRABAJO

Para describir el escenario de trabajo con el que se realizarán las pruebas, se va a

considerar el mismo desde dos puntos de vista: el primero consiste en cómo está

compuesto el escenario en cuanto a componentes físicos, hardware y periféricos; en el

segundo, se verá dónde se ejecutan los pods lanzados por Kubernetes y las interfaces que

se crean.

3.1.1 Escenario de trabajo - Nivel físico

El escenario experimental está formado por dos equipos de propósito general: un

PC Intel NUC y una Raspberry Pi 4, ambos conectados a una misma red Ethernet,

utilizando un switch como elemento de construcción de red LAN. Los dispositivos se

encuentran dentro de la red IP 155.210.157.0/24, la cual dispone de un router con acceso

a Internet. Además, incluye uno o más equipos de propósito general (MiniPCs) que

albergarán distintas STAs o tarjetas de red inalámbricas.

Como se puede observar en Fig. 7, al Intel NUC se le han conectado tres tarjetas

Wi-Fi mediante cables USB. Estas tarjetas serán utilizadas por el pod encargado de

desempeñar la función de punto de acceso. La interfaz wlan0 será la responsable de

transmitir y recibir tramas Wi-Fi desde y hacia las estaciones conectadas a su red. En

cambio, la interfaz wlan1 actuará como interfaz auxiliar o “espía”, capturando las tramas

transmitidas por wlan0 con el objetivo de recopilar estadísticas que permitan ajustar

dinámicamente el MCS. Finalmente, la interfaz wlan2 funciona en modo monitor para

poder escuchar en un canal dado las tramas enviadas por STAs pertenecientes a nuestra

infraestructura Wi-Fi. Su función es monitorizar la transmisión para realizar los traspasos

41

de STAs entre APs3.

Figura 7. Esquema gráfico del escenario a nivel físico

Para la realización de las pruebas, se utilizan un número suficientemente grande de

STAs en modo managed (cliente Wi-Fi) que se conectan a la red Wi-Fi desplegada. Los

3 Esta función de monitorización podría ser proporcionada por las propias STAs si tuvieran soporte

802.11k. A día de hoy, no muchos dispositivos comerciales, aparte de los de Apple, tienen este tipo de

soporte.

42

clientes Wi-Fi pueden estar ubicados en uno o más PCs de propósito general y se conectan

vía USB.

3.1.2 Escenario de Trabajo - Nivel lógico

Una vez está definida la arquitectura hardware con la que se va a trabajar, se puede

definir la arquitectura software o lógica (Fig. 8). Al haber trabajado con ordenadores de

propósito general, es posible desplegar uno o más pods en un mismo equipo físico (nodo).

Estos pods trabajan de forma aislada como si se tratase de máquinas distintas. Cada pod

cuenta con su propia interfaz de red con la que se podrá comunicar de manera

independiente. Para facilitar la conectividad entre pods, en los nodos se crean bridges e

interfaces virtuales que agilizan el tráfico de red entre ellos.

Figura 8. Esquema gráfico del escenario a nivel software

43

Los pods que se van a desplegar, mostrados en la Fig. 8, son los siguientes:

➢ AP1 – Punto de acceso Wi-Fi

➢ Controlador SDN Ryu – Gestiona la parte de red fija (crea y controla los túneles

Router-AP) con OpenFlow

➢ Controlador Odin – Gestiona el segmento inalámbrico de la red desplegada

(handover, asociación de la STA, autenticación, tabla de STAs conectadas, etc.)

➢ Dummy Pyser – Controlador de red. Funciona como servidor UDP para que el

controlador de Odin conozca las direcciones IP de las interfaces de control de los

APs.

➢ Router DHCP – Router que conecta la red inalámbrica a Internet

En este escenario, los pods AP1, controlador Ryu, controlador Odin y Dummy Pyser

se despliegan en el PC Intel NUC, mientras que el pod Router DHCP se ejecuta en la

Raspberry Pi 4. No obstante, esta distribución no es la única posible, ya que podrían

haberse ubicado algunos pods en equipos físicos distintos. En este caso concreto, se ha

optado por separar físicamente el AP1 y el Router DHCP para simular un entorno lo más

parecido posible a un despliegue real, donde es habitual que, en escenarios con múltiples

puntos de acceso, el router se encuentre ubicado en un equipo distinto al del punto de

acceso.

En el propio despliegue de los pods, también se crean nuevas interfaces de red.

Estas son las que se muestran en la Fig. 8 en color verde.

➢ cni0 –interfaz que conecta todos los pods del mismo nodo

➢ br1 – interfaz que actúa como bridge para tunelizar el tráfico entre el punto de

acceso y el router

➢ flannel – interfaz que define la red overlay o red superpuesta 10.42.0.0/16 que

permite la comunicación de control entre los pods que se encuentran en nodos

distintos.

De esta forma, se consigue el despliegue de la red Wi-Fi con máquinas virtuales,

independiente de la red física, muchos menos equipos físicos y mayor flexibilidad y

facilidad para incorporar nuevos pods.

Es importante señalar que, en la Fig. 7 y en la Fig. 8, se muestra también el router

44

de la red 155.210.157.0/24. Este dispositivo representa una máquina física independiente

del pod Router DHCP desplegado. Conviene comprender las diferencias entre ambos

elementos: por un lado, el pod Router DHCP es el que crea la red privada

192.168.137.0/24; por otro, el router físico de la red 155.210.157.0/24 proporciona salida

a Internet y es utilizado como ruta por defecto por el pod, permitiendo el acceso a Internet

desde la red WLAN privada.

Una vez desplegado el escenario de red, se conectan los clientes Wi-Fi,

implementados mediante tarjetas Wi-Fi USB conectadas al equipo de propósito general

denominado MiniPC. Para establecer la conexión con el punto de acceso se ha utilizado

el software wpa_supplicant. Dada la diversidad de distribuciones y versiones de Linux,

así como las particularidades de los controladores de las tarjetas de red, se optó por la

versión 2.10 de wpa_supplicant, ya que se ha comprobado experimentalmente que ofrece

un funcionamiento más estable y una mayor compatibilidad. A continuación, se muestra

el archivo de configuración utilizado:

network={

 ssid="wi5sergio"

 key_mgmt=NONE

 scan_ssid=1

}

ctrl_interface=/run/wpa_supplicant

update_config=1

Este archivo de configuración de wpa_supplicant permite la conexión automática a

una red Wi-Fi abierta llamada "wi5sergio", incluso si su SSID está oculto. Además, se

habilita la posibilidad de que wpa_supplicant modifique este archivo si es necesario y se

establece una interfaz de control para permitir la comunicación con herramientas externas

como wpa_cli.

Por último, Iperf será la herramienta con la que el pod Router DHCP genere los

distintos flujos UDP hacia las STAs para poder realizar las pruebas de tráfico deseadas.

45

3.2 ASPECTOS RELEVANTES A CONSIDERAR EN LA INTEGRACIÓN

Este trabajo se centra en la implementación de funcionalidades avanzadas en un

entorno WLAN definido por software. Como ya ha sido comentado, dichas

funcionalidades fueron desarrolladas anteriormente en un entorno de pruebas

experimental conocido como Inymon, en el que se desarrollaron el algoritmo de control

de tasa [1] y el sistema de slicing [3], respectivamente.

Inymon se desarrolló como un entorno de pruebas ágil en el que las modificaciones

no supusieran un consumo de tiempo elevado, cuenta con las funciones básicas para un

entorno Wi-Fi y se utiliza para desarrollar nuevas funcionalidades antes de incorporarlas

al entorno real de NeWLAN, que es el entorno más completo.

Para lograr dicha sencillez en Inymon, se prescinde de algunas funciones

fundamentales en Wi-Fi. Una de las primeras diferencias de Inymon es que no cuenta con

el procedimiento de asociación entre el AP y la estación Wi-Fi. Es decir, el punto de

acceso inyecta directamente como tramas Wi-Fi las tramas recibidas desde el router hacia

las STAs. Para que el AP conozca la dirección MAC de las STAs conectadas, se modifica

manualmente la tabla ARP, donde se apunta la correspondencia entre dirección IP y

dirección MAC de cada una de ellas. Por esta razón, en Inymon tampoco se envían tramas

Beacon, ya que no se sigue el procedimiento estándar de asociación y autenticación. Al

no existir una asociación formal entre el AP y las estaciones, no es necesario anunciar la

presencia de la red ni permitir que las STAs se conecten a ella de forma convencional.

Esto provoca que las STAs no estén conectadas a ninguna red y, en consecuencia, no

puedan generar tráfico. Por lo tanto, en Inymon solo se puede generar tráfico downlink

(generado por el punto de acceso), y las STAs solo pueden escuchar las tramas dirigidas

hacia ellas y devolver el ACK correspondiente si están configuradas en modo monitor.

Todo ello implica que Inymon tampoco necesita tráfico de control, dado que la STA no

está conectada a ninguna red. De este modo, este entorno experimental prescinde de

protocolos como ARP y DHCP.

Debido a las diferencias mencionadas, es necesario tener en cuenta un conjunto de

consideraciones al trasladar las funcionalidades del entorno experimental Inymon al

entorno NeWLAN. Estas consideraciones han supuesto una serie de modificaciones que

se explican a continuación.

46

3.2.1 Modificación del llenado del buffer del kernel

Como se ha descrito previamente, Inymon es un sistema sencillo y ágil con el que

poder trabajar. Esa sencillez va asociada también a una menor carga computacional, sobre

todo, al compararlo con NeWLAN.

Entre las distintas funciones que desempeña el socket de la interfaz wlan1 del

entorno de NeWLAN, destacan al menos dos de ellas:

➢ Detectar posibles pérdidas o colisiones y elaborar estadísticas en periodos de un

segundo. Con las estadísticas se decide si las condiciones del canal son favorables

como para aumentar el MCS, desfavorables como para reducirlo o adecuadas para

el MCS utilizado. Esto constituye el algoritmo de control de tasa Onoe que opera

en lazo abierto.

➢ Controlar la ocupación del buffer de salida del kernel de la tarjeta de red hasta un

tamaño determinado.

Este control del buffer del kernel es necesario para evitar la pérdida de tramas por

desbordamiento y, por otra parte, que estas tramas salgan con la información radio lo más

actualizada posible. El límite de tamaño que se proponga ha de cumplir ambos aspectos

y una vez establecido se gestiona por control de flujo. En este apartado, se describe el

problema, pero antes de entrar en detalle es necesario adquirir una visión más global.

Figura 9. Representación del espacio de usuario y el kernel del S.O.

47

Para conseguir implementar la diferenciación de tráfico en los puntos de acceso, se

diseñó en Inymon un sistema de colas y slices como se muestra en la Fig. 5. Este sistema

opera en el espacio de usuario, es decir, que opera en la zona de memoria del sistema

donde se ejecutan las aplicaciones y procesos que no forman parte del núcleo (kernel) del

sistema operativo (ver Fig. 9).

Cuando un punto de acceso recibe un paquete dirigido hacia una de sus STAs

asociadas, el paquete se encola en el slice y cola que le corresponda según su campo

DSCP. Sin embargo, no es posible inyectar tráfico directamente desde el espacio de

usuario. Antes, el paquete debe ser enviado a la cola del driver de la tarjeta de red.

