«2s Universidad
181 Zaragoza

1542

Trabajo Fin de Grado

Integracion de funcionalidades avanzadas de
QoS en un entorno SDWLAN

Integration of QoS advanced functionalities in a
SDWLAN environment

Autor

Sergio Espinosa Fumanal
Director

José Ruiz Mas

Departamento de Ingenieria Electronica y Comunicaciones
Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza

2025

A mi familia,
por su constante apoyo y confianza,

por enseflarme el valor del esfuerzo y acompafniarme en cada paso.

A mis amigos,
porque no todo es trabajar ni estudiar: siempre queda tiempo para quedar, hacer

deporte y tomar algo, y con vosotros todo eso sabe mejor.

A Cristina,
que me apoya incondicionalmente, me motiva cuando es necesario y apaga los
fuegos cuando no todo va bien. Eres lo que me empuja a seguir adelante sabiendo

que siempre habra alguien a mi lado.

A mis compaifieros,
que me han demostrado que lo que no saca uno solo, lo sacamos todos juntos.

Porque no han faltado buenos momentos, dentro y fuera de clase.

A mis profesores,
en quienes he encontrado la motivacion de aprender para resolver mis dudas sobre
lo que, desde nifio, siempre me ha parecido magia. Especialmente a Angela y

Pepe, por vuestra dedicacion diaria y preocupacion.

Por ultimo, a mis abuelos,
que, estén o no presentes, me ensefan el valor de la vida y en quienes encuentro el

reflejo de lo que realmente es el éxito.

Y atodas las personas que, de un modo u otro,

han formado parte de este camino.

RESUMEN

Actualmente, es practicamente inimaginable una vida sin conexion a Internet. Con
la aparicion de nuevas tecnologias y el aumento del numero de dispositivos electronicos
surge la necesidad de evolucionar los medios de acceso a Internet para mejorar la
experiencia de usuario al mismo tiempo que los servicios consumidos se vuelven mas
exigentes. Mas concretamente, son las conexiones inaldmbricas las que han
experimentado una evolucidn significativa en los ultimos afios, permitiendo mayor
velocidad, menor latencia y una mejor eficiencia en la gestion de los recursos de red.
Tecnologias como el avance hacia Redes Definidas por Software (Software Defined
Network, SDN) y Virtualizacion de Funciones de Red (Network Functions Virtualization,
NFV) han transformado la manera en que se gestionan y optimizan las infraestructuras
inalambricas. Bajo este contexto, surge la necesidad de desarrollar soluciones avanzadas
que permitan mejorar la asignacion de recursos en redes WLAN, garantizando calidad de
servicio (QoS, Quality of Service) y eficiencia en entornos con alta demanda de

conectividad.

Por ello, se plantea la incorporacion de soluciones avanzadas en un entorno de
Redes de Area Local Inaldmbricas Definidas por Software (Software-Defined Wireless
Local Area Network, SDWLAN) dentro de un proyecto de investigacion centrado en la

optimizacion de redes WLAN coordinadas basadas en arquitecturas programables.

INDICE

RESUMEN ...ttt ettt sttt ettt e bt et eaeees 5
1. INTRODUCCION ..o, 13
1.1 Contexto y ubicacion del trabajocccceecvverieeciienieiiienieeieecee e, 13
1.2 ODJEEIVOS ...viieeiiieeeiee ettt e et eerete e e stte e et eesraeessbeeeesbeeessseeesseeensseeennns 13
1.3 HEIramientasco.eevueeieriierieiiesieeeeeseee et 14
L.3.1 KUDCINELES ...t 14
L1.3.2 DOCKEEveeeeeeeeeeee et 15
L1.3.3 IPOIS oot 15
L34 IDEADIES ... e 16
1.3.5 MGAHAD ... 16
1.3.6 Wpa_SUppliCantcccooceeioiiiiiiieieeeeeee e 16
1.3.7 WAFESRATK ...ttt 16

1.4 Estructura de 1a memoriaccooeeiiiiiiiniiiiieeeeeeee 17

2. ESTADO DEL ARTE - ANTECEDENTES........ccccviiiiiiiiienieee 18
2.1 TEEE S02.1T .ottt 18
2.2 Arquitecturas SDN para redes WLANccocoviiiiniiniiicnicccceeee, 20
2.2.1 APsvirtuales y arquitecturas SDWNccccevriiiiniiiiniieiiieeeee 20
2.2.2 Arquitectura SDWN NeWLAN......ccooeviriiiniiiniineeieniesieeeeeeees 22

2.3 Onoe — Algoritmo de Control de Tasa.........ccceeevveeviieeencee e, 29
24 Slicing — Segmentacion de Red y Diferenciacion de Traficos.............. 30
240 SCREAUIIIG ... 32

3. ESCENARIO Y ASPECTOS DE LA INTEGRACION...........cccooeu..... 40

3.1 Escenario de trabajo........cceecieiiieiiieiiieieciece e 40

3.1.1 Escenario de trabajo - Nivel fiSiCO......cccceevviirririiiiiiiieiieeiee e, 40
3.1.2 Escenario de Trabajo - Nivel 10ZICO.......cccvvviiriieiiiriiciieeieeieeee, 42

3.2 Aspectos relevantes a considerar en la integracionc.ceeeeveeeneennn. 45
3.2.1 Modificacion del llenado del buffer del kernel 46
3.2.2 Aparicion de nuevos trafiCoS......cceriieriieriieiierieeeesee et 50
3.2.3 Actualizacion del sistema de slices y colas por handover 53

4. PRUEBAS Y RESULTADOSooiiiiiiiieieeeeeeeeeeee e 57
4.1 Experimento 0 — Control de tasa y adwrr con pesos estaticos.............. 57
4.2 Experimento 1 - Variantes de adwrr intra-slice............ccccceeevveeenennnenn, 64
4.3 Experimento 2 — Variantes de adwrr inter-slicecccoeeevveeennennee. 69
4.4 Experimento 3 — Funcionamiento de slicing con handover 74

5. CONCLUSIONES Y LINEAS FUTURAScooooviverieeeeeeeeeeeneeenn. 86
5.1 CONCIUSIONES ...ttt ettt e 86
5.2 LINEas fULUIAS.......ooiiiiiiiiieeieee e 88
BIBLIOGRAFIA ...t 90
ANEXO A — Tabla de informacion de indices MCS..........coooiiiiiiiniiiniineeee. 92
ANEXO B — Pseudocddigo de algoritmos ADWRR ..o 93
RediStribuCiONn Iit7aA-STiCecoocueeiiiiiieiieiee et 96
RediStribucion Inter-SIiCeccc.ooveeiiiiiiiiiiiiiiiieseetee et 99

INDICE DE FIGURAS

Figura 1. Componentes funcionales y protocolos. AP virtual y controladores 23
Figura 2. Plano de datos y plano de cOntrol..................cc.ccoooeiiiiiiiiiiiiiiiieietee e, 24
Figura 3. Plano de datos. Trafico uplink: de la STA a Internet...............c..ccooevevvevieniinecnannnnn, 25
Figura 4. Estructura de la cabecera IP 1 DSCRP............c...ccoooiiiiiiiiiiiieieie et 31
Figura 5. Arquitectura de la solucion de slicing en el APcccocvecievieniiniiiniieeieennann, 32
Figura 6. Reparto airtime. ASignacion qUAN{UM eSIALICAcccceeeeeeceeeeeiiesiesee e, 36
Figura 7. Esquema grdfico del escenario a nivel fiSiCo..............ccooceiveiciiciaiiaiieiieieee e, 41
Figura 8. Esquema grdfico del escenario a nivel SOftware.................ccccccecvevvenieniieniieeineeneann, 42
Figura 9. Representacion del espacio de usuario y el kernel del S.O..............cccccoccveveevcnan.e. 46
Figura 10. Esquema de funcionamiento - Control del tamarnio del buffer del driver.................. 48
Figura 11. Paquetes no capturados en una realizacion de una prueba de slicing 49
Figura 12. Captura de Wireshark — Intercambio DHCP con valor DSCP 4...............cc.ccc.c....... 52
Figura 13. Captura de Wireshark — Cabecera IP del paquete DHCP Discover........................ 52
Figura 14. Instruccion de cOdigo bloqueante....................cccccooeeiovieiiieiieeiieiieieee e, 53
Figura 15. Instruccion de codigo no bloqueante con medicion de tiempo de ejecucion............. 54
Figura 16. Diagrama de flujo del borrado de paquetes en las colas..................cccccoeevcvroeenne. 56
Figura 17. Experimento 0. Airtime consumido por cada slice y sus respectivas colas 59

Figura 18. Experimento 0. Throughput utilizado por cada slice y sus respectivas colas........... 60

Figura 19. Experimento (. Retransmisiones experimentadas.................cccoccooevevveviveeiueeireenneann, 61
Figura 20. Experimento 0. Variacion MCS de la STA 2 (slice 2, cola 0)c.cccoevveunannnnnn. 64
Figura 21. Experimento 1. Distribucion de airtime por Slice.............cccccouocvevciivciiniiiieieacn, 66
Figura 22. Experimento 1. Distribucion de airtime del slice 1 y slice 2............cccocevivvvenannnnn, 66
Figura 23. Representacion de estadisticas del slice 3 — Experimento Icccccooveveean.ne. 68
Figura 24. Representacion de estadisticas — EXperimento 2ccccccecvevveneenieeeieneineennnann, 74
Figura 25. Escenario de trabajo para handover a nivel [0giCO...............c.ccccovevciiiciiiiinan, 75
Figura 26. Representacion de graficas — EXPerimento 3............cccoceuveieeceaeeeiieniesie e, 80
Figura 27. Diagrama de tiempos de la antena Wi-Fi Realtek................cc.cccocovviiviiniiinnanninn, 81
Figura 28. Diagrama de tiempos de la antena Wi-Fi Mediatekccc.cccooeeviiiiinnnannnn. 81
Figura 29. Estadisticas obtenidas con la llamada a la instruccion bloqueante.......................... 82
Figura 30. Estadisticas obtenidas con la llamada a la instruccion no bloqueante 84

INDICE DE TABLAS

Tabla 1. Ejemplo de funcionamiento de SCheduling...................ccccoevvveviiiiiianianienieeiieeieeneenn, 35
Tabla 2. Asociacion entre puerto desting Y DSCP.............ccccccoooiiiiiiiiiiiiieeteeeee e 39
Tabla 3. Experimento 0. Parametros de IRLETES.............c.ccovevvierierieenieeieereaeeaeseasieesiaesiveese s 58
Tabla 4. Experimento 1. Pardmetros de iNLereés................ccocevcvuiivieiiiiiieeieeeeeeeesieeevee e 65
Tabla 5. Experimento 2. Parametros de INLETES.............c.ccveviierierieesieeieereeseesseesieesiae e s 70
Tabla 6. Experimento 3. Parametros de interés APIcccccooveiiiiiiiiiiiiieiieie e, 76
Tabla 7. Experimento 3. Parametros de interés AP2..............cccccooveiiiiiiioiiiieieeee e, 76
Tabla 8. Informacion de iNAices MUCS...............ccoovveviieiiieiiiicieeieeeeee et 92
Tabla 9. Variables ADWRRccoooi ottt ettt et seee e 94
Tabla 10. Variables de la redistribucion Intra-Slceccocovoieviiiiioeiiiiieis e, 96
Tabla 11. Variables de la redistribucion Inter-Slice.................cccoovevveiiiiciiiiaiieiie e, 99
INDICE DE ECUACIONES

Ecuacion 1. Calculo de Airtime Medio.................cccocouiiiiiiiiiiiiiieeieeeee ettt 19
Ecuacion 2. Calculo del niimero medio de transmiSionesccccuceeeeeicieceenesceeieeneaeeeee 20
Ecuacion 3. Calculo del quantum de una cola a partir del quantum del slice 34
Ecuacion 4. Calculo del grado de satisfaccion del slice ‘s’ y de la cola i’c..cc.c....... 37
Ecuacion 5. Control del tamario del buffer del driverccccoooviiiiviiiiiiiiniiiiiiiiiee, 48

LISTA DE ACRONIMOS

ACK
AMSDU
AP
BSSID
CSA
CSMA/CA
DIFS
DSCP
GRE
LVAP
MBR
MCS
MSDU
NFV
QoS
RSSI
SDN
SDWLAN
SDWN
SIFS
SLA
SSID
ToS
WLAN

Acknowledge frame, trama Wi-Fi

Aggregated MAC Service Data Unit

Access Point

Basic Service Set Identifier

Channel Switch Announcement

Carrier Sense Multiple Access with Collision Avoidance
Distributed Interframe Space

Differentiated Services Code Point, campo de la cabecera IP
Generic Routing Encapsulation

Light Virtual Access Point

Maximum Bit Rate

Modulation Coding Scheme

MAC Service Data Unit

Network Functions Virtualization

Quality of Service

Received Signal Strength Indicator

Software Defined Network

Software Defined Wireless Local Area Network
Software-Defined Wireless Network

Short Interframe Space

Service Level Agreement

Service Set Identifier

Type of Service, campo de la cabecera [P
Wireless Local Area Network

11

GLOSARIO

Airtime

Déficit

Handover

Nodo

Pesos

Pod

Quantum

Scheduling

Slice

Thread

Throughput

Tiempo de ocupaciéon del medio inaldmbrico durante una
transmision (o tiempo dado para realizar transmisiones).

Tiempo (us) que puede utilizar un slice/cola para transmitir
Proceso donde un cliente Wi-Fi cambia de un punto de acceso a
otro, manteniendo su conexiéon y logrando una movilidad

transparente sin interrupciones.
Equipo fisico donde se despliega uno o varios pods

Ponderacion usada por las colas para repartirse el quantum de un
slice.

En Kubernetes, conjunto de contenedores que comparten recursos
de red y almacenamiento

Cantidad fija de tiempo (us) que se anade periédicamente al déficit
de un slice/cola garantizando tiempo de transmision.

Algoritmos que definen como se extraen paquetes de las colas.
Porcion o particion logica de los recursos del punto de acceso para
asignar recursos especificos a conjuntos de traficos.

Hilo de ejecucion que opera en paralelo al codigo principal

Tasa de transmision de datos efectiva lograda, fundamental para
medir el rendimiento del sistema. Se mide en Mbps.

12

1. INTRODUCCION

1.1 CONTEXTO Y UBICACION DEL TRABAJO

El crecimiento de tecnologias emergentes y el aumento de dispositivos conectados
han impulsado la evolucion de las redes inalambricas, lo que ha exigido nuevas soluciones
que mejoren la eficiencia y la calidad del servicio. En este contexto, las arquitecturas
basadas en SDN (Software Defined Network) y NFV (Network Functions Virtualization)
han adquirido protagonismo como herramientas clave para optimizar la gestion de

recursos en entornos WLAN (Wireless Local Area Network) cada vez mas complejos.

En este trabajo se plantea la integracion de distintas soluciones en un escenario
SDWN (Software-Defined Wireless Network) como parte de un proyecto de investigacion
mas amplio centrado en la optimizacion de redes WLAN coordinadas basadas en
arquitecturas programables (Software-Defined Wireless Local Area Network,
SDWLAN). En trabajos anteriores [1][2][3], se han abordado soluciones tanto desde el
punto de vista de arquitecturas de red programables y virtualizadas, como soluciones
especificas que incorporan funcionalidades bésicas, hasta llegar a abordar soluciones mas
avanzadas relacionadas con la asignacion de recursos de red y garantia de QoS. La
finalidad de este trabajo es integrar estas funcionalidades, afrontando los desafios

inherentes al despliegue del escenario de trabajo y operacion conjunta en un entorno real.
1.2 OBJETIVOS

El objetivo principal de este Trabajo Fin de Grado es integrar dos funcionalidades
avanzadas, el algoritmo de control de tasa Onoe y un sistema de slicing, en un entorno
SDWLAN. Esta integracion busca mejorar la gestion de recursos inaldmbricos y acercar
el sistema a condiciones reales de funcionamiento, superando las limitaciones de entornos

experimentales anteriores.

Para alcanzar este objetivo general, se establecen los siguientes objetivos

especificos:

» Analizar y evaluar soluciones SDWLAN existentes, especialmente aquellas

desarrolladas previamente en proyectos anteriores, con el fin de comprender su

13

arquitectura, sus ventajas y sus limitaciones.

Comprender el funcionamiento de las funcionalidades a integrar, es decir, el
algoritmo de control de tasa Onoe y el sistema de slicing, analizando tanto su
disefio como su comportamiento esperado.

Desplegar un entorno funcional contenerizado, en una infraestructura basada en
Kubernetes, que permita aplicar las funcionalidades mencionadas sobre puntos de
acceso reales.

Implementar y adaptar el algoritmo de control de tasa Onoe, permitiendo que se
ejecute en un entorno con multiples dispositivos conectados y adaptandose
dindmicamente a las condiciones del canal inalambrico.

Disefiar e integrar un sistema de slicing que gestione el airtime, garantizando una
asignacion justa y configurable de los recursos entre diferentes flujos o
dispositivos conectados al punto de acceso.

Identificar y mitigar conflictos o ajustes derivados de la convivencia entre ambas
funcionalidades, garantizando que la integracion conjunta de control de tasa y
slicing no interfiera negativamente en el rendimiento global del sistema.
Realizar pruebas experimentales en un entorno real, observando el
comportamiento de la solucion desplegada y evaluando su efectividad en

diferentes situaciones de carga y uso.

En conjunto, este trabajo pretende continuar la investigacion en redes SDN para

entornos Wi-Fi para que pueda servir como base para futuras mejoras y funcionalidades

mas complejas.

1.3 HERRAMIENTAS

A continuacion, se detallan las herramientas utilizadas en este trabajo.

1.3.1 Kubernetes

Kubernetes es un sistema de orquestacion de contenedores disefiado para

automatizar el despliegue y la gestion de infraestructuras de redes. En este proyecto, se

emplea para construir la infraestructura SDWLAN, gestionando la ejecucion de pods

(unidad de despliegue mas pequena en Kubernetes) dentro de nodos (maquinas fisicas

donde se ejecutan los pods).

14

En este caso, los nodos son ordenadores de propdsito general equipados con los
periféricos necesarios, como las tarjetas Wi-Fi. Por lo tanto, Kubernetes facilita el
despliegue dindmico de los pods requeridos en el escenario de trabajo (por ejemplo, un
punto de acceso, un router o un controlador) y su eliminacién cuando ya no sean

necesarios.

Es importante destacar que los elementos clave del escenario, como los puntos de
acceso y los routers, no son dispositivos fisicos independientes, sino unidades de software
(pods) desplegadas en nodos fisicos que comparten recursos con el resto de pods

desplegados en el nodo.

1.3.2 Docker

Docker es una herramienta que permite empaquetar aplicaciones junto con todas
sus dependencias en contenedores, asegurando un funcionamiento consistente en
cualquier entorno. Al ser una solucion portatil, resulta de gran utilidad para utilizar y

replicar la aplicacion de manera remota en varios equipos simultaneamente.

En este proyecto, Docker se ha utilizado para contenerizar cada uno de los
elementos de la red de nuestro escenario de trabajo. Principalmente, se ha trabajado en la
contenerizacion del codigo en C que compone el punto de acceso OdinAP, para facilitar

su ejecucion en diferentes equipos.

Gracias a este enfoque, el despliegue del software es mas 4agil y escalable,

permitiendo que se ejecute simultaneamente en varios dispositivos de manera eficaz.

1.3.3 Iperf

Para la generacion de trafico en el entorno Wi-Fi se ha utilizado Iperf, un software
de Linux que posibilita la generacion de trafico desde un equipo a otro a partir de la

direccion IP.

En este trabajo se utilizan opciones que permiten personalizar la generacion de
trafico como la duracion del flujo, el tamafio de los paquetes generados, la velocidad de
transmision y el puerto destino. La opcion que permite especificar el puerto destino hara
que, con la herramienta iptables, se puedan marcar diferentes tipos de trafico usando el

campo DSCP (Differentiated Services Code Point) de la cabecera IP.

15

1.3.4 Iptables

Iptables es la herramienta de Linux que se ha utilizado para asignar un valor
determinado a DSCP. Para ello se utiliza la tabla mangle, con la que es sencillo modificar
los paquetes que pasen por la interfaz de red de un dispositivo (para marcarlos con un

valor determinado).

1.3.5 Matlab

Para llevar a cabo una valoracion de los resultados y obtener unas medidas precisas
se utiliza Matlab como herramienta de creacion de representaciones graficas. Con ella se
analizan principalmente aspectos como el throughput, el porcentaje de airtime (referido
al tiempo empleado para la transmision de la informacién en el medio radio), el nimero

de paquetes transmitidos, etc.

Es posible crear las graficas mencionadas anteriormente gracias a la exportacion de
los resultados recopilados tras la ejecucion de Iperf. Estos resultados se exportan en
archivos de texto y son procesados a posteriori para observar como ha funcionado la

prueba.

1.3.6 Wpa_Supplicant

Wpa_ Supplicant es una herramienta de software utilizada principalmente en
sistemas operativos Linux para gestionar la conexion de clientes Wi-Fi (STAs). Funciona
como un cliente de asociacion y autenticacion que se puede ejecutar en segundo plano,
encargandose de establecer y mantener la conexion entre el dispositivo y un punto de

acceso inalambrico.

Ademas, esta herramienta permite configurar los pardmetros de la red con la que se
va a establecer la conexion, permitiendo especificar el SSID (Service Set Identifier), la

contrasefa, el método de autenticacion, etc.

En entornos de desarrollo o pruebas como SDWN, su presencia es esencial para

conseguir el comportamiento de un cliente real que se conecta a la red desplegada.

1.3.7 Wireshark

Wireshark es una herramienta de andlisis de protocolos de red ampliamente

utilizada para capturar y examinar en detalle el trafico que circula por una interfaz de red.
16

Permite observar y clasificar los paquetes segiin su protocolo, direccion de origen y

destino, numero de secuencia, tiempos de transmision, entre muchos otros parametros.

Concretamente, en este proyecto Wireshark se ha utilizado para registrar y analizar
el comportamiento del sistema durante las pruebas de validacion. La herramienta ha
permitido obtener métricas relevantes como la tasa de transmision de paquetes, la
presencia de retransmisiones o la variacion del trafico en diferentes momentos de la
ejecucion. Estos datos han sido fundamentales para evaluar el rendimiento global del
sistema y comprobar el impacto de las modificaciones implementadas en distintos

escenarios de prueba.

1.4 ESTRUCTURA DE LA MEMORIA

En este primer capitulo se han introducido el contexto en el que se enmarca este

TFG y los objetivos que se persiguen.

El capitulo 2, Estado del arte - Antecedentes, comienza con una vision general de
la tecnologia de red Wi-Fi y la infraestructura SDN a desarrollar, describiendo la
evolucion de su arquitectura e identificando sus partes fundamentales. Posteriormente, se
explican detalladamente las funcionalidades de control de tasa (Onoe) y de segmentacion

de red (diferenciacion de traficos) a integrar en nuestro entorno de red Wi-Fi virtualizado.

El capitulo 3, Escenario y aspectos de la integracion, describe el escenario de
trabajo tanto desde un punto de vista fisico como logico, resaltando los aspectos mas
relevantes a considerar en la integracion de las nuevas funcionalidades. Se abordan
aspectos tales como la modificacion del llenado del buffer del kernel (control de tasa), la
aparicion de nuevos traficos o los efectos del handover en las funcionalidades integradas,
todos relacionados con el hecho de trabajar en un entorno experimental que incorpora

elementos de red Wi-F1 reales.

En el capitulo 4, Pruebas y resultados, se presentan las pruebas realizadas en
nuestro entorno experimental real y los resultados obtenidos que validan la integracion
realizada. Finalmente, esta memoria concluye con un capitulo 5 de Conclusiones y lineas

futuras propuestas a partir de este trabajo.

También se incluyen dos anexos que contienen informacion complementaria. El

17

Anexo A aporta informacion de indices de MCS (Modulation Coding Scheme) a
considerar en las distintas versiones Wi-Fi y en el control de tasa aplicado. El Anexo B
contiene informacioén sobre los algoritmos de scheduling empleados en la parte de

segmentacion de red y diferenciacion de traficos.

2. ESTADO DEL ARTE - ANTECEDENTES

Este capitulo presenta los fundamentos tedricos y las soluciones existentes que
sirven de base para el desarrollo del presente Trabajo Fin de Grado. Se abordaran los
estandares de redes inalambricas, las arquitecturas de Redes Definidas por Software para

WLAN, y los algoritmos especificos de control de tasa y segmentacion de red.

2.1 1EEE 802.11

El estandar IEEE 802.11 establece las especificaciones para redes inalambricas de
area local (WLAN). Desde su introduccion en 1997, ha evolucionado para responder a
las crecientes demandas de conectividad, ofreciendo mayor velocidad, capacidad y
eficiencia. Este estdndar opera en bandas de frecuencia como 2.4 GHz, 5 GHz y, mas
recientemente, 6 GHz, empleando técnicas de modulacion como OFDM (Orthogonal
Frequency Division Multiplexing) para optimizar la transmision de datos en el medio
inaldmbrico. En este trabajo, se ha utilizado especificamente la versién 802.11n, conocida
como Wi-Fi 4, operando en las bandas de 2.4 GHz y 5 GHz, aunque el sistema también
es compatible con 802.11ac (Wi-Fi 5). Esta version introduce mejoras como canales mas
anchos (hasta 40 MHz, y en versiones posteriores como 802.11ac, hasta 160 MHz) y
MIMO (Multiple Input Multiple Output), permitiendo mayores tasas de transmision y una

mejor gestion del espectro.

El protocolo de acceso al medio (MAC) de 802.11 se basa en CSMA/CA (Carrier
Sense Multiple Access with Collision Avoidance), que coordina el acceso al canal
mediante escucha previa y tiempos de espera aleatorios (backoff) para minimizar
colisiones. El airtime, o tiempo de ocupacion del medio inaldmbrico, es un factor critico
en este contexto, ya que depende de la tasa de transmision (definida por el esquema de
modulacion y codificacion, MCS), las interferencias y los tiempos asociados al protocolo

MAC. En entornos con alta densidad de dispositivos o trafico variable, la gestion del

18

airtime puede volverse compleja, afectando al rendimiento y a la latencia de la red. Estas
caracteristicas son especialmente relevantes en aplicaciones que requieren garantia de

QoS, como el streaming o las comunicaciones en tiempo real.

Versiones recientes como 802.11ax (Wi-Fi 6) incorporan avances como OFDMA
(Orthogonal Frequency Division Multiple Access) y MU-MIMO (Multi-User Multiple
Input Multiple Output) para mejorar la eficiencia y atender simultineamente a multiples
dispositivos. A pesar de estos avances en recientes versiones Wi-Fi, la utilizacion de redes
virtualizadas SDN sigue siendo limitada en arquitecturas basadas en 802.11. De ahi que
surja la necesidad de explorar soluciones avanzadas Wi-Fi basadas en entornos

virtualizados y softwarizados.

Para ello, es necesario contar previamente con funcionalidades basicas como el
control de tasa para optimizar el uso del airtime al adaptar dindmicamente el MCS a las
condiciones del canal, asi como lograr una mayor eficiencia en la transmisioén. A partir
de ahi se pueden plantear funcionalidades avanzadas como el slicing que permitan atender
con mayor prioridad a ciertos flujos que lo requieran, mejorando la asignacioén de dicho

airtime segun las necesidades especificas de los usuarios.

Estas funcionalidades tienen el objetivo de optimizar la asignacion de recursos en
la red, garantizando una distribucion eficiente del tiempo de ocupacion del medio
inalambrico (airtime) desde el AP (Access Point) hasta las estaciones conectadas (STAs).
Es decir, el enfoque del trabajo se centrara en los flujos de trafico downlink, cuyo airtime

se calcula seglin lo indicado en la Ecuacioén 1.

Airtime =gy * (Tpackorf + Tpirs + Tpara + Tsips + Tack)

Ecuacion 1. Calculo de Airtime medio

Mas detalladamente, el airtime es el tiempo que requiere una trama unicast para
enviarse por la interfaz inalambrica y recibir la confirmacion del ACK, teniendo en cuenta

el nimero medio de retransmisiones.

Como se muestra en la Ecuaciéon 2, el parametro ny, (nimero medio de
transmisiones, incluyendo la transmision original) se calcula como la inversa de la

probabilidad de recibir el ACK a una tasa determinada. Esta probabilidad dependera de

19

la tasa; cuanto mayor sea la tasa, menor serd la probabilidad de ACK y, cuanto menor sea

la tasa, mayor sera la probabilidad de ACK.
Nrx = 1/Pack(R)

Ecuacion 2. Calculo del numero medio de transmisiones

El resto de los tiempos de la Ecuacion I pertenecen al protocolo de acceso a la red

CSMA/CA: Tgackors €s un tiempo aleatorio previo a la transmision, Tpips es el

Distributed InterFrame Space, Tpar4 €s el tiempo de transmision que depende de la tasa
de transmision utilizada, Tgps es el Short InterFrame Space y Tycx es el tiempo de

transmision de la trama ACK.

De esta forma, el sistema sera capaz de adaptarse dinamicamente a las condiciones
del canal modificando los parametros caracteristicos de las transmisiones inalambricas
que determinan la velocidad de transmision. Al mismo tiempo, el sistema también podra
diferenciar entre distintas clases de trafico y usuarios con el objetivo de repartir el airtime

segun criterios de prioridad de usuarios, inelasticidad de tréaficos, etc.
2.2 ARQUITECTURAS SDN PARA REDES WLAN

2.2.1 APs virtuales y arquitecturas SDWN

Como se menciona en /4], SDN es un paradigma de disefio de redes que separa el
plano de control del plano de datos, lo que permite una gestion centralizada,
programabilidad y automatizacion. Esta separacion mejora la agilidad, la escalabilidad y
la eficiencia operativa, al permitir que el control de la red sea gestionado de forma logica

desde un Unico punto mediante software.

Una arquitectura SDN suele estar compuesta por tres planos principales: el plano
de aplicacion, el plano de control y el plano de datos. En el centro de esta arquitectura se
encuentra un controlador centralizado, encargado de tomar decisiones sobre el
funcionamiento de la red. Este controlador se comunica con los dispositivos del plano de
datos mediante protocolos estandarizados como OpenFlow. Gracias al desacoplo entre el
control y el envio de datos, el plano de control se encarga de la logica y la toma de

decisiones, mientras que el plano de datos se dedica exclusivamente al envio de paquetes.

20

Ademas, SDN aporta programabilidad a la red al abstraer el hardware subyacente
y permitir el control a través de APIs. Las APIs northbound (que conectan el plano de
control con el plano de aplicacion) permiten que las aplicaciones definan politicas de alto
nivel sobre el comportamiento de la red, mientras que las APIs southbound (que conectan
el plano de control con el plano de datos) facilitan la interaccion del plano de control con

los dispositivos fisicos, asegurando la correcta ejecucion de instrucciones.

Suresh et al. [5] propuso Odin, una arquitectura SDWN disenada para redes WLAN
empresariales, que introduce el concepto de puntos de acceso virtuales para simplificar el
desarrollo de aplicaciones y gestionar la movilidad de las estaciones (STAs) entre
diferentes APs fisicos. Esto se consigue mediante la abstraccion denominada LVAP
(Light Virtual Access Point). Cuando una STA se conecta por primera vez, el controlador
SDN le asigna un LVAP unico, en lugar de asociarse directamente a un AP fisico. Este
LVAP contiene un SSID virtual, un BSSID (Basic Service Set Identifier) virtual, la
direccion MAC de la STA y su direccion IP.

Gracias a esta abstraccion, cuando la STA se mueve fuera del alcance del AP, el
controlador migra dinamicamente el LVAP a otro punto de acceso, manteniendo la misma
identidad de red (SSID y direccion IP). Esto permite una movilidad totalmente
transparente para la STA, sin necesidad de realizar procesos de reasociacion o

reautenticacion.

Sin embargo, la arquitectura Odin propuesta en [5] tiene dos limitaciones
principales: en primer lugar, asume que todos los APs operan en el mismo canal, lo que
impide una planificacion de canales eficaz y, en segundo lugar, se enfrenta a problemas
de escalabilidad, ya que no es posible utilizar tramas beacon de difusion. En su lugar, el
punto de acceso debe enviar tramas beacon unicast con una direccion MAC especifica a
cada STA (cada LVAP solo puede atender a una STA). Ademas, el punto de acceso debe
ser capaz de generar los ACK (trama Acknowledge) Wi-Fi correspondientes para cada

STA.

Para superar estas limitaciones y siguiendo este paradigma de AP virtual, en los
ultimos afios se han propuesto varias propuestas de arquitectura para SDWN. La
arquitectura EmPOWER introducida en [6] integra multiples tecnologias de acceso radio

y proporciona un conjunto de abstracciones de programacion para modelar aspectos clave

21

de las redes inalambricas tales como la movilidad y/o el control de tasa [7][8], pero sin
abordar sus problemas de escalabilidad Wi-Fi. Ante esta limitacion, la arquitectura
BIGAP [9] propone utilizar un unico BSSID global compartido por todos los APs de un
mismo conjunto de servicio extendido (ESS). Desde el punto de vista de la STA, toda la
red se percibe como si fuera un unico punto de acceso, lo que reduce la sobrecarga de
sefializacion y mejora la escalabilidad tanto en numero de usuarios como en densidad de
APs. Soluciones mas recientes basadas en SDN [10][11][12] integran mecanismos de
traspaso y soporte multicanal con herramientas de supervision y otras funcionalidades
inteligentes. Ejemplo de ello son el uso del CSA (Channel Switch Announcement) y el
estandar IEEE 802.11h, lo que permite que los APs trabajen en canales distintos sin perder

sincronizacion.

Cada una de las propuestas mencionadas emplea un controlador central responsable
de la gestion de la red. Sin embargo, todas ellas asumen que los elementos de red, como
los AP y los routers residen en la misma red fisica. Ademas, no abordan la gestion basada
en SDN del segmento cableado, aspecto critico cuando se desea que estos elementos se
distribuyan en distintas ubicaciones fisicas. Este control del segmento cableado basado
en SDN debe permitir crear y gestionar la comunicacion entre los puntos de acceso y el
router a partir de tineles GRE (Generic Routing Encapsulation) cuando estos elementos

estan distribuidos en distintas ubicaciones fisicas que pertenecen a redes IP distintas.

Nuestra arquitectura SDWN denominada NeWLAN, punto de partida y soporte de
este trabajo, forma parte de la evolucion descrita incorporando las mejoras mencionadas
anteriormente, integrando mecanismos de movilidad avanzada, puntos de acceso
virtuales, reduccion de la sobrecarga de sefializacion mediante BIGAP, y control
unificado tanto del segmento inalambrico como del cableado. Esta combinacion de
elementos permite ofrecer una solucion escalable, flexible y facilmente desplegable para

entornos reales con multiples dispositivos y puntos de acceso distribuidos.

2.2.2 Arquitectura SDWN NeWLAN

Las principales caracteristicas y novedades de la propuesta NeWLAN (Fig. 1) se
resumen en esta seccion. Estas incluyen la gestion basada en SDN del plano de datos
dentro del segmento cableado de la red, la eliminacion de la necesidad de infraestructura

de red dedicada o servidores exclusivos, y el aprovechamiento de redes superpuestas

22

(overlay networks) e implementaciones contenerizadas para lograr una mayor

flexibilidad y eficiencia. Asimismo, abarca la gestion de movilidad para soportar

traspasos (handovers) dentro de la red de acceso Wi-Fi.

En trabajos anteriores, se buscaba integrar mecanismos de coordinaciéon que

mejoraran las capacidades de los puntos de acceso (APs) Wi-Fi gestionados de forma

centralizada. Para ello se incluyeron herramientas de monitorizacién y funcionalidades

adicionales que permitian una gestion de red inteligente utilizando APs comerciales de

bajo coste. Al aprovechar la informaciéon de red recopilada por los controladores

centrales, se demostr6 el potencial para tomar decisiones informadas sobre la asignacion

de recursos. Por tanto, para un funcionamiento adecuado, es esencial usar dos redes

separadas: una para el control y otra para los datos.

Access Point

¥
= ap
S .
= TAP
2 > S«
o
2 A
8 }

gre_sys

<----->'wlan2 <«
OdinAP

(Odin Agent) [© [Wlan1<

-
- > wlan0
g

DHCP server,
Internal router
A
Smart functionalities
£ | g
c o w
= = o
© c = a
: © = 2 =3
. : m ©
Wired Data plane : - P o
: o] [=]
: 4 A 4 K
}__J: Northbound
3 \ 4 \ 4 v
Control plane L
bt -
odinToP 6777 ‘g‘ Odin Controller
In
Lot N e (Master)
Odin UDP 2819
el I OpenFlow TCP 6653)
OVSDBTCR 6640 N SDN Controller
(Ryu)
Wireless

environment

Wireless
environment

_.() ________) - — —» users
S - - - > (STAS)

Wireless Data plane

Figura 1. Componentes funcionales y protocolos. AP virtual y controladores

23

El plano de control se encarga de la funcionalidad radio y configura la conmutacion

y el encaminamiento dentro del plano de datos (Fig. 2). Para esto, se utilizan dos

controladores centrales: un controlador OpenFlow estandar (basado en Ryu) para

configurar el segmento cableado de la ruta de datos, y un controlador personalizado, Odin,

para gestionar el segmento inalambrico. El controlador OpenFlow supervisa los switches

virtuales desplegados a lo largo de la ruta de datos, mientras que el controlador Odin

interactia con los Agentes Odin ubicados en los APs para gestionar todas las

funcionalidades radio y las aplicaciones de gestion inalambrica personalizadas.

1
1
1
1
]
Data Plane
[]
]
]
]
[]
[]

vSwitch
l‘ |

%

Ryu SDN

controller
—_—

Odin

controller
—

Wired
Control Plane

Wireless
Control Plane

Figura 2. Plano de datos y plano de control

Plano de Datos

El plano de datos se encarga de establecer la conectividad para las STAs a través

de puntos de acceso Wi-Fi. Las STAs que quieran conectarse se asocian con cualquiera

24

de los APs desplegados siguiendo los procedimientos inaldmbricos estandar.

Una vez que la STA se asocia, se establece la ruta de datos inaldmbrica, lo que
permite la configuracion de la ruta completa, incluyendo la asignacion de direcciones IP
mediante DHCP y la conexion cableada entre el AP y el router de acceso a Internet. Este

router funciona como servidor DHCP vy realiza traduccion de direcciones de red (NAT),

proporcionando acceso a Internet.

Para permitir el despliegue en cualquier ubicacion, independientemente de la
infraestructura de red subyacente, se establece una red overlay con una ruta de datos

cableada tunelizada. Esta conexion utiliza tineles GRE configurados sobre las interfaces

fisicas.

Esta arquitectura se ilustra en las Fig. 1 y Fig. 2, y la configuracion del plano de

datos con tuneles se detalla en Fig. 3.

E-LAN |

tHH

i(((== NP7
Eg N—

MACSTA| MAC, out - 1Py | http |

Node2 (Router)

| IProde IProde2 ‘GREheader

DHCP server ‘._ web server
@MAC o1t router] @1Px
@IProut D5 NAT
e
— D
A etho @lpnodEZ ‘\!’I’
cre ™ L A
wlan1 H @ . |
s
.0

.0
INfrastructure " *=ssSogeeereanenass
network

eth0
@Ipnnde1

Internet

o vSwitch
.." wlan0 Gateway

Figura 3. Plano de datos. Trdfico uplink: de la STA a Internet

Plano de Control

El enfoque de redes SDWN introduce la programabilidad a través de controladores

centralizados que permiten la gestion de APs virtuales, swifches y otros elementos de red,

25

optimizando la gestion de recursos.

El protocolo Odin supera las limitaciones de OpenFlow en la capa MAC de IEEE
802.11 como son la gestion de LVAP o la configuracion de pardmetros de transmision
inaldmbrica. Este protocolo facilita la comunicacion entre el controlador y los APs,
manejando todos los intercambios de control y gestion. Utiliza conexiones TCP para
informacion relacionada con la gestion como son la asociacidon, los traspasos o
heterogeneidad de las redes WLAN y utiliza conexiones UDP para informes periddicos

y notificaciones.

Los agentes Odin, que se ejecutan en los APs inalambricos, proporcionan la
informacion necesaria para que el controlador orqueste la red Wi-Fi y recupere métricas
relevantes. Las operaciones criticas en tiempo real del protocolo MAC de Wi-Fi, como
las confirmaciones IEEE 802.11 (ACKs), siguen siendo gestionadas por el hardware de
la tarjeta Wi-Fi. Por otro lado, las funciones no criticas en tiempo real, como la gestion
de asociaciones de clientes, se implementan en software tanto en el controlador como en

los agentes.

La arquitectura utiliza la abstraccion LVAP, que permite controlar a la STA y
asegurar traspasos de nivel 2 sin interrupciones. Para reducir la sobrecarga en el medio
inaldmbrico, se implementa una solucion basada en el concepto BIGAP. Esta arquitectura
utiliza un Unico BSSID global compartido por todos los APs de un mismo conjunto de
servicio extendido (ESS). Desde la perspectiva de la STA, toda la red se percibe como si
fuera un Unico y gran AP, lo que reduce la sobrecarga de sefializacion inalambrica y
mejora la escalabilidad en redes Wi-Fi. Para lograr esto, BIGAP asigna diferentes canales
de frecuencia radio a los APs y, durante el proceso de traspaso, aprovecha la
funcionalidad DFS (Dynamic Frequency Selection) de IEEE 802.11 para que la STA

perciba que el AP al que estd conectada estd simplemente cambiando de canal.

El establecimiento de la ruta de datos inalambrica se logra cuando el agente Odin
en el AP sigue los procedimientos estandarizados de asociacion y autenticacion de
802.11. Durante el intercambio de esta sefializacion, el agente Odin se comunica con el
controlador Odin para registrar la STA en la red y crear el LVAP correspondiente. Esta
informacion incluye la direccion IP asignada a la STA, lo que requiere sefializacion

DHCP. El agente Odin interviene para finalizar la creacion del LVAP capturando el

26

mensaje DHCP ACK vy notificandolo al controlador Odin.

El controlador SDN Ryu establece y mantiene una red virtual en el segmento
cableado. Esto lo hace interconectando switches virtuales. Las rutas de datos inalambrica
y cableada se controlan por separado, usando el controlador Odin para el segmento

inalambrico y el controlador SDN Ryu para el segmento cableado.

Durante la conexion fisica en el despliegue, al iniciar los APs y el router, los
switches virtuales se conectan al controlador SDN Ryu y completan el handshake inicial
de OpenFlow. Este proceso permite al controlador identificar las direcciones IP de los
nodos que alojan las funciones virtuales e iniciar la creacion de tineles GRE, que se

afiaden como puertos a los switches virtuales.