El buffer del driver es una cola FIFO que opera en el kernel del sistema operativo.

Su tamaño máximo es de 256 y si se desborda, pierde paquetes. Por esta razón, es

necesario realizar un control desde el espacio de usuario para que los paquetes en cola no

superen el tamaño máximo. El control del tamaño de la cola se realiza con la interfaz

auxiliar 1, mencionada anteriormente, utilizando los números de secuencia de la cabecera

IEEE 802.11 y funciona como se describe a continuación.

Un contador A, inicializado a cero, registra el número de paquetes que se han

enviado desde el sistema de colas y slices hacia la cola del driver. Cada vez que se envía

uno, el valor del contador A aumenta en una unidad. Utilizando la interfaz auxiliar, se

compara el último número de secuencia registrado con el del paquete capturado en ese

momento. A partir de esa comparación, se sabe cuántos paquetes se han detectado y

cuántos no se han detectado.

La interfaz auxiliar wlan1 monitoriza el canal Wi-Fi y registra el número de

paquetes enviados por la interfaz principal en un contador B. En ocasiones, puede suceder

que la interfaz espía no monitorice todas las tramas enviadas. Por ello, se utilizan los

números de secuencia de la cabecera IEEE 802.11 de modo que al detectar un número

‘X’, todos los anteriores quedan confirmados. Es decir, al recibirse una trama con un

número de secuencia determinado se puede afirmar que ésta ha salido del buffer del driver

y también todas las anteriores.

Para controlar el tamaño de la cola del driver, la diferencia entre Contador A y

Contador B, que da como resultado el tamaño del buffer del driver no puede superar el

tamaño máximo permitido.

48

𝐶𝑜𝑛𝑡𝑎𝑑𝑜𝑟 𝐴 − 𝐶𝑜𝑛𝑡𝑎𝑑𝑜𝑟 𝐵 ≤ 𝑇𝑎𝑚𝑎ñ𝑜 𝑀á𝑥𝑖𝑚𝑜 𝑃𝑒𝑟𝑚𝑖𝑡𝑖𝑑𝑜

Ecuación 5. Control del tamaño del buffer del driver

En el ejemplo de la Fig. 10 se muestra una instantánea en la que el contador A toma

un valor de 8, lo que indica que, desde que se desplegó el AP, se han enviado 8 paquetes

a la cola del driver. En este ejemplo, el número de secuencia del primer paquete es 500,

el cual ya ha sido capturado y procesado por la interfaz auxiliar. Debido a la alta densidad

de tráfico, la interfaz espía no consigue capturar los paquetes con números de secuencia

501 y 502; sin embargo, sí captura el paquete con número de secuencia 503. El punto de

acceso detecta la pérdida de paquetes (paquetes no monitorizados) comparando el último

número de secuencia registrado (500) con el del paquete capturado (503), determinando

así que se han perdido dos paquetes intermedios (no han sido monitorizados). Como

resultado, el contador B se incrementa en 3 unidades, pasando de 1 a 4. Además, se

verifica que el tamaño de la cola del driver se corresponde con la diferencia calculada

según la Ecuación 5.

Figura 10. Esquema de funcionamiento - Control del tamaño del buffer del driver

49

Una vez visto el funcionamiento del algoritmo de llenado del buffer del driver, se

plantea el problema encontrado en la incorporación del algoritmo de tasa variable Onoe.

Inicialmente, para conseguir una respuesta más rápida a los cambios de MCS en la

transmisión, se escogió un valor máximo del tamaño de la cola del driver muy reducido.

Se consideró que 20 paquetes eran suficientes para soportar las pérdidas de la interfaz

auxiliar, por lo tanto, Inymon establecía un tamaño máximo del buffer del driver de 20

paquetes.

Tras la implementación del algoritmo de control de tasa, se han realizado pruebas

con alta densidad de tráfico y, en algunas realizaciones, la interfaz auxiliar no ha

monitorizado secuencias de más de 20 paquetes seguidos. Esto se debe a que el punto de

acceso debe llevar a cabo una gran cantidad de operaciones y cálculos adicionales,

además del proceso de monitorización. La no detección de paquetes impide que paquetes

nuevos entren al buffer del driver, lo que provoca que este se vacíe y deje de transmitir.

Como consecuencia, la interfaz auxiliar no puede monitorizar paquetes posteriores a los

20 ya enviados, por lo que nunca se podrá dar paso a nuevos paquetes.

Dado que el tamaño máximo elegido previamente era muy reducido, se propone

encontrar una solución aumentando su capacidad. El límite establecido por el driver de la

tarjeta de red es de 256 paquetes, así que se puede elegir un valor mayor dentro de ese

rango de valores.

Figura 11. Paquetes no capturados en una realización de una prueba de slicing

50

Aunque no es necesario calcular un valor exacto para el tamaño óptimo del buffer,

las pruebas realizadas han evidenciado que, bajo condiciones de alta carga, las pérdidas

de tramas no monitorizadas pueden alcanzar valores cercanos a los 200 paquetes

consecutivos. Esta observación se ve reflejada en Fig. 11, donde se representan los saltos

detectados entre números de secuencia de la cabecera del estándar IEEE 802.11, lo cual

permite visualizar la magnitud de las secuencias perdidas por la interfaz auxiliar.

Esto indica que, si bien un límite bajo puede ofrecer una respuesta más ágil ante

cambios en el MCS, también puede generar bloqueos en el sistema cuando la

monitorización no es capaz de seguir el ritmo del tráfico.

En función del estrés al que se someta el punto de acceso, pueden producirse

variaciones significativas en la capacidad de monitorización, por lo que una solución más

robusta consistiría en adaptar dinámicamente el tamaño del buffer. Como línea futura de

trabajo, se propone reemplazar el umbral fijo por un mecanismo que ajuste el tamaño del

buffer en tiempo real, permitiendo una mayor flexibilidad y resiliencia frente a

variaciones en la carga del sistema. Sin embargo, por el momento se establece un umbral

fijo de 200 paquetes que ha permitido desarrollar pruebas exhaustivas sin bloqueos.

3.2.2 Aparición de nuevos tráficos

Pasar de trabajar con Inymon a hacerlo con NeWLAN implica la aparición de nuevos

tipos de tráfico que no estaban presentes en el entorno experimental anterior. Recordemos

que Inymon es un entorno simplificado donde solamente se trabaja con el plano de datos.

En cambio, NeWLAN incorpora tanto el plano de datos como el plano de control.

En la incorporación del algoritmo de slicing desarrollado en Inymon, solo se

consideran las tramas de datos que llegan al punto de acceso por la interfaz Ethernet y

deben salir por la interfaz Wi-Fi. Sin embargo, en NeWLAN se genera tráfico de control

que también necesita ser clasificado y encolado en el sistema de slicing.

Los nuevos tráficos que se deben contemplar son:

➢ Tráfico DHCP

➢ Tráfico ARP

➢ Tráfico de gestión IEEE 802.11

51

En primer lugar, se debe valorar cuán importante es el tráfico de control para decidir

cuántos recursos le vamos a asignar. Este tipo de tráfico es esencial porque es el que se

encarga de realizar el intercambio de información antes de comenzar la transmisión de

datos. Además, en condiciones normales, el tráfico de control representa una fracción

muy pequeña en comparación con el tráfico de datos.

Teniendo en cuenta estos dos aspectos, se propone la solución de tratar este tráfico

como prioritario. Si se retrasa su procesamiento, se estaría ralentizando el envío del tráfico

de datos posterior. En cambio, si se le proporciona prioridad, no afecta negativamente al

rendimiento del sistema, ya que el volumen de tráfico de control es tan bajo que no supone

una carga significativa. Por tanto, se pueden priorizar las tramas de control sin perjudicar

el comportamiento general del sistema en comparación con el rendimiento obtenido en

Inymon. Para dar prioridad al tráfico de control, es necesario modificar el diseño del

algoritmo de slicing. En el entorno de Inymon, el primer slice es el slice 0, que participa

en el reparto de airtime durante la transmisión, compitiendo con el resto de slices activos.

En NeWLAN, se ha adoptado una solución diferente: el slice 0 se excluye del reparto

de airtime y se reserva exclusivamente para el tráfico de control. Al quedar fuera de la

competición con el resto de slices, se le otorga prioridad absoluta, lo que implica que,

cuando llega un paquete al slice 0, este se sirve de forma inmediata, sin necesidad de

esperar a que una estructura (cola o slice) termine su turno.

Para simplificar el tratamiento de este tipo de tráfico, se ha decidido utilizar una

única cola dentro del slice 0. Esta solución se basa en que, al no haber espera, no tiene

sentido aplicar una diferenciación interna de tráfico, ya que su impacto sería

prácticamente inapreciable. No obstante, sería posible realizar dicha diferenciación si

fuera conveniente en un futuro proyecto.

El resto de slices deben esperar a que el slice 0 termine de transmitir todos sus

paquetes. No obstante, como se ha explicado anteriormente, esta espera es mínima, ya

que el volumen de tráfico de control es muy reducido en comparación con el de datos.

Esta afirmación se justifica de forma gráfica más adelante, en el capítulo 5, donde se

muestra la pequeña proporción de airtime ocupada por el tráfico de control.

Tras haber decidido cómo tratar al tráfico de control, han surgido otros eventos

imprevistos. Al conectar un cliente Wi-Fi a la red de NeWLAN, en ocasiones se han

52

capturado tramas en las que el intercambio de información DHCP aparece marcado con

valores en el campo DSCP no contemplados.

En la captura de la Fig. 12 y Fig. 13 se observan paquetes marcados con un valor

DSCP igual a 4. Este valor lo toma de manera no intencionada y no se utiliza en nuestro

sistema, por lo tanto, el sistema de slicing de NeWLAN necesita conocer este nuevo caso

para clasificarlo en el slice que le corresponde, es decir, en el slice 0.

Figura 12. Captura de Wireshark – Intercambio DHCP con valor DSCP 4

Este valor de DSCP es introducido por el driver de la tarjeta de red del cliente y,

cuando el punto de acceso recibe una trama con ese valor DSCP, responde usando el

mismo valor. Dado que el driver trabaja en el kernel del sistema operativo, no es posible

modificar este valor desde el espacio de usuario (con iptables, por ejemplo) ya que el

driver sobrescribirá cualquier modificación.

Para ello, se propone clasificar el tráfico de control identificando las cabeceras del

paquete. Dado que resulta sencillo identificar las cabeceras de un paquete, se utilizarán

para clasificar todo el tráfico de control, incluyendo DHCP y otros protocolos como ARP

o IEEE 802.11, que utiliza tramas como Beacon, Probe Request/Response,

Authentication, Deauthentication, Association Request/Response, Reassociation

Request/Response, Disassociation y Action. Todos estos protocolos serán clasificados en

el slice 0.

Figura 13. Captura de Wireshark – Cabecera IP del paquete DHCP Discover

53

3.2.3 Actualización del sistema de slices y colas por handover

Un aspecto clave en la integración del sistema es el impacto que produce el

handover sobre la gestión de los slices y las colas. Para que un cliente Wi-Fi pueda

cambiar de un punto de acceso a otro, es necesario realizar una gestión centralizada y

coordinada de la información que cada AP recibe del cliente. Para ello, los APs

monitorizan la potencia de señal recibida de cada cliente Wi-Fi mediante su interfaz

inalámbrica wlan2, y es el controlador Odin el encargado de recopilar esa información y

decidir cuál será el nuevo AP encargado de prestar servicio al cliente. Por este motivo, es

necesario que el canal Wi-Fi en el que opera wlan2 se ajuste dinámicamente al canal

donde se encuentra el cliente que se desea monitorizar.