Para minimizar los retrasos causados por el restablecimiento de la ruta de datos
cableada durante un traspaso, el controlador SDN Ryu debe ser notificado para actualizar
las reglas de flujo y lograr un traspaso sin interrupciones (seamless handover). Cuando
una STA se asocia con un nuevo AP, se crea una nueva regla de flujo en la tabla del switch
virtual correspondiente. Para evitar esperar a que las reglas antiguas expiren, la
implementacidén propuesta activa explicitamente las modificaciones necesarias de las
reglas de flujo. El nuevo AP que atiende a la STA genera paquetes ARP "gratuitos" en
nombre de la STA después del traspaso. Estos paquetes de difusion se reenvian al
controlador SDN Ryu, que instruye a los swiftches virtuales relevantes para que inunden
la red, actualizando proactivamente la tabla de flujo con la nueva ruta de reenvio, incluso

en ausencia de trafico unicast.

2.2.2.1 OdinAP — Punto de acceso

NeWLAN utiliza APs virtuales disefiados a medida, implementados como una
aplicacion standalone de espacio de usuario (OdinAP) desarrollada en C, lo que permite
alcanzar un mayor rendimiento y throughput en la transmision de datos. OdinAP esta
preparado para ser contenerizado (con Docker) y desplegado en ordenadores de propdsito
general, lo que facilita su uso en entornos distribuidos gestionados por plataformas como

Kubernetes.

Para gestionar las comunicaciones tanto a nivel de datos como a nivel de control,

OdinAP hace uso de varios sockets. Un socket es una interfaz software que permite el

27

intercambio de datos entre procesos, ya sea dentro del sistema o entre sistemas remotos a
través de la red. Estos sockets nos permiten establecer conexiones TCP o UDP con otros
equipos y son fundamentales para establecer comunicaciones con el controlador SDN

Ryu.
Los sockets utilizados son los siguientes:

» Interfaz inalambrica principal = Funciona en modo monitor para poder inyectar
las tramas Wi-Fi en el medio inaldmbrico y escuchar aquellas que deba transmitir

por la interfaz Ethernet hacia el router.

» Interfaz inalambrica auxiliar 2 Funciona en modo monitor para poder, entre otras
funcionalidades, escuchar las tramas enviadas y recibidas por la interfaz
inalambrica principal. Ello permite monitorizar la transmision de OdinAP para

realizar el control de tasa'.

» Interfaz inalambrica auxiliar 2 - Funciona en modo monitor para poder escuchar
en un canal dado las tramas enviadas por STAs pertenecientes a nuestra
infraestructura Wi-Fi. Su funcién es monitorizar la transmision para realizar los

traspasos de STAs entre APs.

» Socket TCP (plano de control) = Permanece a la espera de conexiones TCP del
controlador. Realiza el three-way-handshake y crea un nuevo socket TCP para

crear la sesion TCP.

» Socket UDP (plano de control) = Envia informacion de control al controlador

sobre UDP (notificaciones e informes periodicos).

» Socket de la interfaz TAP (plano de datos) = Recibe y envia tramas de datos por/a
la interfaz fija (Ethernet) del AP (conexidn con red cableada). Corresponde a la

interfaz TAP de OdinAP.

! Lo ideal seria poder aplicar el algoritmo de control de tasa a partir de valores proporcionados por
el driver a través del Radiotap TX Flags. Pero no todos los drivers lo implementan y por ello la utilizacion
de esta interfaz para control de tasa permite ser independientes del driver de la tarjeta de red inalambrica

utilizada.

28

2.2.2.2 Router DHCP y NAT

Para proporcionar conectividad entre la red WLAN privada e internet utilizamos un
pod que actiia como router. Ademas de encaminar el trafico, este pod también actiia como
servidor DHCP vy realiza traducciones NAT. El servicio DHCP ofrece a los host
direcciones de la red 192.168.137.0/24 excepto la 192.168.137.131, que estd configurada

de manera estatica.

El router esta configurado para traducir direcciones IP privadas a direcciones IP
publicas con el fin de poder acceder a internet, pero no a la inversa. Ademas, este pod va
a ser el encargado de marcar el trafico, indicando el valor del campo DSCP que debe tener
cada paquete que encamina. Este campo nos ayudard a diferenciar traficos y aplicar

politicas de slicing en los puntos de acceso.

2.3 ONOE — ALGORITMO DE CONTROL DE TASA

Onoe (On Demand Transmission Opportunity Enhancement) es el algoritmo de
control de tasa implementado en un entorno experimental propio denominado /nymon [1],
desarrollado con el fin de poder crear y probar soluciones en entornos Wi-Fi antes de su
incorporacion a entornos Wi-Fi con STAs reales. El algoritmo Onoe fue disefiado por
Mad Wifi (Multiband Atheros Driver for Wi-Fi), un controlador de codigo abierto para

sistemas Linux, especialmente para tarjetas inalambricas que utilizan chipsets de Atheros.

Este algoritmo de control funciona en lazo abierto, es decir, que ajusta la tasa de
transmision basandose unicamente en sus propias mediciones y estadisticas, sin utilizar
retroalimentacion directa del receptor. Ademas, la implementacidon de este algoritmo se
plantea como una solucioén independiente del driver de la tarjeta de red del punto de

acceso, pues en ocasiones esta no proporciona los valores de pérdidas y retransmisiones.

Para obtener sus propias mediciones se utiliza una interfaz auxiliar, denominada
también “interfaz espia”. Se trata de una segunda interfaz Wi-Fi fisica cuya funcion es
monitorizar los numeros de secuencia de los paquetes capturados en el canal Wi-Fi donde
se esté dando servicio. A partir de los nimeros de secuencia, el sistema podra saber si se
ha retransmitido un paquete (repeticion del nimero de secuencia) o si un paquete ha sido
recibido correctamente (se observa un nimero de secuencia mayor al de dicho paquete).
Esta monitorizacion no permite diferenciar si la retransmision ha sido producida por una

29

colision o por una pérdida, sin embargo, proporciona al sistema una adaptabilidad

adecuada independientemente del dispositivo receptor.

Para realizar dicho control, Onoe se basa en un sistema de créditos evaluados en
ventanas temporales de un tiempo dado. Al finalizar cada intervalo, se evalua el
rendimiento calculando estadisticas segtin el nimero de paquetes enviados correctamente
y el nimero de retransmisiones. Se sumara un crédito si se obtiene un porcentaje de
retransmisiones inferior a un valor dado (10% en nuestro caso). Cuando se acumulen 10
créditos, se aumentard la tasa de transmision y se reiniciara el contador. En cambio, si el
porcentaje de retransmisiones en dicha ventana temporal es superior a un valor dado (50%
en nuestro caso), se restableceran los créditos a 0 y se reducird la tasa de transmision. En
consecuencia, este mecanismo disminuye la sensibilidad ante posibles variaciones rapidas
de las condiciones del canal a cambio de una actualizacion mas lenta de la tasa de

transmision.

Para aumentar o disminuir la tasa de transmision se modifica dindmicamente el
MCS, el numero de spatial streams (flujos espaciales, para el uso de MIMO) y la
codificacion de canal. Para obtener los detalles completos de los diferentes MCS y su

configuracidn se recomienda consultar la Tabla 8 del Anexo A.

Dado que Onoe es un algoritmo que se aplica de forma local, el control de tasa
funcionard tinicamente en un sentido de la comunicacion (downlink). Este es el algoritmo
(ya probado en [1]) que debemos integrar en el punto de acceso y evaluar con STAs reales

en este TFG.

2.4 SLICING — SEGMENTACION DE RED Y DIFERENCIACION DE TRAFICOS

Slicing o segmentacion de red es el concepto utilizado para que la transmision
downlink en un entorno SDWLAN (desde el punto de acceso hasta la STA) se adapte a las
necesidades de los traficos y haga un uso eficiente de los recursos de la red. El objetivo
de esta técnica es conseguir proporcionar un trato diferenciado a ciertos flujos de datos
que envia el punto de acceso por el medio inaldmbrico. La manera en la que se ha
implementado permite aplicar diversos criterios para establecer distintos niveles de

prioridad en la transmision.

En este contexto, podriamos considerar trafico prioritario a aquel que cumple
30

condiciones como:

» Trafico inelastico: paquetes con restricciones temporales que requieren latencias
bajas.
» Usuarios premium: paquetes asociados a usuarios con privilegios que desean tener

una prioridad que mejore la experiencia de los servicios que estén utilizando.

Para poder realizar una identificacion de los tipos de trafico se necesita un elemento
en la red que los marque previamente. En el escenario empleado, es el router el elemento
encargado de realizar dicha clasificacion. Esta se lleva a cabo utilizando el campo DSCP
de la cabecera IP (Fig. 4), compuesto por 6 bits. Su utilidad es precisamente clasificar y
gestionar el trafico de red, permitiendo aplicar scheduling o politicas de calidad de
servicio (QoS).

Internet Protocol Version 4, Src: 192.168.137.203, Dst: 8.8.8.8
9100 = Version: 4
8101 = Header Length: 20 bytes (5)
~|Differentiated Services Field: ©x®@ (DSCP: CS®, ECN: Not-ECT)
8000 88.. = Differentiated Services Codepoint: Default (8)
.... ..B8 = Explicit Congestion Notification: Not ECN-Capable Transport (8)
Total Length: 64
Identification: ©x8592 (34194)
v+ Flags: Oxee
...0 DPEP OPEE @OE® = Fragment Offset: @
Time to Live: 64
Protocol: UDP (17)
Header Checksum: 8x9a97 [validation disabled]
[Header checksum status: Unverified]

Source Address: 192.168.137.203
Destination Address: 8.8.8.8

Figura 4. Estructura de la cabecera IP y DSCP

Para desarrollar el esquema de prioridades mencionado anteriormente se ha
utilizado el entorno experimental /nymon, dando lugar a la propuesta de RAN slicing
(sistema de slices y colas en entorno radio) descrita en [3]. La Fig. 5 representa el sistema
desarrollado para varios puntos de acceso, extraida del trabajo mencionado, y que

debemos integrar en el punto de acceso y evaluar con STAs reales en este TFG.

El término sl/ice se puede entender como una porcién o particion logica de los
recursos del punto de acceso que permite asignar recursos especificos a conjuntos de
traficos. Cada slice estd formado por un conjunto de colas (un maximo de 8 para nuestro

sistema) donde los paquetes quedaran a la espera de ser enviados por la interfaz
31

inalambrica. De esta manera, cada paquete esperara en la cola y slice que le corresponda

segun la prioridad que se le haya asignado en el marcado. Para el desencolado de los

paquetes, se utiliza un thread (hilo) que se ejecuta en paralelo al resto del cddigo y cuyo

objetivo es extraer los paquetes de las colas siguiendo las politicas establecidas de reparto

de recursos. El funcionamiento de ese thread se detallara mas adelante en las secciones

posteriores.
Local Traffic Generator
Internet Emulator
Network switcth
Data plane
|
AP1 Incoming traffic {} i\} APk
Taffic classiner { Agent Al;tw] ¢ Traffic classifier
(DSCP) user space software (DSCP)
(MAC layer) R L
Y v
Slice 1 Slice N Slice1 vy y Slice M
5(31' ! SCm ! ! !
T T [l | T T .- |
h J

mﬂm scheduler) mh Fasice scheduler)
1

[

Intra-slice +inter-slice
scheduler

N A— Monitoring Data ™ Monitoring Data
(Inter-slice scheduler) (MCS. nretries) | _(MCS, nretries)
To driver gueue ‘ » A L]
Kernel Main - [Auwdiar J 5
(mac 802.11) interface | interface: i
) (FiFD)
af= L
To RF (Main wireless interface) R AR ireines Main Awxiliar

interface)

Figura 5. Arquitectura de la solucion de slicing en el AP

2.4.1 Scheduling

Los algoritmos de scheduling empleados en este TFG (ver Anexo B) definen la

forma en la que se extraen los paquetes de las colas y determinan cudl es el criterio de

32

reparto de airtime excedente, es decir, el quantum que no sea utilizado por los slices y
colas. En el trabajo mencionado [3], se trabajo con dos algoritmos: Round Robin (RR) y
Airtime Deficit Weighted Round Robin (ADWRR). En nuestro caso, el analisis se centrara

en ADWRR por su mayor complejidad y flexibilidad en la asignacién de recursos.
Segun su ambito de operacion, es posible clasificar los algoritmos en 2 tipos:

» Algoritmo inter-slice, responsable de repartir los recursos entre los slices activos
(aquellos que tienen colas con paquetes en espera).
» Algoritmo intra-slice, responsable de repartir el quantum y el déficit entre las

colas activas de un mismo s/ice.

Ambos algoritmos son independientes entre si, es decir, en la ejecucion del sistema,
se puede configurar un algoritmo determinado para el reparto de recursos inter-slice y

otro algoritmo distinto para el reparto intra-slice.

2.4.1.1 ADWRR - Déficit, quantum y pesos

ADWRR es un algoritmo que, como su nombre indica, comparte los principios
basicos de Round Robin, otro algoritmo mas basico y conocido en la planificacion y
distribucion de recursos. El objetivo de Round Robin es asegurar que todas las colas y
slices tengan la misma oportunidad de ser servidas de manera justa y ordenada. Para ello,
atenderd a cada cola o slice una cantidad fija de tiempo durante el cual puede ocupar el
medio radio antes de pasar a la siguiente cola o slice. De esta manera, se atiende a las
partes participantes de manera equitativa y siguiendo un orden circular. En el caso de
ADWRR, el algoritmo evoluciona para gestionar las colas y slices de manera mas

controlada, pudiendo definir distintos criterios de reparto de recursos.

Para poder entender el funcionamiento del algoritmo ADWRR es imprescindible
presentar primero los conceptos de déficit, guantum y pesos. Se define déficit como el
tiempo en ps del que dispone una cola o slice para ocupar el medio inalambrico. Cada
cola o slice tiene un contador denominado “DC” (Deficit Counter) que almacenara el

valor del déficit de cada estructura.

El guantum (Q) es una cantidad fija de tiempo asociada a un slice que se suma a su
déficit. Como los slices se visitan siguiendo un esquema rotativo, se sumara dicha

cantidad Q cada vez que se visite dicho slice. Este valor es especifico para cada slice y
33

representa una garantia de tiempo de transmision en el medio inalambrico.

Una vez revisado el concepto de quantum, se puede explicar la funcidn de los pesos.
Los pesos son parametros asignados a cada cola dentro de un sl/ice y su funcion es
distribuir el quantum asignado a dicho slice. Como se menciond anteriormente, el
quantum es un valor que se asigna a cada slice, por lo que los pesos se utilizan para repartir
dicho quantum entre las colas que pertenecen a ese slice. Cada cola tiene un peso
especifico, y el quantum que le corresponde se calcula como se muestra en la Ecuacion

3:

W(s,i]
Zj no vacia €s W[s']]> Q[s]

Qls, i =<

Ecuacion 3. Calculo del quantum de una cola a partir del quantum del slice

» QIs,i]: Quantum para la cola i del slice s
» Q[s]: Quantum asignado al slice s

» W[s,i]: Peso asignado a la cola i del slice s

Se puede observar que el quantum del que podra disponer la cola i sera el del slice
multiplicado por un factor (menor o igual a 1) que se calculara ponderando el peso de la
propia cola con la suma de los pesos de las colas activas, es decir, que necesiten transmitir
paquetes. Por lo tanto, si una cola no esta activa, no participara en el reparto de quantum

y este se repartira entre las colas que estén activas.

Atendiendo al funcionamiento del scheduling, existen varios algoritmos y cada uno
de ellos realizara un reparto de recursos diferente. Sin embargo, todos ellos comparten un

funcionamiento base que se explica a continuacion?.

El thread encargado de extraer los paquetes de las colas recorre secuencialmente
las colas activas de manera rotativa. Cuando una cola tiene el turno, el hilo extrae paquetes

hasta que esta se vacie o su contador de déficit (DC) no disponga del valor suficiente para

2 Ver Anexo B. Para un analisis més detallado del funcionamiento de estos algoritmos consultar [3]

34

enviar el siguiente paquete. Durante la transmision, se calcula el airtime (el tiempo en
microsegundos que el paquete ocupa en el medio) del paquete y se descuenta dicho valor
del contador DC, ajustando asi la disponibilidad de recursos para las siguientes
transmisiones. En el momento en el que el thread no puede continuar extrayendo paquetes
de la cola, el contador DC se reinicia a cero y se avanza a la siguiente cola activa del s/ice,
y si no quedan mas colas en ese slice, avanzara al siguiente. Cuando se avance a la tltima

cola del ultimo slice se volvera a empezar desde el principio.

Para entender mejor el funcionamiento del scheduling, la Tabla 1 plantea un

ejemplo de scheduling inter-slice:

Tabla 1. Ejemplo de funcionamiento de scheduling

SLICE 1 SLICE 2 SLICE 3

QUANTUM (ps) 3500 2500 4000

Cada slice tiene una asignacion de quantum que le garantiza un porcentaje de
ocupacion minimo en caso de saturacion del enlace radio. A continuacion, se muestra

como se debe realizar el calculo de dicho porcentaje.

3500

Airtime(%)s; = 3500 2500 + 4000 x 100 = 35%
o 2500

Airtime(%)s, = 3500 2500 + 4000 x 100 = 25%
4000

Ai'rtime(%)sg = X 100 = 40%

3500 + 2500 + 4000

Por lo tanto, si el trafico del slice 3 aumenta, se puede garantizar que este utilice el

40% del tiempo de ocupacion del canal durante la transmision.

Sin embargo, en ciertos momentos, algunos s/ices pueden no requerir totalmente el
tiempo de transmision que se les ha garantizado, utilizando solo una parte de su
asignacion. En estos casos, el airtime no utilizado puede redistribuirse entre los slices
activos que necesiten aumentar su throughput de salida para igualarlo con el throughput
de entrada. De este modo, se evita el desperdicio de recursos y se optimiza el rendimiento

del punto de acceso.
35

Para la redistribucion del airtime excedente, se pueden emplear tres algoritmos. La
principal diferencia entre ellos se encuentra en si la asignacion de quantum es constante
o dindmica en el tiempo. En el caso de una asignacion dinamica, también varia el criterio
de distribucion, pudiendo priorizar ciertos slices o mantener un reparto equitativo entre

todos.

En el caso del scheduling intra-slice, ocurre lo mismo, pero en lugar de ajustar el
quantum, se modifica el valor de los pesos. Es decir, si una cola no requiere la totalidad

de su peso asignado, este puede reducirse y reasignarse a otra cola que si lo necesite.

A continuacion, se describen mas detalladamente estos algoritmos.

2.4.1.2 ADWRR - Pesos o quantums estaticos

Esta variante de ADWRR mantiene una asignacion fija del valor del quantum o de
los pesos, dependiendo si se aplica a nivel inter-slice o intra-slice. Para ilustrar su
funcionamiento, se muestra en Fig. 6 un experimento en el que se representa el porcentaje
de airtime utilizado por cada slice a lo largo del tiempo. A la derecha se representa el

quantum asignado con respecto al tiempo, que permanece constante.

En este caso, se ha configurado el quantum de forma que el slice 1 tenga garantizado
el 30 % del airtime, el slice 2 del 20 % y el slice 3 del 50 %. Durante los primeros 13
segundos del experimento, todos los slices hacen uso completo del airtime que les ha sido

asignado, por lo que ninguno puede ceder recursos.

7ot | Slice | —&— Slice 2 Slice 3| 5000 T gice 1
€ a0 —&— Slice 2
50 IR e SOSON E 4000 Siice 3
240 5
a1 =
£ 304 : & 3000 b
E20
<L p Byt
10 PTeaTeY VRN WV WD WU W WS
DU 10 20 30 40 50 &0 70 0 10 20 30 40 50 &0]

Time (seconds) Time (seconds)

Figura 6. Reparto airtime. Asignacion quantum estdtica

Sin embargo, en el instante t=13, el slice 1 reduce su demanda y pasa a utilizar
solo el 20 % del airtime, liberando un 10 % que puede ser aprovechado por otros s/ices
que aun se encuentren insatisfechos. Ese 10% excedente se redistribuye

36

proporcionalmente entre los slices activos en ese momento (aquellos con paquetes
pendientes en sus colas), es decir, los slices 2 'y 3. La cantidad de airtime adicional que

recibe cada uno dependera de su guantum nominal, como se muestra en los siguientes

calculos.
Extra Airtime(%)s, = 10% X —2000 ~ 2.857%
0752 = 25 75000 + 5000 07
Extra Airtime(%)s; = 10% X __2000 7.143%
)53 = 2570 25000 + 5000

2.4.1.3 ADWRR - Igual ratio de satisfaccion

Esta variante del algoritmo ADWRR busca realizar un reparto del airtime excedente
que consiga un grado de satisfaccion similar para todos los slices o colas insatisfechas.
En este caso, se define el ratio de satisfaccion (Degree of Satisfaction, DS) como el
cociente del throughput de salida R,,; entre el throughput demandado por el flujo en el
punto de acceso Rgemandeq- Cabe destacar que Rgemandea puede tomar valores
superiores al throughput de entrada si la cola/slice ha almacenado paquetes durante un
periodo de tiempo y ahora tienen los recursos necesarios de airtime para vaciar las colas

al mismo tiempo que se envia el trafico entrante.

El valor del throughput de salida R,,; puede estar limitado por un SLA (Service
Level Agreement) y se puede configurar con el parametro MBR (Maximum Bit Rate). Este
parametro afectara al calcular el valor del ratio de satisfaccion DS (ver Ecuacién 4) tanto

para los algoritmos inter-slice como para los intra-slice.

, Si hay slices insatisfechos

Routls]
[

DS[S] — mln(Rdemandte[d]S] , MBR [S])
L , Sitodos los slices satisfechos
Rdemanded [S]
Routls,]
- - — , si hay colas insatisfechas
DS[S i] _ mm(Rdemanded [S: l]) MBR[S' l])
‘ Rouels, i]

, Sitodas las colas satisfechas
Rdemanded [S, l]

Ecuacion 4. Calculo del grado de satisfaccion del slice s’ y de la cola i’

37

Cuando MBR > Rjemanded> €l MBR no influye en el calculo, ya que no se alcanza
el throughput limite de salida. Sin embargo, si MBR < Rgemanded> €1 grado de
satisfaccion se calculard tomando MBR como referencia (pues se supone que la tasa de
salida no puede superar dicho valor). En cambio, si tan solo hay una cola o slice activos
en ese momento, se realizara siempre el calculo teniendo en cuenta R jomandea PU€sto que
se omite MBR, permitiendo una mayor calidad de servicio cuando los recursos estén

infrautilizados.

Cada segundo se monitorizan los valores de DS de cada slice y de cada cola. Si
alguna de estas estructuras deja de utilizar los recursos garantizados, estos podran ser
reasignados a otra cola o slice que los necesite. La redistribucion se realiza asignando los
recursos a la estructura con el menor ratio de satisfaccion DS, priorizando asi aquellas
con mayor necesidad de recursos. De este modo, se abandona el reparto proporcional
basado en pesos y se adopta un enfoque centrado en las necesidades individuales de cada

estructura.

Para llevar a cabo la distribucion de recursos, se ajusta el quantum asignado a cada
slice Qfs] en el caso del algoritmo inter-slice, o los pesos de las colas W/s,i] en los

algoritmos intra-slice, 1o que a su vez modifica el airtime recibido por cada cola Q/s,i].

Segun lo explicado anteriormente, un s/ice o una cola no pueden ceder recursos y
recibir al mismo tiempo. Para que una estructura pueda ceder recursos, su grado de
satisfaccion (DS) debe ser igual a 1 o estar muy proximo a este valor, considerando un
pequefio margen de tolerancia. Por otro lado, para recibir recursos de otras estructuras,

debe ser la que presente el menor grado de satisfaccion.

Una descripcion mas detallada del funcionamiento de este algoritmo se puede

encontrar en el Anexo B.

2.4.1.4 ADWRR - Preferencia al indice menor

Esta variante de ADWRR busca redistribuir el airtime excedente entre las
estructuras con un grado de satisfaccion inferior a 1 (DS < 1), siguiendo un orden de
prioridad basado en su indice. En el caso de un algoritmo inter-slice, los slices con indices
mas bajos tienen mayor prioridad; por ejemplo, el slice 1 tendra preferencia sobre el slice

2. De manera similar, en un algoritmo intra-slice, la prioridad dentro de un slice se asigna

38

segun el indice de las colas, donde la cola 0 serd siempre la mas prioritaria.

Por lo tanto, cuando se ceda airtime, este se asignara primero a las estructuras con
menor grado de satisfaccion, comenzando por el slice y cola de menor indice. Una vez
que estas estructuras alcancen un nivel adecuado de satisfaccion, se consideraran

“satisfechas”, permitiendo asi continuar con la redistribucion hacia las siguientes.

2.4.1.5 Particularidades de la implementacion

En el sistema desarrollado, los 3 bits mas significativos del campo DSCP se han
dedicado al ntimero de slice, mientras que los 3 bits menos significativos se dedican a las
colas de dicho slice. En este caso, para simplificar la clasificacion de trafico, se ha
realizado una asociacion experimental entre el nimero del puerto destino y un valor

DSCP determinado (ver Tabla 2).

Tabla 2. Asociacion entre puerto destino y DSCP

Slice Cola DSCP PUERTO Slice Cola DSCP PUERTO
0 0 0 5000 2 0 16 5016
0 1 1 5001 2 1 17 5017
0 2 2 5002 2 2 18 5018
0 3 3 5003 2 3 19 5019
0 4 4 5004 2 4 20 5020
0 5 5 5005 2 5 21 5021
0 6 6 5006 2 6 22 5022
0 7 7 5007 2 7 23 5023
1 0 8 5008 3 0 24 5024
1 1 9 5009 3 1 25 5025
1 2 10 5010 3 2 26 5026
1 3 11 5011 3 3 27 5027
1 4 12 5012 3 4 28 5028
1 5 13 5013 3 5 29 5029
1 6 14 5014 3 6 30 5030
1 7 15 5015 3 7 31 5031

Se ha utilizado la herramienta de Linux iptables, que facilita el proceso de marcado
de paquetes. Este marcado se ha implementado en la interfaz del router que conecta con
el punto de acceso. De este modo, en nuestras pruebas, todos los paquetes que lleguen al

punto de acceso desde el router estardn ya marcados.

39

3.ESCENARIO Y ASPECTOS DE LA
INTEGRACION

3.1 ESCENARIO DE TRABAJO

Para describir el escenario de trabajo con el que se realizaran las pruebas, se va a
considerar el mismo desde dos puntos de vista: el primero consiste en como esta
compuesto el escenario en cuanto a componentes fisicos, hardware y periféricos; en el
segundo, se vera donde se ejecutan los pods lanzados por Kubernetes y las interfaces que

S€ crean.

3.1.1 Escenario de trabajo - Nivel fisico

El escenario experimental esta formado por dos equipos de propdsito general: un
PC Intel NUC y una Raspberry Pi 4, ambos conectados a una misma red Ethernet,
utilizando un switch como elemento de construccion de red LAN. Los dispositivos se
encuentran dentro de la red IP 155.210.157.0/24, la cual dispone de un router con acceso
a Internet. Ademas, incluye uno o mas equipos de proposito general (MiniPCs) que

albergaran distintas STAs o tarjetas de red inalambricas.

Como se puede observar en Fig. 7, al Intel NUC se le han conectado tres tarjetas
Wi-Fi mediante cables USB. Estas tarjetas seran utilizadas por el pod encargado de
desempetiar la funcion de punto de acceso. La interfaz wlan(serd la responsable de
transmitir y recibir tramas Wi-Fi desde y hacia las estaciones conectadas a su red. En
cambio, la interfaz wlanl actuara como interfaz auxiliar o “espia”, capturando las tramas
transmitidas por wlan(0 con el objetivo de recopilar estadisticas que permitan ajustar
dinamicamente el MCS. Finalmente, la interfaz w/an2 funciona en modo monitor para
poder escuchar en un canal dado las tramas enviadas por STAs pertenecientes a nuestra

infraestructura Wi-Fi. Su funcidn es monitorizar la transmision para realizar los traspasos

40

de STAs entre APs>.

RASPBERRY Pl 4

INTEL NUC

eth0

155.210.157.151 : \

eth0

155.210.157.170

b8 8
WLAN2 WLAN1 WLAN O

/(/§¥&
I

STA1 STA 2 STA3 STAn

S

MiniPC

Figura 7. Esquema grdfico del escenario a nivel fisico

Para la realizacion de las pruebas, se utilizan un nimero suficientemente grande de

STAs en modo managed (cliente Wi-Fi) que se conectan a la red Wi-Fi desplegada. Los

3 Esta funcidn de monitorizacién podria ser proporcionada por las propias STAS si tuvieran soporte
802.11k. A dia de hoy, no muchos dispositivos comerciales, aparte de los de Apple, tienen este tipo de

soporte.

41

clientes Wi-Fi pueden estar ubicados en uno o mas PCs de propdsito general y se conectan

via USB.

3.1.2 Escenario de Trabajo - Nivel logico

Una vez esta definida la arquitectura hardware con la que se va a trabajar, se puede
definir la arquitectura software o logica (Fig. 8). Al haber trabajado con ordenadores de
propdsito general, es posible desplegar uno o mas pods en un mismo equipo fisico (nodo).
Estos pods trabajan de forma aislada como si se tratase de maquinas distintas. Cada pod
cuenta con su propia interfaz de red con la que se podrd comunicar de manera
independiente. Para facilitar la conectividad entre pods, en los nodos se crean bridges e

interfaces virtuales que agilizan el trafico de red entre ellos.

INTEL NUC RASPBERRY Pl 4

ODIN Dummy-
Controller Pyser

10.42.0.70 10.42.0.68 10.42.0.69

[cni0 1042.0.1 |
| [

flannel

AP1 EtD\
Gl Tdnel GRE

RYU

Router DHCP

192.168.137.131

rauter-dhcp

flannel
10.42.1.0

f Eth0 l

\lssizllsc:l/ (rasp-brl

192.168.137.0/24

(B)

STAn

WPA_SUPPLICANT

Figura 8. Esquema grdfico del escenario a nivel software

42

Los pods que se van a desplegar, mostrados en la Fig. 8, son los siguientes:

» AP1 — Punto de acceso Wi-Fi

» Controlador SDN Ryu — Gestiona la parte de red fija (crea y controla los tineles
Router-AP) con OpenFlow

» Controlador Odin — Gestiona el segmento inalambrico de la red desplegada
(handover, asociacion de la STA, autenticacion, tabla de STAs conectadas, etc.)

» Dummy Pyser — Controlador de red. Funciona como servidor UDP para que el
controlador de Odin conozca las direcciones IP de las interfaces de control de los
APs.

» Router DHCP — Router que conecta la red inalambrica a Internet

En este escenario, los pods AP1, controlador Ryu, controlador Odin y Dummy Pyser
se despliegan en el PC Intel NUC, mientras que el pod Router DHCP se ejecuta en la
Raspberry Pi 4. No obstante, esta distribucion no es la Unica posible, ya que podrian
haberse ubicado algunos pods en equipos fisicos distintos. En este caso concreto, se ha
optado por separar fisicamente el AP/ y el Router DHCP para simular un entorno lo mas
parecido posible a un despliegue real, donde es habitual que, en escenarios con multiples
puntos de acceso, el router se encuentre ubicado en un equipo distinto al del punto de

acceso.

En el propio despliegue de los pods, también se crean nuevas interfaces de red.

Estas son las que se muestran en la Fig. 8 en color verde.

» cni(—interfaz que conecta todos los pods del mismo nodo

» brl — interfaz que actua como bridge para tunelizar el trafico entre el punto de
acceso y el router

» flannel — interfaz que define la red overlay o red superpuesta 10.42.0.0/16 que
permite la comunicacion de control entre los pods que se encuentran en nodos

distintos.

De esta forma, se consigue el despliegue de la red Wi-Fi con maquinas virtuales,
independiente de la red fisica, muchos menos equipos fisicos y mayor flexibilidad y

facilidad para incorporar nuevos pods.
Es importante sefalar que, en la Fig. 7 y en la Fig. 8, se muestra también el router

43

de lared 155.210.157.0/24. Este dispositivo representa una maquina fisica independiente
del pod Router DHCP desplegado. Conviene comprender las diferencias entre ambos
elementos: por un lado, el pod Router DHCP es el que crea la red privada
192.168.137.0/24; por otro, el router fisico de lared 155.210.157.0/24 proporciona salida
a Internet y es utilizado como ruta por defecto por el pod, permitiendo el acceso a Internet

desde la red WLAN privada.

Una vez desplegado el escenario de red, se conectan los clientes Wi-Fi,
implementados mediante tarjetas Wi-Fi USB conectadas al equipo de propdsito general
denominado MiniPC. Para establecer la conexion con el punto de acceso se ha utilizado
el software wpa_supplicant. Dada la diversidad de distribuciones y versiones de Linux,
asi como las particularidades de los controladores de las tarjetas de red, se opt6 por la
version 2.10 de wpa_supplicant, ya que se ha comprobado experimentalmente que ofrece
un funcionamiento mas estable y una mayor compatibilidad. A continuacidn, se muestra

el archivo de configuracion utilizado:

network={
ssid="wiSsergio"
key mgmt=NONE
scan_ssid=1

}

ctrl_interface=/run/wpa_supplicant

update config=1

Este archivo de configuracion de wpa_supplicant permite la conexion automatica a
una red Wi-Fi abierta llamada "wi5sergio", incluso si su SSID esta oculto. Ademas, se
habilita la posibilidad de que wpa supplicant modifique este archivo si es necesario y se
establece una interfaz de control para permitir la comunicacion con herramientas externas

como wpa_cli.

Por ultimo, Iperf sera la herramienta con la que el pod Router DHCP genere los

distintos flujos UDP hacia las STAs para poder realizar las pruebas de trafico deseadas.

44

3.2 ASPECTOS RELEVANTES A CONSIDERAR EN LA INTEGRACION

Este trabajo se centra en la implementacion de funcionalidades avanzadas en un
entorno WLAN definido por software. Como ya ha sido comentado, dichas
funcionalidades fueron desarrolladas anteriormente en un entorno de pruebas
experimental conocido como /nymon, en el que se desarrollaron el algoritmo de control

de tasa [1] y el sistema de slicing [3], respectivamente.

Inymon se desarroll6 como un entorno de pruebas agil en el que las modificaciones
no supusieran un consumo de tiempo elevado, cuenta con las funciones basicas para un
entorno Wi-Fi y se utiliza para desarrollar nuevas funcionalidades antes de incorporarlas

al entorno real de NeWLAN, que es el entorno mas completo.

Para lograr dicha sencillez en Inymon, se prescinde de algunas funciones
fundamentales en Wi-Fi. Una de las primeras diferencias de /nymon es que no cuenta con
el procedimiento de asociacion entre el AP y la estacion Wi-Fi. Es decir, el punto de
acceso inyecta directamente como tramas Wi-Fi las tramas recibidas desde el router hacia
las STAs. Para que el AP conozca la direccion MAC de las STAs conectadas, se modifica
manualmente la tabla ARP, donde se apunta la correspondencia entre direccion IP y
direccion MAC de cada una de ellas. Por esta razén, en Inymon tampoco se envian tramas
Beacon, ya que no se sigue el procedimiento estandar de asociacion y autenticacion. Al
no existir una asociacion formal entre el AP y las estaciones, no es necesario anunciar la
presencia de la red ni permitir que las STAs se conecten a ella de forma convencional.
Esto provoca que las STAs no estén conectadas a ninguna red y, en consecuencia, no
puedan generar trafico. Por lo tanto, en /nymon solo se puede generar trafico downlink
(generado por el punto de acceso), y las STAs solo pueden escuchar las tramas dirigidas
hacia ellas y devolver el ACK correspondiente si estan configuradas en modo monitor.
Todo ello implica que Inymon tampoco necesita trafico de control, dado que la STA no
esta conectada a ninguna red. De este modo, este entorno experimental prescinde de

protocolos como ARP y DHCP.

Debido a las diferencias mencionadas, es necesario tener en cuenta un conjunto de
consideraciones al trasladar las funcionalidades del entorno experimental /nymon al
entorno NeWLAN. Estas consideraciones han supuesto una serie de modificaciones que

se explican a continuacion.
45

3.2.1 Modificacion del llenado del buffer del kernel

Como se ha descrito previamente, Inymon es un sistema sencillo y agil con el que
poder trabajar. Esa sencillez va asociada también a una menor carga computacional, sobre

todo, al compararlo con NeWLAN.

Entre las distintas funciones que desempeiia el socket de la interfaz wlanl del

entorno de NeWLAN, destacan al menos dos de ellas:

» Detectar posibles pérdidas o colisiones y elaborar estadisticas en periodos de un
segundo. Con las estadisticas se decide si las condiciones del canal son favorables
como para aumentar el MCS, desfavorables como para reducirlo o adecuadas para
el MCS utilizado. Esto constituye el algoritmo de control de tasa Onoe que opera
en lazo abierto.

» Controlar la ocupacion del buffer de salida del kernel de la tarjeta de red hasta un

tamafio determinado.

Este control del buffer del kernel es necesario para evitar la pérdida de tramas por
desbordamiento y, por otra parte, que estas tramas salgan con la informacion radio lo mas
actualizada posible. El limite de tamafio que se proponga ha de cumplir ambos aspectos
y una vez establecido se gestiona por control de flujo. En este apartado, se describe el

problema, pero antes de entrar en detalle es necesario adquirir una vision mas global.

T

S1 52 Sn

ESPACIO DE USUARIO

KERNEL DEL SISTEMA ‘ e Driver
OPERATIVO

Figura 9. Representacion del espacio de usuario y el kernel del S.O.

46

Para conseguir implementar la diferenciacion de trafico en los puntos de acceso, se
disefid en Inymon un sistema de colas y slices como se muestra en la Fig. 5. Este sistema
opera en el espacio de usuario, es decir, que opera en la zona de memoria del sistema
donde se ejecutan las aplicaciones y procesos que no forman parte del ntucleo (kernel) del

sistema operativo (ver Fig. 9).

Cuando un punto de acceso recibe un paquete dirigido hacia una de sus STAs
asociadas, el paquete se encola en el slice y cola que le corresponda segun su campo
DSCP. Sin embargo, no es posible inyectar trafico directamente desde el espacio de

usuario. Antes, el paquete debe ser enviado a la cola del driver de la tarjeta de red.

El buffer del driver es una cola FIFO que opera en el kernel del sistema operativo.
Su tamafio maximo es de 256 y si se desborda, pierde paquetes. Por esta razon, es
necesario realizar un control desde el espacio de usuario para que los paquetes en cola no
superen el tamafno maximo. El control del tamafio de la cola se realiza con la interfaz
auxiliar 1, mencionada anteriormente, utilizando los niimeros de secuencia de la cabecera

IEEE 802.11 y funciona como se describe a continuacion.

Un contador A, inicializado a cero, registra el nimero de paquetes que se han
enviado desde el sistema de colas y slices hacia la cola del driver. Cada vez que se envia
uno, el valor del contador A aumenta en una unidad. Utilizando la interfaz auxiliar, se
compara el ultimo numero de secuencia registrado con el del paquete capturado en ese
momento. A partir de esa comparacion, se sabe cudntos paquetes se han detectado y

cuantos no se han detectado.

La interfaz auxiliar wlanl monitoriza el canal Wi-Fi y registra el numero de
paquetes enviados por la interfaz principal en un contador B. En ocasiones, puede suceder
que la interfaz espia no monitorice todas las tramas enviadas. Por ello, se utilizan los
numeros de secuencia de la cabecera IEEE 802.11 de modo que al detectar un nimero
‘X’, todos los anteriores quedan confirmados. Es decir, al recibirse una trama con un
numero de secuencia determinado se puede afirmar que ésta ha salido del buffer del driver

y también todas las anteriores.

Para controlar el tamafio de la cola del driver, la diferencia entre Contador A 'y
Contador B, que da como resultado el tamafio del buffer del driver no puede superar el

tamafio maximo permitido.
47

Contador A — Contador B < Tamaiio Maximo Permitido

Ecuacion 5. Control del tamario del buffer del driver

En el ejemplo de la Fig. 10 se muestra una instantdnea en la que el contador A toma
un valor de 8, lo que indica que, desde que se despleg6 el AP, se han enviado 8 paquetes
a la cola del driver. En este ejemplo, el nimero de secuencia del primer paquete es 500,
el cual ya ha sido capturado y procesado por la interfaz auxiliar. Debido a la alta densidad
de tréafico, la interfaz espia no consigue capturar los paquetes con numeros de secuencia
501 y 502; sin embargo, si captura el paquete con nimero de secuencia 503. El punto de
acceso detecta la pérdida de paquetes (paquetes no monitorizados) comparando el altimo
nimero de secuencia registrado (500) con el del paquete capturado (503), determinando
asi que se han perdido dos paquetes intermedios (no han sido monitorizados). Como
resultado, el contador B se incrementa en 3 unidades, pasando de 1 a 4. Ademas, se
verifica que el tamafio de la cola del driver se corresponde con la diferencia calculada

segun la Ecuacion 5.

Contador B: 124

| Last_nSeq =500

|
|
|
|
i
|
|
: 2 paq. no detectados
|

|

|

|

|

|

|

|

|

_ - > |

i |(nSeq=503" 1 paq. detectado [

N e) [

] i

E Contador A: 8 i

: j

I
. | l |
|

i Driver '

I Interfaz :
i .

Principal 1

i Driver 507 I

! Interfaz 506 j
i . 505

| Auxiliar =04 i

|

Detectado / —

502

No detectados
501
500

Figura 10. Esquema de funcionamiento - Control del tamariio del buffer del driver

48

Una vez visto el funcionamiento del algoritmo de llenado del buffer del driver, se
plantea el problema encontrado en la incorporacion del algoritmo de tasa variable Onoe.
Inicialmente, para conseguir una respuesta mas rapida a los cambios de MCS en la
transmision, se escogio un valor maximo del tamafio de la cola del driver muy reducido.
Se consider6 que 20 paquetes eran suficientes para soportar las pérdidas de la interfaz
auxiliar, por lo tanto, /nymon establecia un tamafio maximo del buffer del driver de 20

paquetes.