Como ya se ha comentado, se ha de tener en cuenta que el punto de acceso, a

diferencia de Inymon, lleva a cabo una gran cantidad de operaciones y cálculos

adicionales que no pueden ser dilatados en el tiempo. Cualquier instrucción que detenga

la ejecución del programa puede llegar a generar resultados nocivos en funciones como,

por ejemplo, el slicing.

La instrucción de cambio de canal es un caso concreto de lo que se ha mencionado.

Esta orden se ejecutaba inicialmente mediante una llamada en C que utiliza la función

system(), como se muestra en la Fig. 14.

1. system("iwconfig wlan2 channel {value}");

Figura 14. Instrucción de código bloqueante

La función system() realiza una llamada bloqueante al intérprete de comandos

/bin/sh, ejecutando, en este caso, el comando iwconfig wlan2 channel {value}. Esta

llamada detiene la ejecución del programa principal hasta finalizar, lo que afecta

negativamente a su rendimiento. Para superar esta limitación, se ha implementado una

solución basada en posix_spawn(), que permite lanzar un nuevo proceso de manera más

controlada y sin pasar por el intérprete de comandos. A diferencia de system(),

posix_spawn() no bloquea la ejecución principal, lo que permite ejecutar el cambio de

canal en paralelo sin interrumpir el funcionamiento del programa. Como resultado, se

logra cambiar el canal de la interfaz wlan2 de forma eficiente y sin afectar la capacidad

54

de respuesta del sistema. El código de esta implementación puede verse en Fig. 15.

Para medir el impacto de usar una u otra instrucción se implementa el código que

puede verse en la Fig. 15. Los tiempos obtenidos validan la decisión tomada:

➢ system(): ~ 560 – 570 ms

➢ posix_spawn(): ~ 0.200 – 0.350 ms

1. /////////////// Measure the time taken to execute the command ///////////////////

 2. struct timeval start, end;

 3. gettimeofday(&start, NULL); // Start timing

 4.

 5. // Replace system() with posix_spawn() --> This creates a paralell process to

execute the command

 6. pid_t pid;

 7. char *argv[] = {"/bin/sh", "-c", auxString, NULL}; // Execute the command using

/bin/sh

 8. extern char **environ; // Use the current environment variables

9.

10. if (posix_spawn(&pid, "/bin/sh", NULL, NULL, argv, environ) != 0)

11. {

12. fprintf(stderr, ANSI_COLOR_BOLD_RED "[OdinAP-

switch_channel_aux_interface] posix_spawn failed: %s\n" ANSI_COLOR_RESET,

strerror(errno));

13. }

14.

15. gettimeofday(&end, NULL); // End timing

16.

17. if (debugLevel % 10 >= 2)

18. {

19. if (debugTimestamp == 1) printMicroTime();

20. long elapsedTime = (end.tv_sec - start.tv_sec) * 1000000L + (end.tv_usec -

start.tv_usec);

21. fprintf(stderr,

 "Command executed in %ld microseconds: %s\n",

 elapsedTime, auxString);

22. }

Figura 15. Instrucción de código no bloqueante con medición de tiempo de ejecución

Esto representa una reducción cercana al 99,95 % en el tiempo de espera, una

55

mejora crítica en entornos como los puntos de acceso Wi-Fi, donde es necesario gestionar

múltiples tareas simultáneamente sin bloqueos. Esta optimización mejora la estabilidad

del sistema, su rendimiento general y la calidad de servicio.

Otro aspecto importante es la gestión de tramas durante un handover. Cuando un

cliente Wi-Fi cambia de canal, el sistema debe identificar que dicho cliente ya no debe

recibir tramas a través del AP anterior y que estas deben redirigirse al nuevo AP asignado.

Además, el AP de origen debe dejar de enviar tramas al cliente en el momento en que se

le notifica que debe cambiar de canal, lo cual se realiza mediante tramas CSA definidas

en el estándar IEEE 802.11. Si esta actualización no se lleva a cabo correctamente, las

tramas seguirán enviándose por el canal anterior, generando múltiples retransmisiones,

ya que el cliente no estará escuchando en esa frecuencia. Como consecuencia, las tramas

que permanezcan en los buffers del AP antiguo deberán ser descartadas, y serán los

protocolos correspondientes los encargados de gestionar su retransmisión.

Como se muestra en la Fig. 10, OdinAP implementa su sistema de slices y colas en

el espacio de usuario, y las tramas extraídas de esta estructura se envían a la cola del

driver. Como esta cola opera en el núcleo del sistema (kernel) y no permite eliminar

paquetes una vez insertados, el único lugar viable para introducir lógica que descarte

tramas obsoletas es el propio sistema de slices y colas en el espacio de usuario.

Para resolver este problema, se ha desarrollado un thread encargado de eliminar

aquellas tramas que ya no deben enviarse. Este hilo recorre ordenadamente todas las colas

del espacio de usuario, realizando las acciones indicadas en la Fig. 16. En el diagrama de

flujo, el nodo (trama con metadatos) evaluado en cada momento se denomina current, y

cada uno de estos nodos contiene un puntero al siguiente nodo al que se accede mediante

current→next. Para gestionar las inserciones y eliminaciones de paquetes en la cola q, se

utilizan dos punteros: q→head, que apunta al primer paquete, y q→tail, que apunta al

último.

56

Figura 16. Diagrama de flujo del borrado de paquetes en las colas

Dado que se conoce la dirección MAC del cliente Wi-Fi que realiza el handover,

esta se compara con la dirección de destino de cada trama en las colas. Si ambas

direcciones coinciden, se elimina la trama correspondiente y se continúa con la siguiente.

Como este proceso se ejecuta en paralelo mediante un thread, ha sido necesario un

análisis exhaustivo del código C en el entorno OdinAP para introducir mecanismos de

sincronización (semáforos tipo mutex) que garanticen el acceso en exclusión mutua a

slices, colas y nodos, evitando así interferencias con el thread encargado del scheduling.

57

4. PRUEBAS Y RESULTADOS

Para comprobar el correcto funcionamiento de las funcionalidades implementadas,

se ha realizado una batería de pruebas que tiene como objetivo verificar que la integración

se ha llevado a cabo satisfactoriamente. Para ello, se han repetido las pruebas bajo

condiciones de tráfico generado similares a las utilizadas en el estudio de [13], realizado

en Inymon. Concretamente, se han realizado cuatro experimentos: Experimento 0,

Experimento 1, Experimento 2 y Experimento 3.

El Experimento 0 pretende verificar que la integración del sistema de slicing y del

control de tasa se ha realizado correctamente, y que ambos pueden funcionar de manera

simultánea sin problemas. Además, se incluye un análisis detallado del funcionamiento

del algoritmo ADWRR con pesos estáticos.

Por otro lado, el Experimento 1 se centra en comprobar el comportamiento de las

variantes del algoritmo ADWRR aplicadas al scheduling intra-slice. Para un mismo patrón

de generación de tráfico, el experimento recoge los resultados obtenidos utilizando las

siguientes variantes: pesos estáticos, igual ratio de satisfacción y priorización al índice

menor. El Experimento 2 tiene un objetivo similar al del Experimento 1, pero centrándose

en el funcionamiento del scheduling inter-slice.

Por último, el Experimento 3 pretende verificar el funcionamiento del sistema de

slicing junto con el handover. Para ello, se duplica el escenario y un cliente Wi-Fi realiza

el traspaso de un AP a otro.

Los resultados de estas pruebas han sido obtenidos a partir de la recopilación de

datos durante la ejecución del código. Los datos se almacenan en ficheros de texto, que

posteriormente son procesados mediante un script de Matlab para extraer las

representaciones gráficas y estadísticas que se muestran en los siguientes apartados.

4.1 EXPERIMENTO 0 – CONTROL DE TASA Y ADWRR CON PESOS ESTÁTICOS

En el Experimento 0 se generaron ocho flujos UDP con el objetivo de comprobar

el correcto comportamiento de las funcionalidades implementadas. Para ello, se

emplearon las características mostradas en la Tabla 3. Se utilizaron seis clientes Wi-Fi

situados dentro de un radio menor de dos metros con respecto al punto de acceso. Por lo

58

tanto, todos los clientes contaron con un buen RSSI (Received Signal Strength Indicator).

Tabla 3. Experimento 0. Parámetros de interés

 Slice 1 Slice 2 Slice 3

Quantum
(Qnom)

3500s 2500s 4000s

Queues Queue 0 Queue 1 Queue 0 Queue 1 Queue 0 Queue 1 Queue 2

Weight
(Wnom)

50 50 30 70 50 30 20

STA id STA 1 STA 6 STA 3 STA 2 STA 3 STA 4 STA 5 STA 6

MCS index 3 6 1 Variable 1 2 4 6

Iperf Rate
(Time interval)

1.4 Mbps
(0-50 s)

1.4Mbps
(0-50 s)

1.4Mbps
(0-50 s)

1.4Mbps
(0-50 s)

1.4Mbps
(0-50 s)

1.4 Mbps
(0-10s), 1.4 Mbps

(0-30s)
1.4 Mbps (0-30s)

0.5 Mbps
(10-20 s),

1.4 Mbps
(20-30 s), 0.5 Mbps

(30-50 s)
0.5 Mbps (30-50 s)

0.5 Mbps
(30-50 s)

UDP size
(bytes)

250B 1250 B 650 B 500 B 250 B 250 B 250 B 400 B

Airtime (s) 281.5s 345.5s 625.5s - 377.5s 313.5s 249.5s 241.5s

Airtime
required

parameters

Band = 5GHz, BW = 20MHz, TDIFS = 34µs, TSIFS = 16µs., TBackoff = Tslot·CW/2 with CW = CWmin = 15 ,

TphyOH (11a)=20s,

TACK (24Mbps) =28s, Tslot = 9µs, TphyOH (mixed) = 36µs + 4µs (nantenna – 1) , TphyOH (greenfield) = 28µs
+ 4µs (nantenna – 1)

MACOH = Lservice (2B) + LHMAC (24B) + LQoS (2B) + LFCS (4B), LLLCOH (8B)

Ldata (xB) = IP (20B) + UDP (8B) + DATA

Cada cliente Wi-Fi tiene un valor de MCS configurado. Todos los clientes tienen

MCS fijos, excepto la STA 2, que tiene un MCS variable controlado por el algoritmo de

control de tasa Onoe. Así, la STA 2 se ha configurado para utilizar valores de MCS entre

7 y 15.

Este experimento utiliza el algoritmo ADWRR con pesos o quantum estáticos. Esto

quiere decir que, como se ha comentado en el capítulo 2, los recursos excedentes se

reparten proporcionalmente al quantum, que permanece fijo.

El tráfico se genera con la herramienta de Linux, Iperf, que genera paquetes UDP

59

siguiendo una distribución uniforme. Cada flujo UDP tiene un conjunto de parámetros

que lo caracterizan: la tasa o throughput (a nivel de transporte), el tamaño de los paquetes,

la duración, la dirección IP destino y el puerto destino. El puerto destino es el parámetro

que define el criterio de clasificación, es decir, según el valor del puerto destino, los

paquetes de un flujo se dirigen a un slice y cola determinados.