Tras la implementacion del algoritmo de control de tasa, se han realizado pruebas
con alta densidad de trafico y, en algunas realizaciones, la interfaz auxiliar no ha
monitorizado secuencias de mas de 20 paquetes seguidos. Esto se debe a que el punto de
acceso debe llevar a cabo una gran cantidad de operaciones y célculos adicionales,
ademas del proceso de monitorizacion. La no deteccion de paquetes impide que paquetes
nuevos entren al buffer del driver, 1o que provoca que este se vacie y deje de transmitir.
Como consecuencia, la interfaz auxiliar no puede monitorizar paquetes posteriores a los

20 ya enviados, por lo que nunca se podra dar paso a nuevos paquetes.

Dado que el tamafio maximo elegido previamente era muy reducido, se propone
encontrar una solucion aumentando su capacidad. El limite establecido por el driver de la
tarjeta de red es de 256 paquetes, asi que se puede elegir un valor mayor dentro de ese

rango de valores.

Deteccion de saltos en la secuencia de paquetes

250 4

200 4

150

100

Paquetes no capturados

Tiempo (s)

Figura 11. Paquetes no capturados en una realizacion de una prueba de slicing

49

Aunque no es necesario calcular un valor exacto para el tamafio 6ptimo del buffer,
las pruebas realizadas han evidenciado que, bajo condiciones de alta carga, las pérdidas
de tramas no monitorizadas pueden alcanzar valores cercanos a los 200 paquetes
consecutivos. Esta observacion se ve reflejada en Fig. 11, donde se representan los saltos
detectados entre nimeros de secuencia de la cabecera del estandar IEEE 802.11, lo cual

permite visualizar la magnitud de las secuencias perdidas por la interfaz auxiliar.

Esto indica que, si bien un limite bajo puede ofrecer una respuesta mas agil ante
cambios en el MCS, también puede generar bloqueos en el sistema cuando la

monitorizacion no es capaz de seguir el ritmo del trafico.

En funcion del estrés al que se someta el punto de acceso, pueden producirse
variaciones significativas en la capacidad de monitorizacion, por lo que una solucion mas
robusta consistiria en adaptar dindmicamente el tamano del buffer. Como linea futura de
trabajo, se propone reemplazar el umbral fijo por un mecanismo que ajuste el tamafio del
buffer en tiempo real, permitiendo una mayor flexibilidad y resiliencia frente a
variaciones en la carga del sistema. Sin embargo, por el momento se establece un umbral

fijo de 200 paquetes que ha permitido desarrollar pruebas exhaustivas sin bloqueos.

3.2.2 Aparicion de nuevos traficos

Pasar de trabajar con Inymon a hacerlo con NeWLAN implica la aparicion de nuevos
tipos de trafico que no estaban presentes en el entorno experimental anterior. Recordemos
que Inymon es un entorno simplificado donde solamente se trabaja con el plano de datos.

En cambio, NeWLAN incorpora tanto el plano de datos como el plano de control.

En la incorporacion del algoritmo de slicing desarrollado en Inymon, solo se
consideran las tramas de datos que llegan al punto de acceso por la interfaz Ethernet y
deben salir por la interfaz Wi-Fi. Sin embargo, en NeWLAN se genera trafico de control

que también necesita ser clasificado y encolado en el sistema de slicing.
Los nuevos traficos que se deben contemplar son:

» Trafico DHCP
» Trafico ARP
» Trafico de gestion IEEE 802.11

50

En primer lugar, se debe valorar cudn importante es el trafico de control para decidir
cuantos recursos le vamos a asignar. Este tipo de trafico es esencial porque es el que se
encarga de realizar el intercambio de informacion antes de comenzar la transmision de
datos. Ademas, en condiciones normales, el trafico de control representa una fraccion

muy pequefia en comparacion con el trafico de datos.

Teniendo en cuenta estos dos aspectos, se propone la solucion de tratar este trafico
como prioritario. Si se retrasa su procesamiento, se estaria ralentizando el envio del trafico
de datos posterior. En cambio, si se le proporciona prioridad, no afecta negativamente al
rendimiento del sistema, ya que el volumen de trafico de control es tan bajo que no supone
una carga significativa. Por tanto, se pueden priorizar las tramas de control sin perjudicar
el comportamiento general del sistema en comparacion con el rendimiento obtenido en
Inymon. Para dar prioridad al trafico de control, es necesario modificar el disefo del
algoritmo de sl/icing. En el entorno de Inymon, el primer slice es el slice 0, que participa

en el reparto de airtime durante la transmision, compitiendo con el resto de slices activos.

En NeWLAN, se ha adoptado una solucion diferente: el slice 0 se excluye del reparto
de airtime y se reserva exclusivamente para el trafico de control. Al quedar fuera de la
competicion con el resto de slices, se le otorga prioridad absoluta, lo que implica que,
cuando llega un paquete al slice 0, este se sirve de forma inmediata, sin necesidad de

esperar a que una estructura (cola o slice) termine su turno.

Para simplificar el tratamiento de este tipo de trafico, se ha decidido utilizar una
unica cola dentro del s/ice 0. Esta solucion se basa en que, al no haber espera, no tiene
sentido aplicar una diferenciacion interna de trafico, ya que su impacto seria
practicamente inapreciable. No obstante, seria posible realizar dicha diferenciacion si

fuera conveniente en un futuro proyecto.

El resto de slices deben esperar a que el slice 0 termine de transmitir todos sus
paquetes. No obstante, como se ha explicado anteriormente, esta espera es minima, ya
que el volumen de trafico de control es muy reducido en comparacion con el de datos.
Esta afirmacion se justifica de forma grafica mas adelante, en el capitulo 5, donde se

muestra la pequefia proporcion de airtime ocupada por el trafico de control.

Tras haber decidido como tratar al trafico de control, han surgido otros eventos

imprevistos. Al conectar un cliente Wi-Fi a la red de NeWLAN, en ocasiones se han
51

capturado tramas en las que el intercambio de informacion DHCP aparece marcado con

valores en el campo DSCP no contemplados.

En la captura de la Fig. 12 y Fig. 13 se observan paquetes marcados con un valor
DSCP igual a 4. Este valor lo toma de manera no intencionada y no se utiliza en nuestro

sistema, por lo tanto, el sistema de slicing de NeWLAN necesita conocer este nuevo caso

para clasificarlo en el slice que le corresponde, es decir, en el slice 0.

Source Destination Protocol Length DSCP ~ Info

0.0.0.0 255.255.255.255 DHCP 3924 DHCP Discover - Transaction ID @x2dd5f66d
192.168.137.131 192.168.137.201 DHCP 3954 DHCP Offer - Transaction ID @x2dd5f66d
0.0.0.0 255.255.255.255 DHCP 39214 DHCP Request - Transaction ID @x2dd5f66d
192.168.137.131 192.168.137.201 DHCP 39514 DHCP ACK - Transaction ID @x2dd5f66d

Figura 12. Captura de Wireshark — Intercambio DHCP con valor DSCP 4

Este valor de DSCP es introducido por el driver de la tarjeta de red del cliente y,
cuando el punto de acceso recibe una trama con ese valor DSCP, responde usando el
mismo valor. Dado que el driver trabaja en el kernel del sistema operativo, no es posible
modificar este valor desde el espacio de usuario (con iptables, por ejemplo) ya que el

driver sobrescribira cualquier modificacion.

Para ello, se propone clasificar el trafico de control identificando las cabeceras del
paquete. Dado que resulta sencillo identificar las cabeceras de un paquete, se utilizaran
para clasificar todo el trafico de control, incluyendo DHCP y otros protocolos como ARP
o IEEE 802.11, que utiliza tramas como Beacon, Probe Request/Response,
Authentication, Deauthentication, Association Request/Response, Reassociation
Request/Response, Disassociation y Action. Todos estos protocolos seran clasificados en

el slice 0.

Internet Protocol Version 4, Src: 0.0.8.8, Dst: 255.255.255.255

01680 = Version: 4
. 8181 = Header Length: 20 bytes (5)

~ Differentiated Services Field: ©x1@ (DSCP: Unknown, ECN: Not-ECT)
0001 00.. = Differentiated Services Codepoint: Unknown (4)
...... 08 = Explicit Congestion Notification: Not ECN-Capable Transport (@)

Total Length: 328

Identification: @x@eee (@)

Flags: @xee

...0 0000 0PE@ @ORE = Fragment Offset: @

Time to Live: 128

Protocol: UDP (17)

Header Checksum: 8x3996 [validation disabled]

[Header checksum status: Unverified]

Source Address: 0.0.0.0

Destination Address: 255.255.255.255

Figura 13. Captura de Wireshark — Cabecera IP del paquete DHCP Discover

52

3.2.3 Actualizacion del sistema de slices y colas por handover

Un aspecto clave en la integracion del sistema es el impacto que produce el
handover sobre la gestion de los slices y las colas. Para que un cliente Wi-Fi pueda
cambiar de un punto de acceso a otro, es necesario realizar una gestion centralizada y
coordinada de la informacién que cada AP recibe del cliente. Para ello, los APs
monitorizan la potencia de sefial recibida de cada cliente Wi-Fi mediante su interfaz
inalambrica wlan2, y es el controlador Odin el encargado de recopilar esa informacion y
decidir cual sera el nuevo AP encargado de prestar servicio al cliente. Por este motivo, es
necesario que el canal Wi-Fi en el que opera wlan2 se ajuste dinamicamente al canal

donde se encuentra el cliente que se desea monitorizar.

Como ya se ha comentado, se ha de tener en cuenta que el punto de acceso, a
diferencia de Inymon, lleva a cabo una gran cantidad de operaciones y calculos
adicionales que no pueden ser dilatados en el tiempo. Cualquier instruccion que detenga
la ejecucion del programa puede llegar a generar resultados nocivos en funciones como,

por ejemplo, el slicing.

La instruccion de cambio de canal es un caso concreto de lo que se ha mencionado.
Esta orden se ejecutaba inicialmente mediante una llamada en C que utiliza la funcién

system(), como se muestra en la Fig. 14.

1. system("iwconfig wlan2 channel {value}");

Figura 14. Instruccion de codigo bloqueante

La funcidn system() realiza una llamada bloqueante al intérprete de comandos
/bin/sh, ejecutando, en este caso, el comando iwconfig wlan2 channel {value}. Esta
llamada detiene la ejecucion del programa principal hasta finalizar, lo que afecta
negativamente a su rendimiento. Para superar esta limitacion, se ha implementado una
solucion basada en posix_spawn(), que permite lanzar un nuevo proceso de manera mas
controlada y sin pasar por el intérprete de comandos. A diferencia de system(),
posix_spawn() no bloquea la ejecucion principal, lo que permite ejecutar el cambio de
canal en paralelo sin interrumpir el funcionamiento del programa. Como resultado, se

logra cambiar el canal de la interfaz wian2 de forma eficiente y sin afectar la capacidad

53

de respuesta del sistema. El codigo de esta implementacion puede verse en Fig. 15.

Para medir el impacto de usar una u otra instruccion se implementa el codigo que

puede verse en la Fig. 15. Los tiempos obtenidos validan la decision tomada:
> system(): ~ 560 — 570 ms

> posix_spawn(): ~0.200 — 0.350 ms

/////////////// Measure the time taken to execute the command ///////////////////
struct timeval start, end;

gettimeofday(&start, NULL); // Start timing

i h W N R

. // Replace system() with posix_spawn() --> This creates a paralell process to
execute the command

6. pid_t pid;

7. char *argv[] = {"/bin/sh", "-c", auxString, NULL}; // Execute the command using

/bin/sh

8. extern char **environ; // Use the current environment variables

10. if (posix_spawn(&pid, "/bin/sh"™, NULL, NULL, argv, environ) != 0)
11. {
12. fprintf(stderr, ANSI_COLOR_BOLD RED "[OdinAP-

switch_channel_aux_interface] posix_spawn failed: %s\n" ANSI_COLOR_RESET,

strerror(errno));

13. }

14.

15. gettimeofday(&end, NULL); // End timing

16.

17. if (debuglLevel % 10 >= 2)

18. {

19. if (debugTimestamp == 1) printMicroTime();

20. long elapsedTime = (end.tv_sec - start.tv_sec) * 1000000L + (end.tv_usec -

start.tv_usec);

21. fprintf(stderr,
"Command executed in %1d microseconds: %s\n",
elapsedTime, auxString);

22. }

Figura 15. Instruccion de codigo no bloqueante con medicion de tiempo de ejecucion

Esto representa una reduccion cercana al 99,95 % en el tiempo de espera, una
54

mejora critica en entornos como los puntos de acceso Wi-Fi, donde es necesario gestionar
multiples tareas simultdneamente sin bloqueos. Esta optimizacion mejora la estabilidad

del sistema, su rendimiento general y la calidad de servicio.

Otro aspecto importante es la gestion de tramas durante un handover. Cuando un
cliente Wi-Fi cambia de canal, el sistema debe identificar que dicho cliente ya no debe
recibir tramas a través del AP anterior y que estas deben redirigirse al nuevo AP asignado.
Ademas, el AP de origen debe dejar de enviar tramas al cliente en el momento en que se
le notifica que debe cambiar de canal, lo cual se realiza mediante tramas CSA definidas
en el estandar IEEE 802.11. Si esta actualizacion no se lleva a cabo correctamente, las
tramas seguiran enviandose por el canal anterior, generando multiples retransmisiones,
ya que el cliente no estard escuchando en esa frecuencia. Como consecuencia, las tramas
que permanezcan en los buffers del AP antiguo deberan ser descartadas, y seran los

protocolos correspondientes los encargados de gestionar su retransmision.

Como se muestra en la Fig. 10, OdinAP implementa su sistema de s/ices y colas en
el espacio de usuario, y las tramas extraidas de esta estructura se envian a la cola del
driver. Como esta cola opera en el nicleo del sistema (kernel) y no permite eliminar
paquetes una vez insertados, el unico lugar viable para introducir logica que descarte

tramas obsoletas es el propio sistema de s/ices y colas en el espacio de usuario.

Para resolver este problema, se ha desarrollado un thread encargado de eliminar
aquellas tramas que ya no deben enviarse. Este hilo recorre ordenadamente todas las colas
del espacio de usuario, realizando las acciones indicadas en la Fig. 16. En el diagrama de
flujo, el nodo (trama con metadatos) evaluado en cada momento se denomina current, y
cada uno de estos nodos contiene un puntero al siguiente nodo al que se accede mediante
current—next. Para gestionar las inserciones y eliminaciones de paquetes en la cola ¢, se
utilizan dos punteros: g—head, que apunta al primer paquete, y g—tail, que apunta al

ultimo.

55

Inicializar punteros:

current = g->head s i N P i, i, 54 ;;2‘;:';:7
prev = NULL N
| [
¢eurrent = NULL? —— — O — — End

Start

d

Si

|

icurrent->mac_address_sta == HO_MAC?

Si
(el paquete se debe eliminar)

iprev == NULL?

Si

\\ (es el primer paquete de |a COla)= -

Se avanza al siguiente:
— =—No— == «prev = current
« current = current->next

Borrar current:

| s | e .] DFEV->n1EXT = CUTENT->nNEXE:

current = current->next

Borrar current:
g->head = current->next
current = current->next

Reducir tamaiio de q:
g->size -= 1

Actualizar:
q->tail = prev

Si
|

¢eurrent == NULL?

-—

el

z
o

| O R S

Figura 16. Diagrama de flujo del borrado de paquetes en las colas

Dado que se conoce la direccion MAC del cliente Wi-Fi que realiza el handover,

esta se compara con la direccion de destino de cada trama en las colas. Si ambas

direcciones coinciden, se elimina la trama correspondiente y se continia con la siguiente.

Como este proceso se ejecuta en paralelo mediante un thread, ha sido necesario un

analisis exhaustivo del codigo C en el entorno OdinAP para introducir mecanismos de

sincronizacion (semaforos tipo mutex) que garanticen el acceso en exclusion mutua a

slices, colas y nodos, evitando asi interferencias con el thread encargado del scheduling.

56

4. PRUEBAS Y RESULTADOS

Para comprobar el correcto funcionamiento de las funcionalidades implementadas,
se ha realizado una bateria de pruebas que tiene como objetivo verificar que la integracion
se ha llevado a cabo satisfactoriamente. Para ello, se han repetido las pruebas bajo
condiciones de trafico generado similares a las utilizadas en el estudio de [13], realizado
en Inymon. Concretamente, se han realizado cuatro experimentos: Experimento 0,

Experimento 1, Experimento 2 y Experimento 3.

El Experimento O pretende verificar que la integracion del sistema de slicing y del
control de tasa se ha realizado correctamente, y que ambos pueden funcionar de manera
simultanea sin problemas. Ademas, se incluye un analisis detallado del funcionamiento

del algoritmo ADWRR con pesos estaticos.

Por otro lado, el Experimento 1 se centra en comprobar el comportamiento de las
variantes del algoritmo ADWRR aplicadas al scheduling intra-slice. Para un mismo patrén
de generacion de trafico, el experimento recoge los resultados obtenidos utilizando las
siguientes variantes: pesos estaticos, igual ratio de satisfaccion y priorizacion al indice
menor. El Experimento 2 tiene un objetivo similar al del Experimento 1, pero centrandose

en el funcionamiento del scheduling inter-slice.

Por ultimo, el Experimento 3 pretende verificar el funcionamiento del sistema de
slicing junto con el handover. Para ello, se duplica el escenario y un cliente Wi-Fi realiza

el traspaso de un AP a otro.

Los resultados de estas pruebas han sido obtenidos a partir de la recopilacion de
datos durante la ejecucion del codigo. Los datos se almacenan en ficheros de texto, que
posteriormente son procesados mediante un script de Matlab para extraer las

representaciones graficas y estadisticas que se muestran en los siguientes apartados.

4.1 EXPERIMENTO () — CONTROL DE TASA Y ADWRR CON PESOS ESTATICOS

En el Experimento 0 se generaron ocho flujos UDP con el objetivo de comprobar
el correcto comportamiento de las funcionalidades implementadas. Para ello, se
emplearon las caracteristicas mostradas en la Tabla 3. Se utilizaron seis clientes Wi-Fi

situados dentro de un radio menor de dos metros con respecto al punto de acceso. Por lo
57

tanto, todos los clientes contaron con un buen RSSI (Received Signal Strength Indicator).

Tabla 3. Experimento 0. Pardmetros de interés

Slice 1 Slice 2 Slice 3

Quantum

(Qnom) 3500us 2500us 4000us

Queues Queue 0 Queue 1 Queue 0 | Queue 1 | Queue 0 | Queue 1 Queue 2

Weight 50 50 30 70 50 30 20

(Wnom)

STAid STA 1 STA6 STA 3 STA 2 STA 3 STA4 STA5 STA6
MCS index 3 6 1 Variable 1 2 4 6
1.4 Mbps

(0-10s), | 1.4 Mbps
0.5 Mbps | (0-30s)
IperfRate | 1.4 Mbps | 1.4Mbps | 1.4Mbps | 1.4Mbps | 1.4Mbps | (10-20s),
(Time interval) | (0-50s) | (0-50s) | (0-50s) | (0-505s) | (0-50s) | 1.4 Mbps
(20-30s), [0.5 Mbps
0.5 Mbps | (30-50's)

1.4 Mbps (0-30s)

0.5 Mbps (30-50 s)

(30-50s)
UDP size 2508 | 12508 | es08 | sooB | 2508 | 2508 250 B 400 B
(bytes)
Airtime (us) | 281.5us | 345.5ps | 625.5us - 377.5us | 313.5us | 249.5us 241.5us

Band = 5GHz, BW = 20MHz, Tpirs = 34us, Tsirs = 16[s., Tgackosr= Tsior' CW/2 with CW = CWmin = 15,
TphyOH (110)=20/,IS,

Airtime Tack (24Mbps) =28s, Tsior = 9us, Tpnyor (Mixed) = 36us + 4us (Nantenna — 1), Tonyor (greenfield) = 28us

required +4s (Nantenna — 1)
parameters

MACoH = Lservice (2B) + Lumac (24B) + Laos (2B) + Lrcs (4B), Liicon(8B)

Ldata (xB) = IP (20B) + UDP (8B) + DATA

Cada cliente Wi-Fi tiene un valor de MCS configurado. Todos los clientes tienen
MCS fijos, excepto la STA 2, que tiene un MCS variable controlado por el algoritmo de
control de tasa Onoe. Asi, la STA 2 se ha configurado para utilizar valores de MCS entre

7y 15.

Este experimento utiliza el algoritmo ADWRR con pesos o quantum estaticos. Esto
quiere decir que, como se ha comentado en el capitulo 2, los recursos excedentes se

reparten proporcionalmente al quantum, que permanece fijo.

El trafico se genera con la herramienta de Linux, Iperf, que genera paquetes UDP

58

siguiendo una distribucion uniforme. Cada flujo UDP tiene un conjunto de parametros
que lo caracterizan: la tasa o throughput (a nivel de transporte), el tamafio de los paquetes,
la duracion, la direccion IP destino y el puerto destino. El puerto destino es el parametro
que define el criterio de clasificacion, es decir, segin el valor del puerto destino, los

paquetes de un flujo se dirigen a un slice y cola determinados.

Se han configurado tres slices para el trafico correspondiente al plano de datos: slice
1, slice 2 y slice 3. Los dos primeros utilizan dos colas: Queue 0 y Queue 1; y el tercer

slice utiliza tres colas.

A continuacion, realizadas las pruebas del Experimento 0, se analizan los resultados
obtenidos de la Fig. 17. Si se presta atencion a los datos desde t=0s hasta t=10s, se observa

que el reparto de airtime entre slices caumple con las condiciones esperadas.