Se han configurado tres slices para el tráfico correspondiente al plano de datos: slice

1, slice 2 y slice 3. Los dos primeros utilizan dos colas: Queue 0 y Queue 1; y el tercer

slice utiliza tres colas.

A continuación, realizadas las pruebas del Experimento 0, se analizan los resultados

obtenidos de la Fig. 17. Si se presta atención a los datos desde t=0s hasta t=10s, se observa

que el reparto de airtime entre slices cumple con las condiciones esperadas.

a) Airtime (%) usado por slice

b) Airtime (%) usado por cola en el slice 1

c) Airtime (%) usado por cola en el slice 2

d) Airtime (%) usado por cola en el slice 3

Figura 17. Experimento 0. Airtime consumido por cada slice y sus respectivas colas

Los porcentajes de airtime consumidos por slice son: 35% para el slice 1, 25% para

el slice 2 y 40% para el slice 3. Estos valores se corresponden con la configuración

establecida para los valores de quantum: 3500s, 2500s y 4000s, respectivamente. Esto

confirma que el sistema es capaz de controlar el reparto de airtime en situaciones de

60

congestión, asignando recursos de forma proporcional al valor del quantum asignado a

cada slice.

Además, se puede observar cómo el slice 0, destinado al tráfico de control, consume

un porcentaje de airtime prácticamente imperceptible en comparación a los slices

asignados al tráfico de datos. De esta manera, se comprueba la efectividad de la solución

propuesta, ya que permite dar prioridad al tráfico de control sin que este interfiera ni limite

los recursos disponibles para el tráfico de datos.

Para demostrar que, efectivamente, el sistema se encuentra en estado de congestión

durante este intervalo, puede comprobarse en la Fig. 18 que ningún slice logra transmitir

la tasa generada. En concreto, a cada uno de los slices entran flujos de Iperf a las

siguientes tasas:

➢ Slice 1: 1.4 Mbps × 3 = 4.2Mbps

➢ Slice 2: 1.4 Mbps × 2 = 2.8Mbps

➢ Slice 3: 1.4 Mbps × 3 = 4.2Mbps

a) Throughput (Mbps) por slice

b) Throughput (Mbps) slice 1

c) Throughput (Mbps) slice 2

d) Throughput (Mbps) slice 3

Figura 18. Experimento 0. Throughput utilizado por cada slice y sus respectivas colas

Sin embargo, el slice 1 alcanza aproximadamente los 3.8 Mbps, el slice 2 ronda los

61

1.8 Mbps y el slice 3 se acerca a los 3.6 Mbps. Cabe destacar que, a lo largo de todo el

experimento, el airtime consumido por el slice 2 presenta una mayor fluctuación, ya que

tiene mayores desviaciones respecto a la media en comparación con el resto de slices.

Este comportamiento se debe a que, en el slice 2, se ha utilizado una STA móvil con el

objetivo de modificar dinámicamente su MCS mediante el algoritmo de control de tasa.

La movilidad supone variaciones significativas en las condiciones del canal Wi-Fi, que,

a su vez, provocan retransmisiones, tal como se muestra en la Fig. 19, lo que afecta a la

estabilidad del throughput de la cola y, en consecuencia, a la del slice.

Figura 19. Experimento 0. Retransmisiones experimentadas

Atendiendo a los resultados obtenidos desde t=10s hasta t=20s, se observa en la Fig.

18.d una reducción del tráfico generado hacia la cola 0 del slice 3, pasando de 1.4 Mbps

a 0.5 Mbps. Por lo tanto, el airtime consumido por esta cola se reduce, ya que ahora puede

satisfacer completamente la nueva tasa de entrada. En la Fig. 17.d se observa el descenso

del consumo de airtime del 50% inicial al 19% correspondiente a la nueva tasa de entrada.

Como la cola 1 y la cola 2 no recibían suficiente airtime para satisfacer su tasa de

entrada, aprovechan los recursos que libera la cola 0. Dado que se emplea el algoritmo

ADWRR con quantum y pesos estáticos, el reparto de airtime entre las colas 1 y 2 se

realiza en proporción a los pesos asignados a cada una.

𝐸𝑥𝑡𝑟𝑎 𝐴𝑖𝑟𝑡𝑖𝑚𝑒(%)𝐶1 = (50 − 19)% ×
30

30 + 20
= 18.6%

𝐸𝑥𝑡𝑟𝑎 𝐴𝑖𝑟𝑡𝑖𝑚𝑒(%)𝐶2 = (50 − 19)% ×
20

30 + 20
= 12.4%

62

La nueva distribución de airtime en el slice 3 es aproximadamente: 19% la cola 0,

48.6% la cola 1 y 32.4% la cola 2. Esta nueva distribución permite que la cola 2 alcance

un throughput de 1.8 Mbps (ver Fig. 18.d); sin embargo, la tasa de entrada de esa cola es

de 1.4 Mbps. Esto indica que la cola 2 está vaciando su buffer, en el que había acumulado

paquetes durante los primeros diez segundos debido a la falta de recursos suficientes en

ese intervalo. En el segundo t=16s, esta cola consigue transmitir todos los paquetes

acumulados y reduce su throughput a un valor igual a la tasa de entrada: 1.4 Mbps.

Al reducir el throughput, se reduce al mismo tiempo el consumo de airtime, lo que

libera recursos para otra cola aún insatisfecha. Es el caso de la cola 1, que había

acumulado más paquetes que la cola 2 y sigue vaciando su buffer. Como se muestra en la

Fig. 18.d, desde el instante t=16s hasta el t=19s, aumenta su throughput y, en

consecuencia, su consumo de airtime.

Mientras tanto, el consumo de airtime del slice 3 se ha mantenido constante, ya que,

aunque una cola haya reducido su demanda, otra ha utilizado ese airtime en cuanto ha

tenido la oportunidad. Por esta razón, el sistema se ha mantenido constantemente saturado

y el reparto de airtime no ha variado.

En el periodo comprendido entre t=20s y t=30s el sistema recibe flujos UDP con

las mismas características que en el primer periodo. En consecuencia, la cola 0 del slice

3 sirve los 1.4 Mbps que le llegan, mientras que la cola 1 y la cola 2 no disponen de

recursos suficientes y acumulan paquetes en el buffer. El sistema no puede repartir

suficientes recursos, se encuentra saturado.

A partir del instante t=30s hasta el final del experimento, se reduce el throughput

de entrada a las colas del slice 3. Cada una de ellas pasa de recibir 1.4 Mbps a recibir 0.5

Mbps. En la Fig. 18.d se observa un periodo transitorio en el que las colas 1 y 2

incrementan su throughput para vaciar los paquetes acumulados en el anterior periodo.

Como ocurrió anteriormente, la cola 2 logra vaciar su buffer antes que la cola 1.

Finalmente, todas las colas estabilizan su throughput a 0.5 Mbps.

En ese instante, el slice 3 usa menos recursos quantum del que dispone, por lo que

el déficit excedente se desecha y se continúa con el siguiente slice. Esto permite que el

resto de slices puedan enviar paquetes más a menudo que en el estado de saturación, por

lo tanto, aumentará el airtime de cada slice y, en consecuencia, el throughput.

63

La reducción del airtime del slice 3 es de, aproximadamente, un 23%. Este

excedente se repartirá en el resto de slices que lo necesiten, de manera proporcional al

quantum. Así, tal y como se refleja en la Fig. 17.a, el slice 1 se llevará un 13.4% y el slice

2 se llevará un 9.6%.

El slice 1 utiliza el 13.4% del airtime adicional para aumentar su throughput y

vaciar el buffer, tanto de su cola 0 como de la cola 1. En torno al instante t=33s, aumenta

el throughput de ambas colas manteniéndose el reparto de airtime, pues ambas siguen

usando todos los recursos garantizados. A partir del instante t=36s, la cola 0, que recibe

menos tráfico, consigue vaciar el buffer y ya no necesita utilizar todos los recursos. De

esta forma, la cola 1 podrá utilizarlos para vaciar su buffer en un menor tiempo. Es en ese

momento cuando, como se muestra en la Fig. 17.b, la cola 1 alcanza un 60% de consumo

de airtime. Una vez la cola 1 haya vaciado el buffer, se reducirá su throughput al valor de

la tasa de entrada, 2.8 Mbps. En ese instante, el slice 1 no necesitará utilizar los recursos

recibidos, por lo que el slice 2, que sí que los necesita, podrá aprovecharlos.

Atendiendo al throughput conseguido por el slice 2 en la Fig. 18.c, se puede

observar que en ningún instante del experimento este slice va a conseguir vaciar el buffer

de alguna de sus colas. Se mantiene en todo momento en estado de saturación, con un

reparto de airtime constante en media, a pesar de sus desviaciones ruidosas. Además,

puede observarse en la Fig. 18.c cómo el slice 2 necesita tres segundos más para vaciar

sus buffers por completo una vez ha dejado de recibir paquetes, puesto que en el instante

t=50s el experimento termina. A partir del segundo 50, todos los slices han vaciado sus

colas, excepto el slice 2, que empleará todos los recursos disponibles para vaciarlas.

En la Fig. 20 se observa la variación del MCS de la STA en cuestión, que ha

conseguido índices más grandes cuando ha dispuesto de mejores condiciones del canal, e

índices menores conforme se ha alejado del punto de acceso.

Analizando los resultados obtenidos en el Experimento 0, se puede observar la

implementación correcta del algoritmo de control de tasa y del sistema de scheduling del

algoritmo ADWRR con pesos y quantum estáticos.

64

Figura 20. Experimento 0. Variación MCS de la STA 2 (slice 2, cola 0)

4.2 EXPERIMENTO 1 - VARIANTES DE ADWRR INTRA-SLICE

Este experimento se realiza con el objetivo de verificar el correcto funcionamiento

de las distintas variantes del algoritmo de planificación ADWRR intra-slice. En este, se

compara la variante del algoritmo de pesos estáticos, con el de igual ratio de satisfacción

y con el de preferencia al índice menor para el reparto intra-slice. El objetivo es mostrar

el correcto comportamiento de los algoritmos y demostrar que aseguran una distribución

de recursos eficiente según el criterio seleccionado. Para el algoritmo ADWRR inter-slice

se utiliza la variante de quantum estático. Los parámetros empleados en ambos casos se

recogen en la Tabla 4.

En este experimento se generan nueve flujos UDP con una duración de 70 segundos,

utilizando la agregación de tramas MAC (AMSDU, Aggregated MAC Service Data Unit).

Esto permite obtener valores de throughput mayores.

Para este experimento se vuelven a utilizar tres slices dedicados exclusivamente al

tráfico de datos. El slice 1 tendrá garantizado el 30% del airtime, el slice 2 el 20% y el

slice 3 el 50%. Además, se introduce el concepto de MBR (Maximum Bit Rate), que actúa

como un parámetro de limitación de la tasa de salida. El MBR es una característica propia

de cada cola dentro de cada slice y puede estar definido por un SLA.