70 100
&0 Slice 0 —#— Slice 2 80 Queue 0
= ——a— Slice 1 Slice 3 F B0 |—o—Queue 1
=50 | = 70
2 40 8 6o
3 20 L h A e 3 50
[:1]
E] B o4p
£ 20 £ 30
z < 20
10 0
0 i
0 10 20 30 40 50 0 10 20 30 40 50
Time (seconds) Time (seconds)
a) Airtime (%) usado por slice b) Airtime (%) usado por cola en el slice 1
100 100
an | Queue O —O—Queue1| an Queue 0
F 80 o) 80 [| —o— Queue 1
= 70 = 70| —8— Queue 2
B 60 I I | ‘ H I i I l T 60
2 50 2 50
g 40 2 40
£ 30 £ 30
< 20 < 209
10 10
0 0
0 10 20 30 40 50 0 10 20 30 40 a0
Time (seconds) Time (seconds)
¢) Airtime (%) usado por cola en el slice 2 d) Airtime (%) usado por cola en el slice 3

Figura 17. Experimento 0. Airtime consumido por cada slice y sus respectivas colas

Los porcentajes de airtime consumidos por slice son: 35% para el slice 1, 25% para
el slice 2 'y 40% para el slice 3. Estos valores se corresponden con la configuracion
establecida para los valores de quantum: 3500us, 2500us y 4000us, respectivamente. Esto

confirma que el sistema es capaz de controlar el reparto de airtime en situaciones de

59

congestion, asignando recursos de forma proporcional al valor del quantum asignado a

cada slice.

Ademas, se puede observar como el slice 0, destinado al trafico de control, consume
un porcentaje de airtime practicamente imperceptible en comparacion a los slices
asignados al trafico de datos. De esta manera, se comprueba la efectividad de la solucion
propuesta, ya que permite dar prioridad al trafico de control sin que este interfiera ni limite

los recursos disponibles para el trafico de datos.

Para demostrar que, efectivamente, el sistema se encuentra en estado de congestion
durante este intervalo, puede comprobarse en la Fig. 18 que ningln s/ice logra transmitir

la tasa generada. En concreto, a cada uno de los slices entran flujos de Iperf a las

siguientes tasas:

» Slice 1: 1.4 Mbps x 3 =4.2Mbps
» Slice 2: 1.4 Mbps x 2 =2.8Mbps
» Slice 3: 1.4 Mbps x 3 =4.2Mbps

8 4.4

=7 Slice ——&— Slice 2 =4 Queue 0

ogl |—=—Slice 1 Slice 3 g36 —0— Queue 1

=) o332

=5 =28

5 4 524

o o

£ N = 2

g3 216

B 2 212

oy =

0
0 10 20 30 40 50 0 10 20 30 40 50
Time (seconds) Time (seconds)
a) Throughput (Mbps) por slice b) Throughput (Mbps) slice 1

52 3.%
?ﬁg Queue 0 =2 | Queue 0 —o0— Queue 1 —e— Queue 2|
o 4} |—o—Cueus a2
S38 5%
=32 =
528 ERR
218 3128
c12 =
o8 £98)

U-‘é 0.4

0 &5 10 15 20 25 30 35 40 45 5053 0 10 20 30 40 50
Time (seconds) Time (seconds)
¢) Throughput (Mbps) slice 2 d) Throughput (Mbps) slice 3

Figura 18. Experimento 0. Throughput utilizado por cada slice y sus respectivas colas

Sin embargo, el slice 1 alcanza aproximadamente los 3.8 Mbps, el s/ice 2 ronda los
60

1.8 Mbps y el slice 3 se acerca a los 3.6 Mbps. Cabe destacar que, a lo largo de todo el
experimento, el airtime consumido por el slice 2 presenta una mayor fluctuacion, ya que
tiene mayores desviaciones respecto a la media en comparacion con el resto de slices.
Este comportamiento se debe a que, en el slice 2, se ha utilizado una STA movil con el
objetivo de modificar dinamicamente su MCS mediante el algoritmo de control de tasa.
La movilidad supone variaciones significativas en las condiciones del canal Wi-Fi, que,
a su vez, provocan retransmisiones, tal como se muestra en la Fig. 19, lo que afecta a la

estabilidad del throughput de la cola y, en consecuencia, a la del slice.

E — 5000 5101 =0=5201 =0=53{1
E:mr:l- —B100 —B200 —EB300 -e—35302
=

3 300 |

[

EElill‘_‘l

= L

=

w

2100

o

i

=

0 10 20 30 40 50
Time (seconds)

Figura 19. Experimento 0. Retransmisiones experimentadas

Atendiendo a los resultados obtenidos desde t=10s hasta t=20s, se observa en la Fig.
18.d una reduccion del trafico generado hacia la cola 0 del slice 3, pasando de 1.4 Mbps
a 0.5 Mbps. Por lo tanto, el airtime consumido por esta cola se reduce, ya que ahora puede
satisfacer completamente la nueva tasa de entrada. En la Fig. 17.d se observa el descenso

del consumo de airtime del 50% inicial al 19% correspondiente a la nueva tasa de entrada.

Como la cola 1 y la cola 2 no recibian suficiente airtime para satisfacer su tasa de
entrada, aprovechan los recursos que libera la cola 0. Dado que se emplea el algoritmo

ADWRR con quantum y pesos estaticos, el reparto de airtime entre las colas 1 y 2 se

realiza en proporcion a los pesos asignados a cada una.

30
[[0, = — 0, X —= . 0,
Extra Airtime(%)¢; = (50 — 19)% 30 F 20 18.6%

20
innti 0 — _ 0 - _ 0
Extra Airtime(%)¢, = (50 = 19)% X 30+ 20 12.4%

61

La nueva distribucion de airtime en el slice 3 es aproximadamente: 19% la cola 0,
48.6% la cola 1 y 32.4% la cola 2. Esta nueva distribucioén permite que la cola 2 alcance
un throughput de 1.8 Mbps (ver Fig. 18.d); sin embargo, la tasa de entrada de esa cola es
de 1.4 Mbps. Esto indica que la cola 2 esta vaciando su buffer, en el que habia acumulado
paquetes durante los primeros diez segundos debido a la falta de recursos suficientes en
ese intervalo. En el segundo t=16s, esta cola consigue transmitir todos los paquetes

acumulados y reduce su throughput a un valor igual a la tasa de entrada: 1.4 Mbps.

Al reducir el throughput, se reduce al mismo tiempo el consumo de airtime, lo que
libera recursos para otra cola aun insatisfecha. Es el caso de la cola 1, que habia
acumulado mas paquetes que la cola 2 y sigue vaciando su buffer. Como se muestra en la
Fig. 18.d, desde el instante t=16s hasta el t=19s, aumenta su throughput y, en

consecuencia, su consumo de airtime.

Mientras tanto, el consumo de airtime del slice 3 se ha mantenido constante, ya que,
aunque una cola haya reducido su demanda, otra ha utilizado ese airtime en cuanto ha
tenido la oportunidad. Por esta razon, el sistema se ha mantenido constantemente saturado

y el reparto de airtime no ha variado.

En el periodo comprendido entre t=20s y t=30s el sistema recibe flujos UDP con
las mismas caracteristicas que en el primer periodo. En consecuencia, la cola 0 del slice
3 sirve los 1.4 Mbps que le llegan, mientras que la cola 1 y la cola 2 no disponen de
recursos suficientes y acumulan paquetes en el buffer. El sistema no puede repartir

suficientes recursos, se encuentra saturado.

A partir del instante t=30s hasta el final del experimento, se reduce el throughput
de entrada a las colas del slice 3. Cada una de ellas pasa de recibir 1.4 Mbps a recibir 0.5
Mbps. En la Fig. 18.d se observa un periodo transitorio en el que las colas 1 y 2
incrementan su throughput para vaciar los paquetes acumulados en el anterior periodo.
Como ocurri6 anteriormente, la cola 2 logra vaciar su buffer antes que la cola 1.

Finalmente, todas las colas estabilizan su throughput a 0.5 Mbps.

En ese instante, el slice 3 usa menos recursos quantum del que dispone, por lo que
el déficit excedente se desecha y se continta con el siguiente slice. Esto permite que el
resto de slices puedan enviar paquetes mas a menudo que en el estado de saturacion, por

lo tanto, aumentara el airtime de cada slice y, en consecuencia, el throughput.
62

La reduccion del airtime del slice 3 es de, aproximadamente, un 23%. Este
excedente se repartira en el resto de slices que lo necesiten, de manera proporcional al
quantum. Asi, tal y como se refleja en la Fig. 17.a, el slice 1 se llevara un 13.4% y el slice

2 se llevara un 9.6%.

El slice 1 utiliza el 13.4% del airtime adicional para aumentar su throughput y
vaciar el buffer, tanto de su cola 0 como de la cola 1. En torno al instante t=33s, aumenta
el throughput de ambas colas manteniéndose el reparto de airtime, pues ambas siguen
usando todos los recursos garantizados. A partir del instante t=36s, la cola 0, que recibe
menos trafico, consigue vaciar el buffer y ya no necesita utilizar todos los recursos. De
esta forma, la cola 1 podra utilizarlos para vaciar su buffer en un menor tiempo. Es en ese
momento cuando, como se muestra en la Fig. 17.b, la cola 1 alcanza un 60% de consumo
de airtime. Una vez la cola 1 haya vaciado el buffer, se reducira su throughput al valor de
la tasa de entrada, 2.8 Mbps. En ese instante, el slice 1 no necesitara utilizar los recursos

recibidos, por lo que el slice 2, que si que los necesita, podra aprovecharlos.

Atendiendo al throughput conseguido por el slice 2 en la Fig. 18.c, se puede
observar que en ningun instante del experimento este slice va a conseguir vaciar el buffer
de alguna de sus colas. Se mantiene en todo momento en estado de saturacion, con un
reparto de airtime constante en media, a pesar de sus desviaciones ruidosas. Ademas,
puede observarse en la Fig. 18.c como el slice 2 necesita tres segundos mas para vaciar
sus buffers por completo una vez ha dejado de recibir paquetes, puesto que en el instante
t=50s el experimento termina. A partir del segundo 50, todos los slices han vaciado sus

colas, excepto el slice 2, que emplearé todos los recursos disponibles para vaciarlas.

En la Fig. 20 se observa la variacion del MCS de la STA en cuestion, que ha
conseguido indices mas grandes cuando ha dispuesto de mejores condiciones del canal, e

indices menores conforme se ha alejado del punto de acceso.

Analizando los resultados obtenidos en el Experimento 0, se puede observar la
implementacion correcta del algoritmo de control de tasa y del sistema de scheduling del

algoritmo ADWRR con pesos y quantum estaticos.

63

0 10 20 30 40 50
Time (seconds)

Figura 20. Experimento 0. Variacion MCS de la STA 2 (slice 2, cola 0)

4.2 EXPERIMENTO 1 - VARIANTES DE ADWRR INTRA-SLICE

Este experimento se realiza con el objetivo de verificar el correcto funcionamiento
de las distintas variantes del algoritmo de planificacion ADWRR intra-slice. En este, se
compara la variante del algoritmo de pesos estaticos, con el de igual ratio de satisfaccion
y con el de preferencia al indice menor para el reparto intra-slice. El objetivo es mostrar
el correcto comportamiento de los algoritmos y demostrar que aseguran una distribucion
de recursos eficiente segun el criterio seleccionado. Para el algoritmo ADWRR inter-slice
se utiliza la variante de quantum estatico. Los parametros empleados en ambos casos se

recogen en la Tabla 4.

En este experimento se generan nueve flujos UDP con una duracion de 70 segundos,
utilizando la agregacion de tramas MAC (AMSDU, Aggregated MAC Service Data Unit).

Esto permite obtener valores de throughput mayores.

Para este experimento se vuelven a utilizar tres s/ices dedicados exclusivamente al
trafico de datos. El slice 1 tendra garantizado el 30% del airtime, el slice 2 el 20% y el
slice 3 el 50%. Ademas, se introduce el concepto de MBR (Maximum Bit Rate), que acta
como un parametro de limitacion de la tasa de salida. El MBR es una caracteristica propia

de cada cola dentro de cada slice y puede estar definido por un SLA.

64

Tabla 4. Experimento 1. Parametros de interés

Slice 1 Slice 2 Slice 3
Quantum (Qnom) 3000us 2000us 5000us
Queues Queue 0 | Queue 1 Queue 0 Queue 1 Queue 0 Queue 1 Queue 2 Queue 3
Weight (Wnom) 120 80 140 60 70 60 40 30
MBR 2.5Mbps | 2Mbps 2.5Mbps 2Mbps 3Mbps 2.5Mbps 2.5Mbps 2Mbps
STAid STA1 STA3 STA2 STA1 STA4 STA1 STA2 STA6 STAS
Priority index 0 1 0 1 0 1 2 3
MCS index 2 4 3 2 6 2 3 3 4
1.2 Mbps | 2.5Mbps | 1.3 Mbps
(0-105) (0-105) (0-10s)
1.25 Mbps
(0-50's)
. 2.5Mbps | 2Mbps | 1 Mbps | 0.8 Mbps | 1.2 Mbps 2 Mbps
Iperf Rate (Time interval
P () (0-705s) (0-70s) | (0-705s) (0-705) (0-705) 2,8 Mbps | (10-20s) | 1.6 Mbps
(10-40's) (10-30's)
1 Mbps
(20-60's)
0.5 Mbps
3,3 Mbps 2.3 Mbps (50-70's)
(40-70s) | 1.3 Mbps | (30-705s)
(60-70's)
UDP size (bytes) 1250B 2508 2008 3508 7008 3508 3508 2008 250B
Max Aggregation Size 1200B 1200B 1200B 12008 1200B 1200B 1200B 1200B

Este parametro MBR nos permite calcular el ratio de satisfaccion que tiene una cola
determinada, que se define como el ratio que compara la tasa conseguida frente a la tasa

demandada (la tasa de entrada al AP) o al MBR:

> Si la tasa de entrada es menor que el MBR, el ratio de satisfaccion se
calcula como: Rachieved/ Rdemanded-

» Silatasa de entrada es mayor que el MBR, se debe adaptar el concepto de
satisfaccion con las limitaciones establecidas por el SLA y se calcula

como: Ry pievea/ MBR.

De esta forma, el ratio de satisfaccion representa como de satisfecho estan los flujos

de una cola en relacion con los recursos que podrian y deberian tener.

Una vez descritos los parametros que se emplean en el experimento, se realiza el

65

siguiente analisis. Al observar la distribucion de airtime de la Fig. 21, se puede comprobar
que el sistema se encuentra en estado de saturacion. Durante todo el experimento, los
slices utilizan el porcentaje maximo de airtime garantizado en la configuracion. De esta
forma, resulta mas sencillo profundizar en el analisis de los algoritmos de scheduling

intra-slice.

Slice 0 —&— Slice 2
== &— Slice 1 Slice 3

o 10 20 30 40 50 &0 70
Time (seconds)

Figura 21. Experimento 1. Distribucion de airtime por slice

En la Fig. 22, se observa el reparto de airtime dentro de los slices 1 y 2. En este
experimento, la distribucion intra-slice de ambos slices permanece constantemente en
saturacion, es decir, cada cola utiliza su airtime garantizado. Asi, se procede a realizar el
estudio del slice 3 en profundidad y sin la influencia de modificaciones en el reparto de

recursos de otras estructuras.

100 100
a0 Queue 0 0 Queue) —o— CQueue 1
) Bg —0— Queue 1 = Bg
= 7 gl R AP
o 60% - ~—4 B B0
=] 3 50
2 40 e et s s B e B B e R R, L WS g 40
£ 30 E 30 pro—Crr OO e Ot OO G om Dl
< 20 < 20
10 IU‘F
0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 &0 70
Time (seconds) Time (seconds)
a) Airtime slice 1 b) Airtime slice 2

Figura 22. Experimento 1. Distribucion de airtime del slice 1 y slice 2

Para comprobar el correcto funcionamiento y comparar los algoritmos de
scheduling intra-slice, se ha repetido el Experimento 1 en tres ocasiones: una vez con
cada version del algoritmo ADWRR. La Fig. 23 presenta los resultados obtenidos del
slice 3 en cada realizacion. La Fig. 22.A1 presenta de forma visual de los patrones de

66

generacion de trafico del experimento para ese slice. Para el scheduling inter-slice se

configura el algoritmo de quantum estatico

En el intervalo que comprende desde t=0 hasta t=10 se observa que todas las STAs
consiguen recibir el throughput deseado. A diferencia del porcentaje de airtime
garantizado (C0:35%, C1:30%, C2:20%, C3:15%), el sistema distribuye el airtime
excedente de la cola 0 a aquellas que lo necesiten, modificando asi el reparto (C0:24%,

C1:37%, C2:22%, C3:17%).

En el intervalo comprendido entre t=10 y t=20, tres de las cuatro colas del slice 3
reciben un throughput distinto al del periodo anterior (Fig. 23.A1). Este cambio provoca
que ninguna de ellas esté en condiciones de ceder recursos, algo que puede comprobarse
al observar las Fig. 23 A3, B3 y C3, donde se aprecia que todas las colas consumen el
maximo airtime disponible seglin sus pesos. En estas condiciones, todas las variantes del
algoritmo ADWRR implementadas arrojan resultados idénticos, ya que su funcionamiento

se basa en repartir airtime excedente, el cual en este caso no existe.

En el instante ¢ =20, el throughput de la cola 1 (asociada a la STA 2) se reduce a la
mitad (Fig. 23.A1). A partir de ese momento, el scheduler distribuye el airtime sobrante
de la cola 1 entre las colas restantes. Si se aplica el algoritmo de pesos estaticos (Fig.
23.A), el comportamiento del sistema es similar al observado en el Experimento 0: las
colas insatisfechas (cola 0 y cola 2) incrementan su airtime de forma proporcional a sus
pesos. En el caso del algoritmo de prioridad al indice menor (Fig. 23.C), se observa un
aumento en el DS de la cola con mayor prioridad, la cola 0 (Fig. 23.C2). No obstante, la
reasignacion de peso a la cola 0 no ocurre de forma inmediata, ya que el sistema calcula
las estadisticas con una frecuencia de un segundo. Este retardo provoca que, al inicio del
periodo, tanto la cola 0 como la cola 2 presenten un aumento de DS similar al observado
con el algoritmo de pesos estaticos. Sin embargo, una vez el sistema ajusta los pesos y el

algoritmo converge, se alcanza el reparto esperado.

67

Pesos/Quantum estatico

3.3Mbps STA 1
2.8Mbps P

1.2Mbpk
.Z.S.Mh.lis

1Mbps STA2 {2Mbps

2.3 Mbp's STA6

1.3Mbps_1.6 Mbps
1.25Mbps
10.5Mbps STA 5

0 10 20 30 40 50 60 70
Time (seconds)

Al) Patrones de generacion de trdfico
slice 3

c 1 3
_g

g 0a

3 0.8

B

=07

=]

@0.6 Cueue 0 —— Cueue 2

5 —o0—Queue 1 —&— Queue 3

Sos

(=]

10 20 30 40 50 &0 70
Time (seconds)

A2) Grado de satisfaccion slice 3

100

a0 Queue 0 —8— Queue 2

= Bg —o0— Queue 1 —h— Queue 3

= 7
B 60
: 50
E 40‘
£ 304
< 204
10
0
0 10 20 30 40 50 &0 70
Time (seconds)
A3) Reparto de airtime slice 3

3.6

%% Queue 0 —®— Queue 2

- 3| |=—0—CQueue 1 ——d— Queue 3
w28
o286
$55

=2

Eq3
=16
E 1.4
= ‘1.12
0.8
0.6
0.4

o 10 20 30 40 50 60 70
Time (seconds)

A4) Throughput slice 3

Igual ratio de satisfaccion

Queuwe 0 ——e— Queue 2
—0— Queue 1 —&— Queue 3

o] 10 20 30 40 50 60 70
Time (seconds)

B1) Evolucion de los pesos slice 3

c 1
.g
509
i
8 0.8
% L
=07
o
@0.6 Queue 0 —#— Queue 2
H‘ —— Queue 1 —&— Queue 3
Sos
0 10 20 30 40 50 &0 70
Time (seconds)
B2) Grado de satisfaccion slice 3
100
a0 Queue 0 —o— Queue 2
) Bg —0— Queue | —d— Queue 3
= 7
B 60
3 50
g 40
£ 30
< 204
10
]
0 10 20 30 40 50 &0 70
Time (seconds)
B3) Reparto de airtime slice 3
36
%g Queue () ——8— Queue 2
-3 —0— Queue 1| —&— Queue 3
ul
B2
%gig
5186
E 14
£1 %
0.8
08 bk}
04
o] 10 20 30 40 50 60 70

Time (seconds)

B4) Throughput slice 3

Preferencia al indice menor

120 Queue 0 —e— Queue 2

100 —0— Queue 1 —&— Queue 3
® ﬁ

=

=

] C

2 (;;())—c;—o—c.—cp.lI

i

i Ml als Sl 4

20 j—.&.-—*—\.&-.-JL

1] 10 20 30 40 50 =] 70
Time (seconds)

C1) Evolucion de los pesos slice 3

c 1
2
Boo
]
‘E 0.8
% 07
G086
@ 05 Queve 0 —®— Queue 2
E’ : —O— Queue 1 —&— Queue 3
Bo4
1] 10 20 30 40 50 &0 70
Time (seconds)
C2) Grado de satisfaccion slice 3
100
. 20 Queue 0 —#— Queue 2
F a0 —0—Queue 1 —&— Queue 3
= 70
o 60
: 50
E 40(
£ 304
< 204
10
0
1] 10 20 30 40 50 &0 70
Time (seconds)
C3) Reparto de airtime slice 3
38
3‘21 Queue 0 —8— Queue 2
- 3 ft|—o—CQueue 1 —&— Queueld
ag.g
o
Egig
“5 -
Byf
=18
B14df,
Z 1'%
n.ee
0.6
048

Time (seconds)

C4) Throughput slice 3

Figura 23. Representacion de estadisticas del slice 3 — Experimento 1

68

Entre t=30 y t=50 se observan ligeras variaciones. En #=30 aumenta la tasa de
entrada de la cola 2 y, en t=40, la de la cola 1. Bajo el algoritmo de pesos estaticos (Fig.
23.A), la cola 2 experimenta una disminucion en su grado de satisfaccion, ya que no logra
aumentar su throughput al ya encontrarse utilizando tanto su airtime nominal como el
excedente previamente asignado. El algoritmo de igualacién del DS reajusta los pesos
para que las colas insatisfechas mantengan un valor de DS similar (Fig. 23, B2). Es
importante sefialar que, nuevamente, existe un retardo entre la deteccion del DS y la
reconfiguracion de los pesos, lo que genera breves periodos transitorios donde el
comportamiento del sistema se asemeja al del algoritmo de pesos estaticos. En el caso del
algoritmo de prioridad por indice, se incrementa el peso de la cola 0 para mejorar su DS,

manteniendo a la cola 2 (con un indice superior) insatisfecha.