65

Tabla 4. Experimento 1. Parámetros de interés

 Slice 1 Slice 2 Slice 3

Quantum (Qnom) 3000s 2000s 5000s

Queues Queue 0 Queue 1 Queue 0 Queue 1 Queue 0 Queue 1 Queue 2 Queue 3

Weight (Wnom) 120 80 140 60 70 60 40 30

MBR 2.5Mbps 2Mbps 2.5Mbps 2Mbps 3Mbps 2.5Mbps 2.5Mbps 2Mbps

STA id STA 1 STA 3 STA 2 STA 1 STA 4 STA 1 STA 2 STA 6 STA 5

Priority index 0 1 0 1 0 1 2 3

MCS index 2 4 3 2 6 2 3 3 4

Iperf Rate (Time interval)
2.5 Mbps
(0-70 s)

2 Mbps
(0-70 s)

1 Mbps
(0-70 s)

0.8 Mbps
(0-70 s)

1.2 Mbps
(0-70 s)

1.2 Mbps
(0-10 s)

2.5Mbps
(0-10 s)

1.3 Mbps
(0-10 s)

1.25 Mbps
(0-50 s)

2,8 Mbps
(10-40 s)

2 Mbps
(10-20 s) 1.6 Mbps

(10-30 s)

1 Mbps
(20-60 s)

0.5 Mbps
(50-70 s)

3,3 Mbps
(40-70 s)

2.3 Mbps
(30-70 s)

1.3 Mbps
(60-70 s)

UDP size (bytes) 1250B 250 B 200 B 350 B 700 B 350 B 350 B 200B 250B

Max Aggregation Size 1200B 1200B 1200B 1200B 1200B 1200B 1200B 1200B

Este parámetro MBR nos permite calcular el ratio de satisfacción que tiene una cola

determinada, que se define como el ratio que compara la tasa conseguida frente a la tasa

demandada (la tasa de entrada al AP) o al MBR:

➢ Si la tasa de entrada es menor que el MBR, el ratio de satisfacción se

calcula como: 𝑅𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑅𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑⁄ .

➢ Si la tasa de entrada es mayor que el MBR, se debe adaptar el concepto de

satisfacción con las limitaciones establecidas por el SLA y se calcula

como: 𝑅𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑀𝐵𝑅⁄ .

De esta forma, el ratio de satisfacción representa cómo de satisfecho están los flujos

de una cola en relación con los recursos que podrían y deberían tener.

Una vez descritos los parámetros que se emplean en el experimento, se realiza el

66

siguiente análisis. Al observar la distribución de airtime de la Fig. 21, se puede comprobar

que el sistema se encuentra en estado de saturación. Durante todo el experimento, los

slices utilizan el porcentaje máximo de airtime garantizado en la configuración. De esta

forma, resulta más sencillo profundizar en el análisis de los algoritmos de scheduling

intra-slice.

Figura 21. Experimento 1. Distribución de airtime por slice

En la Fig. 22, se observa el reparto de airtime dentro de los slices 1 y 2. En este

experimento, la distribución intra-slice de ambos slices permanece constantemente en

saturación, es decir, cada cola utiliza su airtime garantizado. Así, se procede a realizar el

estudio del slice 3 en profundidad y sin la influencia de modificaciones en el reparto de

recursos de otras estructuras.

a) Airtime slice 1

b) Airtime slice 2

Figura 22. Experimento 1. Distribución de airtime del slice 1 y slice 2

Para comprobar el correcto funcionamiento y comparar los algoritmos de

scheduling intra-slice, se ha repetido el Experimento 1 en tres ocasiones: una vez con

cada versión del algoritmo ADWRR. La Fig. 23 presenta los resultados obtenidos del

slice 3 en cada realización. La Fig. 22.A1 presenta de forma visual de los patrones de

67

generación de tráfico del experimento para ese slice. Para el scheduling inter-slice se

configura el algoritmo de quantum estático

En el intervalo que comprende desde t=0 hasta t=10 se observa que todas las STAs

consiguen recibir el throughput deseado. A diferencia del porcentaje de airtime

garantizado (C0:35%, C1:30%, C2:20%, C3:15%), el sistema distribuye el airtime

excedente de la cola 0 a aquellas que lo necesiten, modificando así el reparto (C0:24%,

C1:37%, C2:22%, C3:17%).

En el intervalo comprendido entre t=10 y t=20, tres de las cuatro colas del slice 3

reciben un throughput distinto al del periodo anterior (Fig. 23.A1). Este cambio provoca

que ninguna de ellas esté en condiciones de ceder recursos, algo que puede comprobarse

al observar las Fig. 23 A3, B3 y C3, donde se aprecia que todas las colas consumen el

máximo airtime disponible según sus pesos. En estas condiciones, todas las variantes del

algoritmo ADWRR implementadas arrojan resultados idénticos, ya que su funcionamiento

se basa en repartir airtime excedente, el cual en este caso no existe.

En el instante t = 20, el throughput de la cola 1 (asociada a la STA 2) se reduce a la

mitad (Fig. 23.A1). A partir de ese momento, el scheduler distribuye el airtime sobrante

de la cola 1 entre las colas restantes. Si se aplica el algoritmo de pesos estáticos (Fig.

23.A), el comportamiento del sistema es similar al observado en el Experimento 0: las

colas insatisfechas (cola 0 y cola 2) incrementan su airtime de forma proporcional a sus

pesos. En el caso del algoritmo de prioridad al índice menor (Fig. 23.C), se observa un

aumento en el DS de la cola con mayor prioridad, la cola 0 (Fig. 23.C2). No obstante, la

reasignación de peso a la cola 0 no ocurre de forma inmediata, ya que el sistema calcula

las estadísticas con una frecuencia de un segundo. Este retardo provoca que, al inicio del

periodo, tanto la cola 0 como la cola 2 presenten un aumento de DS similar al observado

con el algoritmo de pesos estáticos. Sin embargo, una vez el sistema ajusta los pesos y el

algoritmo converge, se alcanza el reparto esperado.

68

Pesos/Quantum estático Igual ratio de satisfacción Preferencia al índice menor

A1) Patrones de generación de tráfico

slice 3

B1) Evolución de los pesos slice 3

C1) Evolución de los pesos slice 3

A2) Grado de satisfacción slice 3

B2) Grado de satisfacción slice 3

C2) Grado de satisfacción slice 3

A3) Reparto de airtime slice 3

B3) Reparto de airtime slice 3

C3) Reparto de airtime slice 3

A4) Throughput slice 3

B4) Throughput slice 3

C4) Throughput slice 3

Figura 23. Representación de estadísticas del slice 3 – Experimento 1

69

Entre t=30 y t=50 se observan ligeras variaciones. En t = 30 aumenta la tasa de

entrada de la cola 2 y, en t=40, la de la cola 1. Bajo el algoritmo de pesos estáticos (Fig.

23.A), la cola 2 experimenta una disminución en su grado de satisfacción, ya que no logra

aumentar su throughput al ya encontrarse utilizando tanto su airtime nominal como el

excedente previamente asignado. El algoritmo de igualación del DS reajusta los pesos

para que las colas insatisfechas mantengan un valor de DS similar (Fig. 23, B2). Es

importante señalar que, nuevamente, existe un retardo entre la detección del DS y la

reconfiguración de los pesos, lo que genera breves periodos transitorios donde el

comportamiento del sistema se asemeja al del algoritmo de pesos estáticos. En el caso del

algoritmo de prioridad por índice, se incrementa el peso de la cola 0 para mejorar su DS,

manteniendo a la cola 2 (con un índice superior) insatisfecha.

En el instante t=50, la cola 3 reduce su throughput, liberando recursos que pueden

ser aprovechados por el resto de las colas. El algoritmo de pesos estáticos reparte

nuevamente el airtime de forma proporcional, mientras que el algoritmo de igual DS

reajusta los pesos para mantener la equidad entre colas insatisfechas. Por su parte, el

algoritmo de prioridad al índice menor continúa asignando más peso a la cola 0. Cabe

destacar que, tras t=50, la cola 0 recibe suficiente peso como para alcanzar un throughput

igual a su MBR (3 Mbps). No obstante, en t=60, la cola 1 incrementa su throughput y

recupera parte de los recursos previamente cedidos a la cola 0. Esta variación se refleja

en la Fig. 23, C1, donde se observa una reducción del peso asignado a la cola 0 en favor

de la cola 1.

4.3 EXPERIMENTO 2 – VARIANTES DE ADWRR INTER-SLICE

Este experimento se realiza con el objetivo de verificar el correcto funcionamiento

de las distintas variantes del algoritmo de planificación ADWRR inter-slice4. En este, se

compara la variante del algoritmo de pesos estáticos, con el de igual ratio de satisfacción

y con el de preferencia al índice menor en el reparto de airtime a nivel de slice. El objetivo

4 Para el algoritmo ADWRR intra-slice se utiliza la variante de igual ratio de satisfacción

70

es mostrar el correcto comportamiento de los algoritmos y demostrar que aseguran una

distribución de recursos eficiente según el criterio seleccionado. Los parámetros

empleados se recogen en la Tabla 5.

Tabla 5. Experimento 2. Parámetros de interés

 Slice 1 Slice 2 Slice 3

Quantum (Qnom) 3000s 2000s 5000s

Queues Queue 0 Queue 1 Queue 0 Queue 1 Queue 0 Queue 1 Queue 2 Queue 3

Weight (Wnom) 120 80 140 60 70 60 40 30

MBR 2.5Mbps 2Mbps 2.5Mbps 2Mbps 3Mbps 2.5Mbps 2.5Mbps 2Mbps

STA id STA 1 STA 3 STA 2 STA 1 STA 4 STA 1 STA 2 STA 6 STA 5

Priority index 0 1 0 1 0 1 2 3

MCS index 2 4 3 2 6 2 3 3 4

Iperf Rate (Time interval)

2.5 Mbps
(0-10 s)

2 Mbps
(0-20 s)

1.6
Mbps

(0-70 s)

1.2 Mbps
(0-70 s)

1.2 Mbps
(0-20 s)

1.2 Mbps
(0-10 s)

2.5Mbps
(0-10 s)

1.3 Mbps
(0-10 s)

1.25 Mbps
(0-50 s)

1 Mbps
(10-60 s)

3 Mbps
(20-30 s)

2,8 Mbps
(10-40 s)

2 Mbps
(10-20 s) 1.6 Mbps

(10-30 s)

2 Mbps
(20-70 s)

1 Mbps
(20-60 s)

0.5 Mbps
(50-70 s)

2 Mbps
(60-70s)

1 Mbps
(30-70 s)

3,3 Mbps
(40-70 s)

2.3 Mbps
(30-70 s)

1.3 Mbps
(60-70 s)

UDP size (bytes) 1250B 250 B 200 B 350 B 700 B 350 B 350 B 200B 250B

Max Aggregation Size 1200B 1200B 1200B 1200B 1200B 1200B 1200B 1200B

De forma similar al Experimento 1, en el Experimento 2 se generan nueve flujos

UDP con una duración de 70 segundos y vuelve a utilizarse la agregación de tramas.

Dichos flujos son, en una parte, similares a los del Experimento 1 ya que tan solo se han

modificado la duración y el throughput de los flujos UDP del slice 1 y el slice 2. El resto

de parámetros tienen el mismo valor.

Para este experimento, se vuelven a utilizar tres slices dedicados exclusivamente al

tráfico de datos. El slice 1 tendrá garantizado el 30% del airtime, el slice 2 el 20% y el

slice 3 el 50%. De forma similar al Experimento 1, se utilizan los conceptos de MBR y

71

grado de satisfacción.

En Fig. 24.A1 se muestran los patrones de generación de tráfico del slice 1 y del

slice 2. Como los flujos UDP para el slice 3 son los mismos que para el experimento

anterior, se puede consultar cuando sea conveniente en Fig. 23.A1. A continuación, se

analizan los resultados obtenidos en cada uno de los algoritmos ADWRR.

Desde el inicio del experimento hasta t=10, el sistema se encuentra saturado. Todos

los slices usan el quantum nominal asignado y no pueden ceder nada. Por lo tanto, el

airtime consumido por cada uno se reparte proporcionalmente al quantum (S1:30%,

S2:20%, S3:50%).

En el intervalo desde t=10 hasta t=20, el throughput de la cola 0 del slice 1

disminuye (Fig. 24 A3, B3, C3). Esto reduce el consumo de airtime del slice 1 y le permite

ceder recursos al resto un 10% de airtime. Cuando se usa ADWRR con pesos estáticos el

slice 2 consigue un 3.75% y el slice 3, que ha aumentado su demanda de airtime, recibe

un 6,25%, que resulta al calcular la proporción con el quantum nominal entre los dos

slices. Para cuando se utiliza el mismo ratio de satisfacción, se comprueba en Fig. 24.B2

que el slice 2 y el slice 3 alcanzan un mismo DS ajustando dinámicamente su quantum

(Fig. 24.B1). Es preciso explicar que el grado de satisfacción del slice 3 se reduce en este

intervalo porque aumenta su throughput un total de 1.4 Mbps. Por lo tanto, se alcanza un

throughput de entrada de 7.65 Mbps, que no se consigue transmitir y el DS baja hasta un

90% (6.9 Mbps transmitido / 7.65 Mbps entrada). Al usar la variante de preferencia al

índice menor, se observa en Fig. 24.C1 un aumento en el slice 2, que es el que menor

índice tiene. Cabe destacar que en t=10 existe un corto desfase temporal entre el cambio

de los flujos UDP y la modificación de los pesos. Esto, como en ocasiones anteriores,

produce momentáneamente un ajuste de airtime no intencionado.

Entre t=20 y t=30, el throughput de entrada del slice 1 aumenta 1 Mbps, el del slice

2 aumenta 0.8 Mbps y el del slice 3 disminuye 1 Mbps (Fig. 24.A1, Fig. 23.A1). Para

todas las versiones de ADWRR, el slice 1 recupera casi todos los recursos que había

prestado (Fig. 24 B1 y C1) y con ello consigue transmitir los 4 Mbps del throughput de

entrada (Fig. 24 A4, B4, C4). Por lo tanto, el slice 2 ve reducido su airtime y no consigue

transmitir los 4.8 Mbps de throughput de entrada (Fig. 24 A4, B4, C4). Por último, el

slice 3 disminuye el throughput de entrada y pierde gran parte del airtime cedido

72

anteriormente por el slice 1. Por lo tanto, este slice disminuye su throughput y consigue

prácticamente transmitir el throughput de entrada (ver ratio de satisfacción Fig. 24 A2,

B2, C2). Como en este periodo de 10 segundos no se ceden recursos, los resultados

obtenidos son prácticamente los mismos para las tres pruebas.

Desde t=30 hasta t=50, el slice 1 vuelve a ceder recursos al disminuir su throughput

de entrada 2 Mbps. De nuevo se realiza un reparto de airtime proporcional al quantum

nominal para ADWRR con quantum constante (Fig. 24.A3) y las otras dos pruebas

distribuyen los recursos siguiendo su criterio de reparto. Para cuando se utiliza el igual

ratio de satisfacción, el slice 2, que es el más insatisfecho (Fig. 24.B), recibe gran parte

del quantum del slice 1 hasta igualar su DS con el slice 3. El slice 3 también recibe

quantum y, al aumentar el throughput de entrada al mismo tiempo, se reduce su DS. En

t=40 el slice 3 aumenta el throughput de entrada en 0.5 Mbps y esto se traduce en una

reducción del DS de los slices insatisfechos (Fig. 24.B2) puesto que deben tomar valores

similares. Para ADWRR con preferencia al índice menor, se le asigna todo el quantum al

slice 2 hasta que esté totalmente satisfecho (Fig. 24.C2). Los recursos que todavía queden

libres se repartirán al slice 3, que no podrá transmitir el throughput de entrada en ningún

momento de este periodo.

En los últimos 20 segundos del experimento, el slice 3 disminuye su demanda de

throughput en 0.5 Mbps (Fig. 23.A1). Esto le permite mejorar su DS utilizando en las 3

pruebas los mismos recursos (Fig. 24 A2, B2, C2). Por esta razón, las estadísticas del

resto de slices permanecen constantes excepto en Fig. 24.B2, donde el slice 2 consigue

aumentar levemente su DS por la política de igual ratio de satisfacción. En el instante

t=60, se produce un aumento de demanda de throughput en el slice 1 y el slice 3. Por ello,

el slice 1 se ve obligado a recuperar parte de los recursos cedidos (Fig. 24 B1, C1) y el

resto de slices verán afectado su DS debido a esta modificación (Fig. 24 B2, C2).

73

Pesos/Quantum estático Igual ratio de satisfacción Preferencia al índice menor

A1) Patrones de generación de tráfico

B1) Evolución de los pesos

C1) Evolución de los pesos

A2) Grado de satisfacción

B2) Grado de satisfacción

C2) Grado de satisfacción

A3) Reparto de airtime

B3) Reparto de airtime

C3) Reparto de airtime

A4) Throughput

B4) Throughput

C4) Throughput

74

A5) Evolución de los pesos slice 3

B5) Evolución de los pesos slice 3

C5) Evolución de los pesos slice 3

A6) Grado de satisfacción slice 3

B6) Grado de satisfacción slice 3

C6) Grado de satisfacción slice 3

Figura 24. Representación de estadísticas – Experimento 2

4.4 EXPERIMENTO 3 – FUNCIONAMIENTO DE SLICING CON HANDOVER

Para evaluar el funcionamiento del slicing junto con el de handover, se ha ajustado

el escenario de trabajo. En este experimento se utilizan dos puntos de acceso ubicados a

una distancia suficiente para que la STA realice el handover en el punto medio entre

ambos APs. Como se muestra en la Fig. 25, se emplean tres equipos físicos: dos PCs Intel

NUC y una Raspberry Pi 4. Se ha introducido un PC Intel NUC2 como el dispositivo que

alberga el segundo punto de acceso. La STA 4, que comenzará conectada al AP del PC

Intel NUC1, se utiliza como terminal móvil.

Para este experimento se utiliza la configuración de quantum y pesos estáticos tanto

en el scheduling intra-slice como en el inter-slice. Aprovechando esta configuración, se

ha tratado de aproximar la ocupación del enlace a la del Experimento 0, generando flujos

de Iperf similares. Para obtener resultados comparables, se ha ajustado el throughput de

algunos flujos UDP con el fin de compensar las diferencias en los MCS de las STAs

utilizadas en este experimento respecto a las del Experimento 0.

75

Figura 25. Escenario de trabajo para handover a nivel lógico

La Tabla 6 recoge los parámetros relevantes del AP1, que opera en el canal 36,

mientras que la Tabla 7 muestra los del AP2, que opera en el canal 48. Ambas tablas

incluyen los flujos correspondientes a la STA 4. Aunque estos flujos (de la STA 4)

aparezcan reflejados en las dos tablas, solo serán enviados por el AP que esté prestando

servicio a la STA 4 en cada momento.

El resto de las STAs se reparten equitativamente: la mitad se asocian con el AP1 y

la otra mitad con el AP2. De este modo, se consigue que ambos puntos de acceso

transmitan flujos UDP equivalentes, permitiendo así una comparación equilibrada del

rendimiento entre ellos.

76

Tabla 6. Experimento 3. Parámetros de interés AP1

 Slice 1 Slice 2 Slice 3

Quantum
(Qnom)

3500s 2500s 4000s

Queues Queue 0 Queue 1 Queue 0 Queue 1 Queue 0 Queue 1 Queue 2

Weight
(Wnom)

50 50 30 70 50 30 20

STA id STA 2 STA 3 STA 1 STA 2 STA 1 STA 2 STA 4 STA 3 STA 4 STA 3 STA 4

MCS index 3 6 1 3 1 3 4 6 4 6 4

Iperf Rate
(Time

interval)

1.4 Mbps
(0-100 s)

1.4Mbps
(0-100 s)

1.4Mbps
(0-100 s)

1.4Mbps
(0-100 s)

1.4Mbps
(0-100 s)

1.6
Mbps

(0-10s),

1.2
Mbps

(20-80 s)

0.68
Mbps

(0-100s)

0.9
Mbps

(0-100s)

0.6
Mbps

(0-100s)

0.9
Mbps

(0-100s)

0.55
Mbps
(10-20

s),

0.68
Mbps

(20-100
s)

UDP size
(bytes)

250B 1250 B 650 B 500 B 250 B 250 B 250 B 250 B 250 B 400 B 400 B

Tabla 7. Experimento 3. Parámetros de interés AP2

 Slice 1 Slice 2 Slice 3

Quantum
(Qnom)

3500s 2500s 4000s

Queues Queue 0 Queue 1 Queue 0 Queue 1 Queue 0 Queue 1 Queue 2

Weight
(Wnom)

50 50 30 70 50 30 20

STA id STA 16 STA 17 STA 15 STA 16 STA 15 STA 16 STA 4 STA 17 STA 4 STA 17 STA 4

MCS index 3 6 1 3 1 3 4 6 4 6 4

Iperf Rate
(Time

interval)

1.4 Mbps
(0-100 s)

1.4Mbps
(0-100 s)

1.4Mbps
(0-100 s)

1.4Mbps
(0-100 s)

1.4Mbps
(0-100 s)

1.6
Mbps

(0-10s),

1.2
Mbps
(20-80

s)

0.68
Mbps

(0-100s)

0.9
Mbps

(0-100s)

0.6
Mbps

(0-100s)

0.9
Mbps

(0-100s)

0.55
Mbps
(10-20

s),

0.68
Mbps

(20-100
s)

UDP size
(bytes)

250B 1250 B 650 B 500 B 250 B 250 B 250 B 250 B 250 B 400 B 400 B

Los flujos UDP de la Tabla 6 y Tabla 7 comienzan en el mismo instante de manera

sincronizada en los dos puntos de acceso. En t=45 la STA 4 realiza el handover del AP1

al AP2 y en t=80 vuelve al AP1. A continuación, se realiza un análisis de los resultados

77

obtenidos que se muestran en la Fig. 26.

Dado que la STA 4 recibe tres flujos UDP con un throughput total de 3 Mbps y que

estos flujos solo se envían a través del AP que la atiende en cada momento, el slice 3

únicamente estará en condiciones de ceder recursos cuando la STA 4 se encuentre

conectada al otro AP (ver Fig. 26 A1 y B1). Esto se refleja en el comportamiento del AP1

durante los intervalos t=0 a t=45 y t=80 a t=100, periodos en los que este AP da servicio

a la STA 4. De forma inversa, el slice 3 del AP2 no podrá liberar recursos entre t=45 y

t=80, ya que en ese intervalo es el encargado de transmitir los flujos a dicha estación.