En el instante t=50, la cola 3 reduce su throughput, liberando recursos que pueden
ser aprovechados por el resto de las colas. El algoritmo de pesos estaticos reparte
nuevamente el airtime de forma proporcional, mientras que el algoritmo de igual DS
reajusta los pesos para mantener la equidad entre colas insatisfechas. Por su parte, el
algoritmo de prioridad al indice menor contintia asignando mas peso a la cola 0. Cabe
destacar que, tras t=50, la cola 0 recibe suficiente peso como para alcanzar un throughput
igual a su MBR (3 Mbps). No obstante, en t=60, la cola 1 incrementa su throughput y
recupera parte de los recursos previamente cedidos a la cola 0. Esta variacion se refleja
en la Fig. 23, C1, donde se observa una reduccion del peso asignado a la cola 0 en favor

de la cola 1.

4.3 EXPERIMENTO 2 — VARIANTES DE ADWRR INTER-SLICE

Este experimento se realiza con el objetivo de verificar el correcto funcionamiento
de las distintas variantes del algoritmo de planificacion ADWRR inter-slice’. En este, se
compara la variante del algoritmo de pesos estaticos, con el de igual ratio de satisfaccion

y con el de preferencia al indice menor en el reparto de airtime a nivel de slice. El objetivo

4 Para el algoritmo ADWRR intra-slice se utiliza la variante de igual ratio de satisfaccion

69

es mostrar el correcto comportamiento de los algoritmos y demostrar que aseguran una
distribucion de recursos eficiente segun el criterio seleccionado. Los parametros

empleados se recogen en la Tabla 5.

Tabla 5. Experimento 2. Parametros de interés

Slice 1 Slice 2 Slice 3
Quantum (Qnom) 3000us 2000ps 5000us
Queues Queue 0 | Queuel Queue 0 Queue 1 Queue 0 Queue 1 Queue 2 Queue 3
Weight (Wnom) 120 80 140 60 70 60 40 30
MBR 2.5Mbps 2Mbps 2.5Mbps 2Mbps 3Mbps 2.5Mbps 2.5Mbps 2Mbps
STAid STA1 STA3 STA 2 STA1 STA4 STA1 STA 2 STA6 STAS
Priority index 0 1 0 1 0 1 2 3
MCS index 2 4 3 2 6 2 3 3 4
2.5Mbps | 2 Mbps 1.2 Mbps | 2.5Mbps | 1.3 Mbps
(0-10's) (0-20s) (0-10s) (0-10's) (0-10s)
1.2 Mbps
(0-20's) 1.25 Mbps
(0-50's)
1.6
L 1.2 Mbps 2 Mbps
Iperf Rate (Time interval) 1 Mbps 3 Mbps Mbps (0-705) 2,8Mbps | (10-20s) | 1.6 Mbps
(10-60s) | (20-30s) | (0-705) (10-40's) (10-30s)
1 Mbps
2 Mbps (20-60's)
(20-70s) 0.5 Mbps
2 Mbps 1 Mbps 3,3 Mbps 2.3 Mbps (50-70s)
(60-70s) | (30-705s) (40-70s) | 1.3 Mbps | (30-705s)
(60-70s)
UDP size (bytes) 1250B 2508 2008 3508 700 B 3508 3508 2008 2508
Max Aggregation Size 1200B 1200B 1200B 1200B 12008 1200B 1200B 1200B

De forma similar al Experimento 1, en el Experimento 2 se generan nueve flujos
UDP con una duracion de 70 segundos y vuelve a utilizarse la agregacion de tramas.
Dichos flujos son, en una parte, similares a los del Experimento 1 ya que tan solo se han
modificado la duracion y el throughput de los flujos UDP del slice 1 y el slice 2. El resto

de parametros tienen el mismo valor.

Para este experimento, se vuelven a utilizar tres s/ices dedicados exclusivamente al
trafico de datos. El slice 1 tendra garantizado el 30% del airtime, el slice 2 el 20% y el

slice 3 el 50%. De forma similar al Experimento 1, se utilizan los conceptos de MBR y

70

grado de satisfaccion.

En Fig. 24.A1 se muestran los patrones de generacion de trafico del slice 1 y del
slice 2. Como los flujos UDP para el slice 3 son los mismos que para el experimento
anterior, se puede consultar cuando sea conveniente en Fig. 23.A1. A continuacion, se

analizan los resultados obtenidos en cada uno de los algoritmos ADWRR.

Desde el inicio del experimento hasta t=10, el sistema se encuentra saturado. Todos
los slices usan el quantum nominal asignado y no pueden ceder nada. Por lo tanto, el
airtime consumido por cada uno se reparte proporcionalmente al quantum (S1:30%,

S2:20%, S3:50%).

En el intervalo desde t=10 hasta t=20, el throughput de la cola 0 del slice 1
disminuye (Fig. 24 A3, B3, C3). Esto reduce el consumo de airtime del slice 1 y le permite
ceder recursos al resto un 10% de airtime. Cuando se usa ADWRR con pesos estaticos el
slice 2 consigue un 3.75% y el slice 3, que ha aumentado su demanda de airtime, recibe
un 6,25%, que resulta al calcular la proporcion con el quantum nominal entre los dos
slices. Para cuando se utiliza el mismo ratio de satisfaccion, se comprueba en Fig. 24.B2
que el slice 2 y el slice 3 alcanzan un mismo DS ajustando dindmicamente su quantum
(Fig. 24.B1). Es preciso explicar que el grado de satisfaccion del slice 3 se reduce en este
intervalo porque aumenta su throughput un total de 1.4 Mbps. Por lo tanto, se alcanza un
throughput de entrada de 7.65 Mbps, que no se consigue transmitir y el DS baja hasta un
90% (6.9 Mbps transmitido / 7.65 Mbps entrada). Al usar la variante de preferencia al
indice menor, se observa en Fig. 24.C1 un aumento en el slice 2, que es el que menor
indice tiene. Cabe destacar que en t=10 existe un corto desfase temporal entre el cambio
de los flujos UDP y la modificacion de los pesos. Esto, como en ocasiones anteriores,

produce momentaneamente un ajuste de airtime no intencionado.

Entre t=20 y t=30, el throughput de entrada del slice 1 aumenta 1 Mbps, el del slice
2 aumenta 0.8 Mbps y el del slice 3 disminuye 1 Mbps (Fig. 24.A1, Fig. 23.A1). Para
todas las versiones de ADWRR, el slice 1 recupera casi todos los recursos que habia
prestado (Fig. 24 B1 y C1) y con ello consigue transmitir los 4 Mbps del throughput de
entrada (Fig. 24 A4, B4, C4). Por lo tanto, el slice 2 ve reducido su airtime y no consigue
transmitir los 4.8 Mbps de throughput de entrada (Fig. 24 A4, B4, C4). Por tltimo, el

slice 3 disminuye el throughput de entrada y pierde gran parte del airtime cedido

71

anteriormente por el slice 1. Por lo tanto, este slice disminuye su throughput y consigue
practicamente transmitir el throughput de entrada (ver ratio de satisfaccion Fig. 24 A2,
B2, C2). Como en este periodo de 10 segundos no se ceden recursos, los resultados

obtenidos son practicamente los mismos para las tres pruebas.

Desde t=30 hasta t=50, el slice 1 vuelve a ceder recursos al disminuir su throughput
de entrada 2 Mbps. De nuevo se realiza un reparto de airtime proporcional al quantum
nominal para ADWRR con quantum constante (Fig. 24.A3) y las otras dos pruebas
distribuyen los recursos siguiendo su criterio de reparto. Para cuando se utiliza el igual
ratio de satisfaccion, el slice 2, que es el mas insatisfecho (Fig. 24.B), recibe gran parte
del quantum del slice 1 hasta igualar su DS con el slice 3. El slice 3 también recibe
quantum y, al aumentar el throughput de entrada al mismo tiempo, se reduce su DS. En
t=40 el slice 3 aumenta el throughput de entrada en 0.5 Mbps y esto se traduce en una
reduccion del DS de los slices insatisfechos (Fig. 24.B2) puesto que deben tomar valores
similares. Para ADWRR con preferencia al indice menor, se le asigna todo el quantum al
slice 2 hasta que esté totalmente satisfecho (Fig. 24.C2). Los recursos que todavia queden
libres se repartiran al slice 3, que no podra transmitir el throughput de entrada en ningin

momento de este periodo.

En los ultimos 20 segundos del experimento, el slice 3 disminuye su demanda de
throughput en 0.5 Mbps (Fig. 23.A1). Esto le permite mejorar su DS utilizando en las 3
pruebas los mismos recursos (Fig. 24 A2, B2, C2). Por esta razdn, las estadisticas del
resto de slices permanecen constantes excepto en Fig. 24.B2, donde el slice 2 consigue
aumentar levemente su DS por la politica de igual ratio de satisfaccion. En el instante
t=60, se produce un aumento de demanda de throughput en el slice 1 y el slice 3. Por ello,
el slice 1 se ve obligado a recuperar parte de los recursos cedidos (Fig. 24 B1, C1) y el

resto de slices veran afectado su DS debido a esta modificacion (Fig. 24 B2, C2).

72

Pesos/Quantum estatico

5Mb STA1
— 1Mbps 2 Mbps
2Mbps . 3Mbps
[T] s IMbps [STA3
1.6Mbps STA2
1.2Mbps STA 1
2Mbps STA4
1.2Mbps_ =TT TTTTES e S =y

0 10 20 30 40 50 60 70
Time (seconds)

Al) Patrones de generacion de trafico

iy

o
©

Degree of Service
o
o

b
T

Slice 0 L
0.7 —=— Siice 1
—&— Slice 2
Slice 3
0.6 : . ; : g :
0 10 20 30 40 50 80 70
Time (seconds)
A2) Grado de satisfaccion
Slice 0 —&— Slice 2
70 == Slice 1 Slice 3

=60
o
$50W
3
£ 3 At e bbbtk a]
<20 - —— {“‘9“'%

0 10 20 30 40 50 60 70
Time (seconds)

A3) Reparto de airtime

- iy Ly

Slice 0 ——&— Slice 2
—a— Slice 1 Slice 3

r%

Throughput (Mbps)
O =2 N W s 00 N

-y

n i L

10 20 30 40 50 60 70
Time (seconds)

o

A4) Throughput

Igual ratio de satisfaccion

6000

A o R
£ 4000

E
s)
g 2ooo-m

Slice 0 d— Slice 2
Slice 1 Slice 3

0 10 20 30 40 50 80 70
Time (seconds)

B1) Evolucion de los pesos

Slice 0
—&— Slice 1
—&— Slice 2
Slice 3

Degree of Service
o
[ee]

0 10 20 30 40 50 60 70
Time (seconds)

B2) Grado de satisfaccion

Slice 0 2
= Slice 1

Slice 2
Slice 3

o

Airtime used (%)
= RN w s oo
DOO‘DODD

Time (seconds)

B3) Reparto de airtime

8

7

6

=5

24 M
22

e

~ Slice 0 —#&— Slice 2

Slice 1 Slice 3

0 20 40 60
Time (seconds)

B4) Throughput

Preferencia al indice menor

6000

ey
o
(=]
o

Quantum

Slice 0 d— Slice 2
Slice 1 Slice 3

0 20 40 60
Time (seconds)

C1) Evolucion de los pesos

-

o
©

Slice 0
—&— Slice 1

Degree of Service
o
[o=]

0.74 —a— Slice 2
Slice 3
0.6
0 20 40 60
Time (seconds)
C2) Grado de satisfaccion
. Slice 0 b— Slice 2
£ 70+ Slice 1 Slice 3
:; 80 ;JWWJ\‘MM
3 50 ;
2 40 1
2 St e
z 20
10 1
0 -l

(=]

20 40 60
Time (seconds)

C3) Reparto de airtime

8 : : .
7 PWW
w
g6 1
=5
2o e
=
23
22
Fqa Slice 0 ——&— Slice 2

0 =——f— Slice 1 Slice 3

0 20 40 60

Time (seconds)

C4) Throughput

73

Weight

Degree of rate satisfaction

120

100

A5) Evolucion de los pesos slice 3

Queue 0 =@ Queue 2
F | —o—Queue 1 —&— Queue 3 100+ | —o—Queue 1 —&— Queue 3

Queue 0 =——@— Queue 2

Queue 0 ——@— Qusue 2
100+ | —0— Queue 1 —&— Queue 3

20

30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30

40 50 60 70

Time (seconds) Time (seconds) Time (seconds)

B5) Evolucion de los pesos slice 3

C5) Evolucion de los pesos slice 3

3 1 3 1
5 5
% 0.9 » T 09
& 1 3
W 0.8 208
Queue 0 g a
2 Queue 0]
¢ —o— 85235 ; T 07 —o0— Queue 1 il 07 Queue 0
B —=8— Queue 2 e —0— Queue 1
—A— Queue 3 ; o Queue 3 ; —e— Queue 2
S06 506 —&— Queue 3
@)
o [=]
] I I . . . 05 | | | |] | 05 I | I I) .
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time (seconds) Time (seconds) Time (seconds)

A6) Grado de satisfaccion slice 3

B6) Grado de satisfaccion slice 3

Figura 24. Representacion de estadisticas — Experimento 2

4.4 EXPERIMENTO 3 — FUNCIONAMIENTO DE SLICING CON HANDOVER

Para evaluar el funcionamiento del s/icing junto con el de handover, se ha ajustado
el escenario de trabajo. En este experimento se utilizan dos puntos de acceso ubicados a
una distancia suficiente para que la STA realice el handover en el punto medio entre
ambos APs. Como se muestra en la Fig. 25, se emplean tres equipos fisicos: dos PCs Intel
NUC y una Raspberry Pi 4. Se ha introducido un PC Intel NUC2 como el dispositivo que
alberga el segundo punto de acceso. La STA 4, que comenzara conectada al AP del PC

Intel NUCI, se utiliza como terminal movil.

Para este experimento se utiliza la configuracion de quantum y pesos estaticos tanto
en el scheduling intra-slice como en el inter-slice. Aprovechando esta configuracion, se
ha tratado de aproximar la ocupacion del enlace a la del Experimento 0, generando flujos
de Iperf similares. Para obtener resultados comparables, se ha ajustado el throughput de
algunos flujos UDP con el fin de compensar las diferencias en los MCS de las STAs

utilizadas en este experimento respecto a las del Experimento 0.
74

C6) Grado de satisfaccion slice 3

INTEL NUC 1

RASPBERRY Pl 4

0DIN
Controller

RYU

10.42.0.70 10.42.0.68

Dummy-
Pyser
10.42.0.69

I cnid 104201

flannel
104200

flannel
10.42.1.0

INTEL NUC 2

|

flannel

104220

e el WP e e

~
>

192.168.137.0/24

(‘b])

MiniPC 1 : MiniPC 2

Figura 25. Escenario de trabajo para handover a nivel logico

La Tabla 6 recoge los parametros relevantes del AP1, que opera en el canal 36,
mientras que la Tabla 7 muestra los del AP2, que opera en el canal 48. Ambas tablas
incluyen los flujos correspondientes a la STA 4. Aunque estos flujos (de la STA 4)
aparezcan reflejados en las dos tablas, solo serdn enviados por el AP que esté prestando

servicio a la STA 4 en cada momento.

El resto de las STAs se reparten equitativamente: la mitad se asocian con el AP1 y
la otra mitad con el AP2. De este modo, se consigue que ambos puntos de acceso
transmitan flujos UDP equivalentes, permitiendo asi una comparacion equilibrada del

rendimiento entre ellos.

75

Tabla 6. Experimento 3. Parametros de interés AP

Slice 1 Slice 2 Slice 3
Quantum
(Qnom) 3500us 2500us 4000ps
Queues Queue 0 Queue 1 Queue 0 | Queue 1 Queue 0 Queue 1 Queue 2
WL 50 50 30 70 50 30 20
(Wnom)
STAid STA 2 STA 3 STA 1 STA 2 STA 1 STA 2 STA4 STA 3 STA4 STA 3 STA4
MCS index 3 6 1 3 1 3 4 6 4 6 4
1.6
Mbps
(0-10s),
0.55
IperfRate |, \\1hos | 1.4Mbps | 1.4Mbps | 1.4Mbps | 1.4Mbps | MoPs [12 0.68 o 0.6 0.9
(Time 0-100 0-100 0-100 0-100 0-100 (10-20 Mbps Mbps Mbps Mbps Mbps
interval) (0-1005s) | (0-1005s) | (0-10055) | (0-100s) | (0-100s) [™) (20-80s) | (0-100s) | (0-100s) | (0-100s) | (0-100s)
0.68
Mbps
(20-100
s)
UDP size
(bytes) 250B 1250 B 650 B 500 B 250 B 250 B 250 B 250 B 250 B 400 B 400 B
Tabla 7. Experimento 3. Parametros de interés AP2
Slice 1 Slice 2 Slice 3
Quantum
(Qnom) 3500ps 2500ps 4000ps
Queues Queue 0 Queue 1 Queue 0 | Queue 1 Queue 0 Queue 1 Queue 2
Weight 50 50 30 70 50 30 20
(Wnom)
STAid STA 16 STA 17 STA 15 STA 16 STA15 | STA16 | STA4 | STA17 | STA4 | STA17 | STA4
MCS index 3 6 1 3 1 3 4 6 4 6 4
1.6
Mbps
(0-10s),
0.55 12
IperfRate |/ \ibps | 1.4Mbps | 1.4Mbps | 1.4Mbps | 1.4Mbps | M0PS | wips | 068 0 0.6 0.9
(Time (10-20 (20-80 Mbps Mbps Mbps Mbps
interval) | (©-100) [(0-1005) [(0-1005) | (0-2005) | (0-2005) |) 780 | (0:1009) | (0-10s) | (01005 | (01005
0.68
Mbps
(20-100
s)
UDP size
(bytes) 250B 1250B 650 B 500 B 250 B 250 B 250 B 250 B 250 B 400 B 400 B

Los flujos UDP de la Tabla 6 y Tabla 7 comienzan en el mismo instante de manera
sincronizada en los dos puntos de acceso. En t=45 la STA 4 realiza el handover del AP1

al AP2 y en t=80 vuelve al AP1. A continuacidn, se realiza un analisis de los resultados

76

obtenidos que se muestran en la Fig. 26.

Dado que la STA 4 recibe tres flujos UDP con un throughput total de 3 Mbps y que
estos flujos solo se envian a través del AP que la atiende en cada momento, el slice 3
unicamente estard en condiciones de ceder recursos cuando la STA 4 se encuentre
conectada al otro AP (ver Fig. 26 A1 y B1). Esto se refleja en el comportamiento del AP1
durante los intervalos t=0 a t=45 y t=80 a t=100, periodos en los que este AP da servicio
a la STA 4. De forma inversa, el slice 3 del AP2 no podra liberar recursos entre t=45 y
t=80, ya que en ese intervalo es el encargado de transmitir los flujos a dicha estacion.
Cabe destacar que estos periodos pueden extenderse ligeramente si existen paquetes
acumulados en las colas, ya que estos deben ser transmitidos antes de que el sistema esté

en condiciones de ceder airtime a otros slices.

Centrando la atencion en el instante del handover en t=45, se observa en la Fig.
26.A1 una caida en el consumo de airtime causada por la salida de la STA 4. Al mismo
tiempo, el AP2 comienza a servir a la STA 4, lo que incrementa su consumo de airtime.
En algunas gréficas se puede observar que, cuando la STA 4 no esta presente, el sistema
consume menos recursos y los slices con mayor demanda pueden aumentar su quantum.
Por esta razon, se producen también cambios en otros slices que no transmiten los

paquetes dirigidos a la STA 4 (ver Fig. 26 A2, A3, B2, B3).

Centrando la atencion en el slice 3 durante el handover, se aprecia en la Fig. 26 AS
y B5 una disminucion del throughput en el AP1 y un aumento en el AP2. En el momento
del handover en el AP1, ninguna de las colas estd en condiciones de ceder airtime, ya que
todas utilizan sus recursos maximos asignados (CO: 50 %, C1: 30 %, C2: 20 %). Sin
embargo, justo después del handover, se produce una bajada en el throughput,
acompaifiada de una redistribucion del airtime (Fig. 26.A4), en la que se obtiene un 45 %

para la cola 0, un 35 % para la cola 1 y un 20 % para la cola 2.