Cabe destacar que estos periodos pueden extenderse ligeramente si existen paquetes

acumulados en las colas, ya que estos deben ser transmitidos antes de que el sistema esté

en condiciones de ceder airtime a otros slices.

Centrando la atención en el instante del handover en t=45, se observa en la Fig.

26.A1 una caída en el consumo de airtime causada por la salida de la STA 4. Al mismo

tiempo, el AP2 comienza a servir a la STA 4, lo que incrementa su consumo de airtime.

En algunas gráficas se puede observar que, cuando la STA 4 no está presente, el sistema

consume menos recursos y los slices con mayor demanda pueden aumentar su quantum.

Por esta razón, se producen también cambios en otros slices que no transmiten los

paquetes dirigidos a la STA 4 (ver Fig. 26 A2, A3, B2, B3).

Centrando la atención en el slice 3 durante el handover, se aprecia en la Fig. 26 A5

y B5 una disminución del throughput en el AP1 y un aumento en el AP2. En el momento

del handover en el AP1, ninguna de las colas está en condiciones de ceder airtime, ya que

todas utilizan sus recursos máximos asignados (C0: 50 %, C1: 30 %, C2: 20 %). Sin

embargo, justo después del handover, se produce una bajada en el throughput,

acompañada de una redistribución del airtime (Fig. 26.A4), en la que se obtiene un 45 %

para la cola 0, un 35 % para la cola 1 y un 20 % para la cola 2.

Esa misma distribución es la que presentan las colas del slice 3 unos instantes antes

del handover. Como los flujos UDP han sido replicados en ambos APs (excepto los de la

STA 4), se observa un comportamiento simétrico en el reparto del airtime, dado que, tras

el handover, el reparto obtenido es el que corresponde al caso en el que ninguna cola está

en condiciones de ceder recursos (de nuevo, C0: 50 %, C1: 30 %, C2: 20 %).

En la Fig. 26 A6 y B6 se puede ver un aumento del número de retransmisiones en

78

el instante del handover en t=45. En el AP1, estas retransmisiones se prolongan más en

el tiempo, debido a que la STA 4 se aleja progresivamente del punto de acceso,

reduciendo la potencia de señal y dificultando la comunicación. Además, el hecho de que

el MCS permanezca constante durante toda la prueba para todas las STAs impide

adaptarse a las condiciones variables del canal. Unos instantes después, también se

producen retransmisiones en el AP2, aunque más concentradas en el tiempo y de mayor

volumen. Esto ocurre porque, cuando OdinAP notifica a la STA que debe cambiar de

canal, esta no lo hace de forma inmediata, lo que puede generar retardo e incluso periodos

en los que la STA no escucha ni el canal nuevo ni el anterior (en el cambio de canal).

Como resultado, se producen retransmisiones debido a que la STA no genera los ACKs

correspondientes a las tramas que comienzan a enviarse por el nuevo canal. Estas

retransmisiones tienen un impacto negativo en el throughput de salida de ambos APs, ya

que se consume airtime en el envío de tramas que no llegan a su destino.

Más adelante, en t=80, se produce el mismo evento, pero en sentido inverso: la STA

4 se desplaza del AP2 al AP1. Nuevamente, se observa en la Fig. 26 B5 y B6 una caída

del throughput en todas las colas, provocada por las retransmisiones generadas al alejarse

del punto de acceso. En el AP1, además, se registran algunas variaciones en el throughput

en los instantes previos al handover. Este comportamiento se debe a un cúmulo de

retransmisiones de origen desconocido en el slice 1, que alteran la estabilidad del reparto

de airtime. Una vez finalizado el handover, vuelven a aparecer retransmisiones debido al

retardo con el que la STA 4 cambia de canal. Finalmente, cuando la STA empieza a

escuchar en el nuevo canal, se recupera la estabilidad en el sistema de reparto.

79

AP1 – Canal 36 AP2 – Canal 48

A1) Airtime por slice, AP1

B1) Airtime por slice, AP2

A2) Airtime slice 1, AP1

B2) Airtime slice 2, AP2

A3) Airtime slice 2, AP1

B3) Airtime slice 2, AP2

A4) Airtime slice 3, AP1

B4) Airtime slice 3, AP2

80

A5) Throughput slice 3, AP1

B5) Throughput slice 3, AP2

A6) Retransmisiones de AMSDU, AP1

B6) Retransmisiones de AMSDU, Ap2

Figura 26. Representación de gráficas – Experimento 3

Como se ha mencionado anteriormente, las STAs pueden presentar tiempos de

cambio de canal distintos a lo esperado, lo que genera retransmisiones. Concretamente,

en las pruebas se han utilizado interfaces Wi-Fi de dos fabricantes. Uno de ellos es

Realtek, que presenta un esquema temporal de cambio de canal como el que se muestra

en Fig. 27. El otro fabricante es Mediatek, cuyas interfaces, además de funcionar como

cliente Wi-Fi, permiten crear interfaces virtuales en modo monitor para capturar tráfico

en el canal activo. Las tarjetas Mediatek presentan un patrón temporal como el mostrado

en Fig. 28. En ambas figuras, los intervalos señalados con una cruz son los intervalos en

los que la STA no devuelve ACKs, mientras que los intervalos señalados con un tick

verde son en los que sí que se responde el ACK.

En ambos casos, se observa que las STAs presentan intervalos de duración

considerable sin enviar ACKs, lo que deteriora los resultados al provocar pérdidas

innecesarias y complicar la estabilidad del proceso de handover. El hecho de que cada

STA tenga su propia implementación (distintos drivers) dificulta la programación de

OdinAP y desaprovecha recursos dedicados a tramas que no se van a recibir. Este

problema será objeto de una línea futura que tendrá como objetivo encontrar la solución

81

que permita minimizar el número de retransmisiones hasta que la STA esté disponible

para escuchar y transmitir.

Figura 27. Diagrama de tiempos de la antena Wi-Fi Realtek

Figura 28. Diagrama de tiempos de la antena Wi-Fi Mediatek

Por otra parte, para evidenciar el impacto real que pueden tener ciertos retardos en

momentos críticos como el handover, se analiza a continuación el efecto de utilizar

funciones bloqueantes y no bloqueantes en OdinAP. En concreto, se estudia cómo afecta

este comportamiento al sistema de scheduling cuando un equipo (ya sea un AP o una

STA) deja de transmitir o recibir tramas Wi-Fi. Este aspecto, tratado en el capítulo 3

(apartado 3.2.3, Actualización del sistema de slices y colas por handover), supuso una

mejora significativa: la sustitución de system() por posix_spawn() redujo en un 99,95 %

el tiempo necesario para ejecutar el comando de cambio de canal. Esta alternativa permite

lanzar el proceso en paralelo, minimizando su impacto sobre el resto del programa5.

Se han recogido datos que permiten realizar la comparación del rendimiento del

sistema antes y después de esta mejora. En esta ocasión se ha utilizado Wireshark como

5 Resaltar que los resultados vistos hasta ahora en este apartado utilizan la alternativa no bloqueante

posix_spawn().

82

herramienta de monitorización, análisis y extracción de resultados, representando frente

al tiempo el número de paquetes enviados con una resolución variable según el caso.

a) Paquetes enviados por cada 100 ms por wlan0

b) Zoom de paquetes enviados por cada 100 ms en el instante crítico

c) Zoom de paquetes enviados por cada 1 ms en el instante crítico

Figura 29. Estadísticas obtenidas con la llamada a la instrucción bloqueante

83

La Fig. 29 muestra los resultados del Experimento 3 al utilizar la instrucción

bloqueante system() para cambiar el canal de la interfaz wlan2. En ella se representan los

paquetes enviados durante el experimento, capturados desde la interfaz wlan1 del AP2,

que actúa como punto de acceso receptor de la STA en movimiento. La subfigura A

recoge la visión global del experimento; la B amplía el instante en que el controlador

Odin ordena a AP2 monitorizar a la STA en su canal original justo antes del handover; y

la C muestra ese mismo intervalo con mayor resolución temporal (1 ms), lo que permite

un análisis más detallado del comportamiento del sistema.

En Fig. 29.c se ven dos periodos de 560 y 600 ms en los que no se envían paquetes:

el primero aparece por cambiar la interfaz wlan2 al canal a monitorizar y el segundo por

volver al canal original. En estos intervalos no hay retransmisiones, lo que indica que

estas no son las responsables la bajada del throughput; las retransmisiones ocurren

después del segundo periodo de silencio, cuando la STA monitorizada, tras realizar el

handover, entra en el canal del AP2. La monitorización de la STA con la interfaz auxiliar

wlan2 en otro canal no debería causar un desvanecimiento tan prolongado en la

transmisión.

En la Fig. 30 se presentan los resultados obtenidos al utilizar la instrucción

posix_spawn() para ejecutar el cambio de canal durante el handover. Como en casos

anteriores, la Fig. 30.a muestra el experimento completo y la Fig. 30.b destaca el intervalo

de mayor interés. Además, se han añadido las Fig. 30.c1 y Fig. 30.c2, donde se

representan con mayor nivel de detalle el primer y el segundo desvanecimiento

detectados, respectivamente.

Gracias a la mejora introducida, se observa una notable reducción en la duración de

estos silencios. En concreto, el primer periodo pasa de los 560 ms anteriores a tan solo

111 ms (sumando 46 ms y 65 ms, como se ve en la Fig. 30.c1), y el segundo se reduce de

600 ms a 150 ms (sumando 80 ms y 70 ms, ver Fig. 30.c2). En ambos casos, el punto de

acceso recupera su capacidad de transmisión en un tiempo mucho menor, logrando

reducir los periodos de inactividad hasta en un 80 %. No obstante, a pesar de la mejora,

todavía se observa un tiempo de parada no deseado, ya que el punto de acceso debería ser

capaz de seguir transmitiendo sin interrupciones. Por tanto, la resolución de este error no

84

solo mejora significativamente el rendimiento, sino que también revela nuevas

limitaciones del sistema que deberán abordarse en futuras líneas de trabajo.

a) Paquetes enviados por cada 100 ms por wlan0

b) Zoom de paquetes enviados por cada 100 ms en el instante crítico

c1) Zoom del primer instante de bajada de throughput

en b) (~ t=62.3). Paquetes enviados cada 1ms

c2) Zoom del segundo instante de bajada de throughput en b)

(~ t=64.1). Paquetes enviados cada 1ms

Figura 30. Estadísticas obtenidas con la llamada a la instrucción no bloqueante

85

Pese a esta mejora, sigue observándose que justo en el momento en que OdinAP

ejecuta el handover (t=64.3), se producen retransmisiones debidas al breve periodo de

silencio en el que la estación no responde.

La diferencia de tiempos entre ambas soluciones demuestra la importancia de evitar

llamadas bloqueantes en un entorno tan sensible como el del punto de acceso Wi-Fi,

donde se manejan múltiples tareas críticas en tiempo real. Esta mejora ha permitido una

mayor estabilidad y un comportamiento más robusto del sistema en general.

86

5. CONCLUSIONES Y LÍNEAS FUTURAS

En este trabajo se ha desarrollado e integrado una solución que combina un

algoritmo de control de tasa (Onoe) con un sistema de slicing dentro de una arquitectura

SDWLAN. El objetivo ha sido dotar al entorno NeWLAN de capacidades avanzadas de

gestión de recursos inalámbricos, utilizando condiciones de tráfico intensivo. La

integración se ha validado mediante una serie de pruebas experimentales en múltiples

escenarios, demostrando la robustez y funcionamiento del sistema resultante.

5.1 CONCLUSIONES

A continuación, se enumeran los principales logros y conclusiones alcanzados

durante el desarrollo del proyecto:

→ Integración exitosa de slicing y control de tasa: Se ha verificado el correcto

funcionamiento simultáneo del sistema de slicing con el algoritmo Onoe. Esta

combinación permite una gestión avanzada del airtime y una adaptación dinámica del

MCS en función de las condiciones del canal, lo que es clave para garantizar la QoS en

entornos con alta demanda.

→ Gestión eficiente del airtime mediante slicing: El sistema ha demostrado ser

capaz de asignar recursos de la forma esperada en condiciones normales y de congestión.

Además, el airtime no utilizado por colas con baja demanda se redistribuye eficazmente

entre aquellas que requieren más capacidad, maximizando el rendimiento del punto de

acceso.

→ Priorización efectiva del tráfico de control: Se ha reservado el slice 0

exclusivamente para el tráfico de control, quedando fuera del reparto de airtime con los

slices de datos. Esta decisión ha demostrado ser eficaz: el tráfico de control (como DHCP,

ARP y tramas de gestión IEEE 802.11) consume un porcentaje mínimo del airtime,

permitiendo su procesamiento inmediato sin afectar al tráfico de datos. También se ha

implementado una funcionalidad para redirigir correctamente tramas DHCP (u otros

tráficos de control) con valores DSCP no previstos.

→ Validación del comportamiento de las opciones de scheduling ADWRR: Las

pruebas realizadas con distintas variantes del algoritmo ADWRR —quantum estático,

87

igual ratio de satisfacción y preferencia por el índice menor— han validado su

funcionamiento y la correcta distribución de recursos:

La variante con quantum estático distribuye los recursos excedentes

proporcionalmente al quantum nominal entre las estructuras (colas o slices) activas que

lo necesiten.

La variante de igual ratio de satisfacción equilibra dinámicamente los recursos

excedentes entre las estructuras activas que necesiten más recursos para igualar su grado

de satisfacción.

La variante con preferencia al índice menor garantiza primero la satisfacción de las

colas prioritarias, aquellas con menor índice.

→ Gestión del handover y reducción de interrupciones: El sistema de slicing es

compatible con el handover. Ha mejorado la estabilidad y continuidad del servicio y,

aunque este proceso genera retransmisiones —debido al retardo en el cambio de canal de

las STAs y a la ausencia temporal de ACKs—, la sustitución de la instrucción bloqueante

system() por posix_spawn() ha reducido hasta un 80 % los periodos de inactividad del AP

(de ~560–600 ms a ~111–150 ms). Esta optimización resulta esencial para conseguir una

respuesta más fluida en entornos Wi-Fi sensibles al tiempo y plantear nuevas líneas de

mejora.

Además de los logros técnicos alcanzados, es importante destacar que este trabajo

se ha desarrollado dentro de un proyecto de investigación activo, en un entorno técnico

complejo que combina tecnologías de distintos niveles. Desde aspectos de alto nivel como

la contenerización de servicios, el despliegue de pods en Kubernetes o la coordinación

entre nodos distribuidos, hasta componentes de bajo nivel como la programación en C o

la modificación directa de campos en las cabeceras de los paquetes de red, el sistema

requiere una comprensión integral y detallada. Esta multidisciplinariedad ha supuesto un

esfuerzo añadido al trabajo realizado, que ha ido mucho más allá de implementar

funcionalidades: ha exigido una integración cuidadosa en un entorno previamente

diseñado, ya en funcionamiento y en evolución constante. Todo ello refuerza el valor del

resultado obtenido y sienta una base sólida para futuras mejoras.

88

5.2 LÍNEAS FUTURAS

A partir de los resultados obtenidos y los desafíos identificados durante el desarrollo

de este trabajo, se proponen las siguientes líneas de investigación para seguir mejorando

la funcionalidad y el rendimiento del entorno SDWLAN:

→Adaptación dinámica del tamaño del buffer del kernel:

Actualmente se utiliza un umbral fijo de 200 paquetes para el buffer del driver del kernel.

Sin embargo, la capacidad de monitorización puede variar según la carga de tráfico, lo

que podría provocar bloqueos si el umbral es demasiado bajo o deteriorar el

funcionamiento del control de tasa si es demasiado alto, al permitir el envío de paquetes

con un MCS desactualizado. Como mejora futura, se plantea implementar un mecanismo

que ajuste dinámicamente el tamaño del buffer en tiempo real. Esto permitiría una mayor

flexibilidad y resiliencia del sistema frente a variaciones de carga y condiciones del canal,

mejorando la eficiencia en la transmisión de paquetes.

→Minimización de las retransmisiones durante el handover:

Los experimentos han revelado que las STAs pueden presentar tiempos variables de

cambio de canal y periodos prolongados sin envío de ACKs, lo que afecta negativamente

al rendimiento y genera retransmisiones innecesarias. Se propone investigar las causas de

estos periodos de inactividad y diseñar soluciones que reduzcan su impacto. Una posible

solución podría consistir en enviar periódicamente tramas ARP request dirigidas a la IP

de la STA en proceso de handover, utilizando una dirección MAC de destino broadcast.

Al recibir un ARP reply, se confirmaría que la STA ya está activa, permitiendo mejorar

la eficiencia del proceso sin necesidad de provocar retransmisiones adicionales.

→ Eliminación de los tiempos de inactividad durante la monitorización previa al

handover:

En el diseño actual, cuando el punto de acceso cambia el canal de su interfaz auxiliar para

monitorizar a una STA que va a realizar un handover, se produce un periodo de

inactividad en el que el AP que monitoriza deja de transmitir. Aunque esta pausa ya se ha

reducido significativamente, sigue teniendo un impacto en el rendimiento del sistema.

Como línea futura, se plantea eliminar por completo estos tiempos de bloqueo mediante

técnicas de paralelización más avanzadas con el objetivo de mantener la transmisión

continua del AP sin interrupciones.

89

→ Integración de la clasificación de tráfico con el controlador SDN Ryu:

El marcado de tráfico mediante DSCP se ha realizado en el router mientras,

paralelamente, se ha desarrollado el marcado de paquetes con Ryu. Una posible mejora

es integrar esta función en NeWLAN, lo que permitiría una gestión más centralizada,

programable y dinámica de las políticas de QoS en función del estado de la red y de las

aplicaciones activas.

90

BIBLIOGRAFÍA

[1] Manuel Rivas Morillo. “Implementación de algoritmo de control de tasa y desarrollo

del entorno experimental para su evaluación”. Trabajo de Fin de Grado, Universidad

de Zaragoza, 2024.

[2] Julia Santacruz Lacambra. “Despliegue de redes WLAN coordinadas basadas en

arquitecturas programables y virtualizadas”. Trabajo de Fin de Grado, Universidad

de Zaragoza, 2024.

[3] Sara Ibáñez Alloza. “Propuesta y desarrollo de mecanismos para el RAN Slicing en

redes WLAN 5G en entorno real experimental”. Trabajo de Fin de Grado,

Universidad de Zaragoza, 2024.

[4] M. Canales, J. Santacruz, J. R. Gállego, J. Ruíz-Mas, Á. Hernández-Solana, J.

Navajas, y J. Ortín, “Leveraging Kubernetes for Automated Deployment and

Orchestration in Virtualized Wi-Fi Networks”, IEEE Transactions on Network and

Service Management. En revisión (enviado el 6 de marzo de 2025).

[5] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao, “Towards

programmable enterprise WLANs with Odin,” in Proceedings of the First Workshop

on Hot Topics in Software Defined Networks, HotSDN ’12. New York, NY, USA:

Association for Computing Machinery, 2012, p. 115–120. [Online]. Available:

https://doi.org/10. 1145/2342441.2342465

[6] R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski, and T. Rasheed,

“Programming abstractions for software-defined wireless networks,” IEEE

Transactions on Network and Service Management, vol. 12, no. 2, pp. 146–162,

2015.

[7] E. Coronado, R. Riggio, J. Villalón, and A. Garrido, “Joint mobility management and

multicast rate adaptation in software-defined enterprise WLANs,” IEEE

Transactions on Network and Service Management, vol. 15, no. 2, pp. 625–637,

2018.

91

[8] E. Coronado, S. N. Khan, and R. Riggio, “5G-EmPOWER: A software-defined

networking platform for 5G radio access networks,” IEEE Transactions on Network

and Service Management, vol. 16, no. 2, pp. 715–728, 2019.

[9] A. Zubow, S. Zehl, and A. Wolisz, “BIGAP — Seamless handover in high-

performance enterprise IEEE 802.11 networks,” in NOMS 2016 – 2016 IEEE/IFIP

Network Operations and Management Symposium, 2016, pp. 445–453.

[10] J. Saldana, R. Munilla, S. Eryigit, O. Topal, J. Ruiz-Mas, J. Fernández-Navajas, and

L. Sequeira, “Unsticking the Wi-Fi client: Smarter decisions using a software-

defined wireless solution,” IEEE Access, vol. 6, pp. 30917–30931, 2018.

[11] J. Saldana, J. Ruiz-Mas, J. Fernández-Navajas, J. L. S. Riaño, J.-P. Javaudin, J.-M.

Bonnamy, and M. Le Dizes, “Attention to Wi-Fi diversity: Resource management in

WLANs with heterogeneous APs,” IEEE Access, vol. 9, pp. 6961–6980, 2021.

[12] J. Lucas Vieira, D. Mosse, and D. Passos, “LEAF: Improving handoff flexibility of

IEEE 802.11 networks with an SDN-based virtual access point framework,” IEEE

Transactions on Network and Service Management, vol. 21, no. 6, pp. 6630–6642,

2024.

[13] A. Hernández-Solana, J. Ruiz, M. Canales, J. Fernández-Navajas, J. Gallego, y S.

Ibáñez-Alloza, “Practical Challenges of Implementing Slicing in 5G SDN WLAN

Networks”, IEEE Transactions on Network and Service Management. Major

revision (enviado el 10 de enero de 2025).

92

ANEXO A – TABLA DE INFORMACIÓN DE ÍNDICES MCS

Tabla 8. Información de índices MCS

93

ANEXO B – PSEUDOCÓDIGO DE ALGORITMOS ADWRR

A continuación, se presenta el pseudocódigo que muestra el funcionamiento de los

algoritmos slicing en este trabajo. Se muestran el proceso de encolado y desencolado, el

algoritmo ADWRR inter-slice e intra-slice y los distintos algoritmos de redistribución de

airtime (igual ratio de satisfacción y preferencia al índice menor).

Los algoritmos han sido extraídos de [3], donde se explica el desarrollo de estos en

el entorno experimental Inymon.

94

Tabla 9. Variables ADWRR

95

96

REDISTRIBUCIÓN INTRA-SLICE

Tabla 10. Variables de la redistribución Intra-Slice

97

98

99

REDISTRIBUCIÓN INTER-SLICE

Tabla 11. Variables de la redistribución Inter-Slice

100

101