Esa misma distribucion es la que presentan las colas del slice 3 unos instantes antes
del handover. Como los flujos UDP han sido replicados en ambos APs (excepto los de la
STA 4), se observa un comportamiento simétrico en el reparto del airtime, dado que, tras
el handover, el reparto obtenido es el que corresponde al caso en el que ninguna cola esta

en condiciones de ceder recursos (de nuevo, C0: 50 %, C1: 30 %, C2: 20 %).

En la Fig. 26 A6 y B6 se puede ver un aumento del nimero de retransmisiones en
77

el instante del handover en t=45. En el AP1, estas retransmisiones se prolongan mas en
el tiempo, debido a que la STA 4 se aleja progresivamente del punto de acceso,
reduciendo la potencia de sefial y dificultando la comunicacion. Ademas, el hecho de que
el MCS permanezca constante durante toda la prueba para todas las STAs impide
adaptarse a las condiciones variables del canal. Unos instantes después, también se
producen retransmisiones en el AP2, aunque mas concentradas en el tiempo y de mayor
volumen. Esto ocurre porque, cuando OdinAP notifica a la STA que debe cambiar de
canal, esta no lo hace de forma inmediata, lo que puede generar retardo e incluso periodos
en los que la STA no escucha ni el canal nuevo ni el anterior (en el cambio de canal).
Como resultado, se producen retransmisiones debido a que la STA no genera los ACKs
correspondientes a las tramas que comienzan a enviarse por el nuevo canal. Estas
retransmisiones tienen un impacto negativo en el throughput de salida de ambos APs, ya

que se consume airtime en el envio de tramas que no llegan a su destino.

Mas adelante, en t=80, se produce el mismo evento, pero en sentido inverso: la STA
4 se desplaza del AP2 al AP1. Nuevamente, se observa en la Fig. 26 B5 y B6 una caida
del throughput en todas las colas, provocada por las retransmisiones generadas al alejarse
del punto de acceso. En el AP1, ademas, se registran algunas variaciones en el throughput
en los instantes previos al handover. Este comportamiento se debe a un cumulo de
retransmisiones de origen desconocido en el slice 1, que alteran la estabilidad del reparto
de airtime. Una vez finalizado el handover, vuelven a aparecer retransmisiones debido al
retardo con el que la STA 4 cambia de canal. Finalmente, cuando la STA empieza a

escuchar en el nuevo canal, se recupera la estabilidad en el sistema de reparto.

78

AP1 — Canal 36

70 T
Slice 0

B0} |—=—slice 1 1
= 50l —i— Slice 2]
= Slice 3 s
$ 40 - T
i - o ——
E 305 W S N . A: e .:. 2.. Ao 7‘
£ 200 i
<

10}]

0 i I 1 1A

0 20 40 60 80 100

Time (seconds)

Al) Airtime por slice, AP

S
o
b
=
@
E
E
<30}]
20 1 1 1 1
0 20 40 60 80 100
Time (seconds)
A2) Airtime slice 1, AP1
80 T T T T
70
£ g0
o
4 50
2ol :
=
L 30 sy . h e
20+ .
0 20 40 60 80 100
Time (seconds)
A3) Airtime slice 2, AP1
80 T T T T
70+ Queue 0 .
— —0— Queue 1
2 60 | —e— Queue 2 1
E 50 e ‘.‘v—‘rd
540 g
¢ o
£ 30
g L BorsllsilrislD.
< 20 oo) -0 0-0-Sr{ - 0-0r0-0
10F .
0 1 1 1 1
0 20 40 60 80 10C
Time (seconds)
A4) Airtime slice 3, AP1

AP2 — Canal 48

70
Slice 0
60 [| —e— Slice 1 1
9 —dl— Slice 2
= 50+ Slice 3
° =
g 40k -
3 e oo i
2 30°) —-ﬁn!x
£ ittt e,
=3
<
10+ 1
0] I
0 20 40 60 80 100

Time (seconds)

B1) Airtime por slice, AP2

g
=l
%
=]
2a0} :
E
<<
30F 4
20 L L L 1
20 40 60 80 100
Time (seconds)
B2) Airtime slice 2, AP2
80 T . T T
70 >
g 80 Queue 0
E i —0— Queue 1/ |
Ssof
o
£
E
<
20 L L 1 1
0 20 40 60 80 100
Time (seconds)
B3) Airtime slice 2, AP2
80 T T T T
70k Queue 0
R —0— Queue 1
3 60+ —8— Queue 2
- 50
@
S40F 00'4
@
E 30+
Z 200001 gt B g
10}
0 I L L 1
0 20 40 60 80 100

Time (seconds)

B4) Airtime slice 3, AP2

79

28 28
26 Queue 0 26+ 0 i
241 | —o—Quete | 240 | _o 83:32 1]
_ 22} |—e—Queue? 'g2§ | | —e—aueue2]
w 2 L - -
S8l S 15}]
=165 T16 |
214f 214 |
1.2} £12 1
3 1 21 i
£ 2038 1
=08 E06¢ y
0.4 0.4‘ 3
0 20 40 60 80 10¢ 0 20 40 60 80 100
Time (seconds) Time (seconds)
AS5) Throughput slice 3, AP1 B5) Throughput slice 3, AP2
500 : ‘ 1000 .
—é? 88 -D-‘gggé - 900+ [—s0Q0 —o—-s2Q1
2 - - —S51Q0 —S3Q0
400} | o S1a1 oS30 § 800F | oar oo
g —S2Q0 -e-S53Q2 $ TOOF |—s2Q0 —e—s3Q2
2300t =z 600t
2 3 500+
2200t 2 4001
2 3 3007
@ 100 5 200}
o
® o0}
04) 0 o~ r——0-0--02 00009000100 4
0 20 40 60 80 100 0 20 40 60 80 10(
Time (seconds) Time (seconds)
A6) Retransmisiones de AMSDU, AP1 B6) Retransmisiones de AMSDU, Ap2

Figura 26. Representacion de graficas — Experimento 3

Como se ha mencionado anteriormente, las STAs pueden presentar tiempos de
cambio de canal distintos a lo esperado, lo que genera retransmisiones. Concretamente,
en las pruebas se han utilizado interfaces Wi-Fi de dos fabricantes. Uno de ellos es
Realtek, que presenta un esquema temporal de cambio de canal como el que se muestra
en Fig. 27. El otro fabricante es Mediatek, cuyas interfaces, ademas de funcionar como
cliente Wi-Fi, permiten crear interfaces virtuales en modo monitor para capturar trafico
en el canal activo. Las tarjetas Mediatek presentan un patron temporal como el mostrado
en Fig. 28. En ambas figuras, los intervalos sefialados con una cruz son los intervalos en
los que la STA no devuelve ACKs, mientras que los intervalos sefialados con un tick

verde son en los que si que se responde el ACK.

En ambos casos, se observa que las STAs presentan intervalos de duracion
considerable sin enviar ACKs, lo que deteriora los resultados al provocar pérdidas
innecesarias y complicar la estabilidad del proceso de handover. El hecho de que cada
STA tenga su propia implementacion (distintos drivers) dificulta la programacion de
OdinAP y desaprovecha recursos dedicados a tramas que no se van a recibir. Este

problema serd objeto de una linea futura que tendrd como objetivo encontrar la solucion

80

que permita minimizar el nimero de retransmisiones hasta que la STA esté disponible

para escuchar y transmitir.

1er Beacon de Bienvenida Ter ACK Deja de devolver ACK Vuelve a devolver ACK

T P
@ o—0 -

~300 ms . ~25ms L ~65 ms

3.

A
b
A
B
L

Figura 27. Diagrama de tiempos de la antena Wi-Fi Realtek

1er Beacon de Bienvenida Ter ACK Deja de devolver ACK Vuelve a devolver ACK

T Y
O o—0 -

~50 ms ~5ms W ~570 ms

Figura 28. Diagrama de tiempos de la antena Wi-Fi Mediatek

Por otra parte, para evidenciar el impacto real que pueden tener ciertos retardos en
momentos criticos como el handover, se analiza a continuacion el efecto de utilizar
funciones bloqueantes y no bloqueantes en OdinAP. En concreto, se estudia como afecta
este comportamiento al sistema de scheduling cuando un equipo (ya sea un AP o una
STA) deja de transmitir o recibir tramas Wi-Fi. Este aspecto, tratado en el capitulo 3
(apartado 3.2.3, Actualizacion del sistema de slices y colas por handover), supuso una
mejora significativa: la sustitucion de system() por posix_spawn() redujo en un 99,95 %
el tiempo necesario para ejecutar el comando de cambio de canal. Esta alternativa permite

lanzar el proceso en paralelo, minimizando su impacto sobre el resto del programa®.

Se han recogido datos que permiten realizar la comparacion del rendimiento del

sistema antes y después de esta mejora. En esta ocasion se ha utilizado Wireshark como

5 Resaltar que los resultados vistos hasta ahora en este apartado utilizan la alternativa no bloqueante
posix_spawn().

81

herramienta de monitorizacion, analisis y extraccion de resultados, representando frente

al tiempo el nimero de paquetes enviados con una resolucion variable segln el caso.

125 packets -

100 packets -

73 packets [

Packets/100 ms

50 packets

25 packets

o m ’M’\mh upmwkﬁm

100 ms Intervals
—— Slice 1 Cola 0
—— Slice 1 Cola 1
—— Slice 2 Cola 0
—— Slice 2 Cola 1
Slice 3 Cola 0
—— Slice 3 Cola 1
—— Slice 3 Cola 2

100 packets

75 packets

30 packets

Packets/100 ms

25 packets

Intervalo (s)

a) Paquetes enviados por cada 100 ms por wlan0

100 ms Intervals
—— Slice 1 Cola 0
—— Slice 1 Cola 1
—— Slice 2 Cola 0
—— Slice 2 Cola 1
Slice 3 Cola 0
—— Slice 3 Cola 1
—— Slice 3 Cola 2

|+ N°Retransmisiones |

0 packets

Gpacken

......

2packen

Intervalo (s)

b) Zoom de paquetes enviados por cada 100 ms en el instante critico

560ms

w5

600ms

¢) Zoom de paquetes enviados por cada 1 ms en el instante critico

Figura 29. Estadisticas obtenidas con la llamada a la instruccion bloqueante

82

La Fig. 29 muestra los resultados del Experimento 3 al utilizar la instruccion
bloqueante system () para cambiar el canal de la interfaz wlan?2. En ella se representan los
paquetes enviados durante el experimento, capturados desde la interfaz wlanl del AP2,
que actiia como punto de acceso receptor de la STA en movimiento. La subfigura A
recoge la vision global del experimento; la B amplia el instante en que el controlador
Odin ordena a AP2 monitorizar a la STA en su canal original justo antes del handover; y
la C muestra ese mismo intervalo con mayor resolucion temporal (1 ms), lo que permite

un andlisis mas detallado del comportamiento del sistema.

En Fig. 29.c se ven dos periodos de 560 y 600 ms en los que no se envian paquetes:
el primero aparece por cambiar la interfaz wlan2 al canal a monitorizar y el segundo por
volver al canal original. En estos intervalos no hay retransmisiones, lo que indica que
estas no son las responsables la bajada del throughput; las retransmisiones ocurren
después del segundo periodo de silencio, cuando la STA monitorizada, tras realizar el
handover, entra en el canal del AP2. La monitorizacion de la STA con la interfaz auxiliar
wlan2 en otro canal no deberia causar un desvanecimiento tan prolongado en la

transmision.

En la Fig. 30 se presentan los resultados obtenidos al utilizar la instruccion
posix_spawn() para ejecutar el cambio de canal durante el handover. Como en casos
anteriores, la Fig. 30.a muestra el experimento completo y la Fig. 30.b destaca el intervalo
de mayor interés. Ademds, se han anadido las Fig. 30.c1 y Fig. 30.c2, donde se
representan con mayor nivel de detalle el primer y el segundo desvanecimiento

detectados, respectivamente.

Gracias a la mejora introducida, se observa una notable reduccion en la duracion de
estos silencios. En concreto, el primer periodo pasa de los 560 ms anteriores a tan solo
111 ms (sumando 46 ms y 65 ms, como se ve en la Fig. 30.c1), y el segundo se reduce de
600 ms a 150 ms (sumando 80 ms y 70 ms, ver Fig. 30.c2). En ambos casos, el punto de
acceso recupera su capacidad de transmision en un tiempo mucho menor, logrando
reducir los periodos de inactividad hasta en un 80 %. No obstante, a pesar de la mejora,
todavia se observa un tiempo de parada no deseado, ya que el punto de acceso deberia ser

capaz de seguir transmitiendo sin interrupciones. Por tanto, la resolucion de este error no

&3

solo mejora significativamente el rendimiento, sino que también revela nuevas

limitaciones del sistema que deberdn abordarse en futuras lineas de trabajo.

125 packets -

100 packets -

W.MJMI |

75 packets

Packets/100 ms

50 packets

25 packets -

0 packets

20 40 60 a0

Intervalo (s)

a) Paquetes enviados por cada 100 ms por wlan0

i

100 ms Intervals

Slice 1 Cola 0
Slice1 Cola 1
Slice 2 Cola 0
Slice 2 Cola 1
Slice3 Cola 0 u‘
Slice 3 Cola 1
Slice3 Cola2

MN® Retransmisiones

il

ToRWT

120

100 packets 1
| 100 ms Intervals
—— Slice 1 Cola 0
80 packets - /-\w_,_ . —— Slice 1 Colal
F -t —— Slice2 Colad
— s (P
—— Slice 2 Colal
£ 60 packets - Slice 3 Cola 0
2 ——— Slice3 Colal
:i“.:r —— Slice3Cola2
E 40 packets —&— N7 Retransmisiones
o
20 packets
0 packets A 22eoet welee I S o i = I |
60 61 62 63 B4 65 66
Intervalo (s)

b) Zoom de paquetes enviados por cada 100 ms en el instante critico

1 ms Intervals
Slice 1 Cola 0
—— Slice 1 Cola 1
Slice 2 Cola 0
Slice 2 Cola 1
Slice 3 Cola 0
Slice 3 Cola 1
Slice 3 Cola 2
+— N°Retransmisiones

LA

1‘1 w]HuH\H

Intervalo (s)

cl) Zoom del primer instante de bajada de throughput
en b) (~ t=62.3). Paquetes enviados cada 1ms

c2) Zoom del segundo instante de bajada de throughput en b)
(~ t=64.1). Paquetes enviados cada Ims

Figura 30. Estadisticas obtenidas con la llamada a la instruccion no bloqueante

84

Pese a esta mejora, sigue observandose que justo en el momento en que OdinAP
ejecuta el handover (t=64.3), se producen retransmisiones debidas al breve periodo de

silencio en el que la estacion no responde.

La diferencia de tiempos entre ambas soluciones demuestra la importancia de evitar
llamadas bloqueantes en un entorno tan sensible como el del punto de acceso Wi-Fi,
donde se manejan multiples tareas criticas en tiempo real. Esta mejora ha permitido una

mayor estabilidad y un comportamiento mas robusto del sistema en general.

85

5. CONCLUSIONES Y LINEAS FUTURAS

En este trabajo se ha desarrollado e integrado una solucién que combina un
algoritmo de control de tasa (Onoe) con un sistema de slicing dentro de una arquitectura
SDWLAN. El objetivo ha sido dotar al entorno NeWLAN de capacidades avanzadas de
gestion de recursos inalambricos, utilizando condiciones de trafico intensivo. La
integracion se ha validado mediante una serie de pruebas experimentales en multiples

escenarios, demostrando la robustez y funcionamiento del sistema resultante.

5.1 CONCLUSIONES

A continuacién, se enumeran los principales logros y conclusiones alcanzados

durante el desarrollo del proyecto:

— Integracién exitosa de slicing y control de tasa: Se ha verificado el correcto
funcionamiento simultdneo del sistema de slicing con el algoritmo Onoe. Esta
combinacion permite una gestion avanzada del airtime y una adaptacion dinamica del
MCS en funcion de las condiciones del canal, lo que es clave para garantizar la QoS en

entornos con alta demanda.

— Gestion eficiente del airtime mediante slicing: El sistema ha demostrado ser
capaz de asignar recursos de la forma esperada en condiciones normales y de congestion.
Ademas, el airtime no utilizado por colas con baja demanda se redistribuye eficazmente
entre aquellas que requieren mas capacidad, maximizando el rendimiento del punto de

acceso.

— Priorizacion efectiva del trafico de control: Se ha reservado el slice 0
exclusivamente para el trafico de control, quedando fuera del reparto de airtime con los
slices de datos. Esta decision ha demostrado ser eficaz: el trafico de control (como DHCP,
ARP y tramas de gestion IEEE 802.11) consume un porcentaje minimo del airtime,
permitiendo su procesamiento inmediato sin afectar al trafico de datos. También se ha
implementado una funcionalidad para redirigir correctamente tramas DHCP (u otros

traficos de control) con valores DSCP no previstos.

— Validacién del comportamiento de las opciones de scheduling ADWRR: Las

pruebas realizadas con distintas variantes del algoritmo ADWRR —quantum estatico,
86

igual ratio de satisfaccion y preferencia por el indice menor— han validado su

funcionamiento y la correcta distribucion de recursos:

La wvariante con quantum estatico distribuye los recursos excedentes
proporcionalmente al quantum nominal entre las estructuras (colas o slices) activas que

lo necesiten.

La variante de igual ratio de satisfaccion equilibra dindmicamente los recursos
excedentes entre las estructuras activas que necesiten mas recursos para igualar su grado

de satisfaccion.

La variante con preferencia al indice menor garantiza primero la satisfaccion de las

colas prioritarias, aquellas con menor indice.

— Gestion del handover y reduccion de interrupciones: El sistema de slicing es
compatible con el handover. Ha mejorado la estabilidad y continuidad del servicio vy,
aunque este proceso genera retransmisiones —debido al retardo en el cambio de canal de
las STAs y a la ausencia temporal de ACKs—, la sustitucion de la instruccion bloqueante
system() por posix_spawn() ha reducido hasta un 80 % los periodos de inactividad del AP
(de ~560—600 ms a ~111-150 ms). Esta optimizacion resulta esencial para conseguir una
respuesta mas fluida en entornos Wi-Fi sensibles al tiempo y plantear nuevas lineas de

mejora.

Ademas de los logros técnicos alcanzados, es importante destacar que este trabajo
se ha desarrollado dentro de un proyecto de investigacion activo, en un entorno técnico
complejo que combina tecnologias de distintos niveles. Desde aspectos de alto nivel como
la contenerizacion de servicios, el despliegue de pods en Kubernetes o la coordinacion
entre nodos distribuidos, hasta componentes de bajo nivel como la programacion en C o
la modificacion directa de campos en las cabeceras de los paquetes de red, el sistema
requiere una comprension integral y detallada. Esta multidisciplinariedad ha supuesto un
esfuerzo afadido al trabajo realizado, que ha ido mucho mas alld de implementar
funcionalidades: ha exigido una integracion cuidadosa en un entorno previamente
disefiado, ya en funcionamiento y en evolucidn constante. Todo ello refuerza el valor del

resultado obtenido y sienta una base sélida para futuras mejoras.

87

5.2 LINEAS FUTURAS

A partir de los resultados obtenidos y los desafios identificados durante el desarrollo
de este trabajo, se proponen las siguientes lineas de investigacion para seguir mejorando

la funcionalidad y el rendimiento del entorno SDWLAN:

—Adaptacion dindmica del tamano del buffer del kernel:
Actualmente se utiliza un umbral fijo de 200 paquetes para el buffer del driver del kernel.
Sin embargo, la capacidad de monitorizacién puede variar segun la carga de tréfico, lo
que podria provocar bloqueos si el umbral es demasiado bajo o deteriorar el
funcionamiento del control de tasa si es demasiado alto, al permitir el envio de paquetes
con un MCS desactualizado. Como mejora futura, se plantea implementar un mecanismo
que ajuste dindmicamente el tamaino del buffer en tiempo real. Esto permitiria una mayor
flexibilidad y resiliencia del sistema frente a variaciones de carga y condiciones del canal,

mejorando la eficiencia en la transmision de paquetes.

—Minimizacion de las retransmisiones durante el handover:
Los experimentos han revelado que las STAs pueden presentar tiempos variables de
cambio de canal y periodos prolongados sin envio de ACKs, lo que afecta negativamente
al rendimiento y genera retransmisiones innecesarias. Se propone investigar las causas de
estos periodos de inactividad y disefiar soluciones que reduzcan su impacto. Una posible
solucion podria consistir en enviar periddicamente tramas ARP request dirigidas a la IP
de la STA en proceso de handover, utilizando una direccion MAC de destino broadcast.
Al recibir un ARP reply, se confirmaria que la STA ya esta activa, permitiendo mejorar

la eficiencia del proceso sin necesidad de provocar retransmisiones adicionales.

— Eliminacién de los tiempos de inactividad durante la monitorizacion previa al
handover:
En el disefo actual, cuando el punto de acceso cambia el canal de su interfaz auxiliar para
monitorizar a una STA que va a realizar un handover, se produce un periodo de
inactividad en el que el AP que monitoriza deja de transmitir. Aunque esta pausa ya se ha
reducido significativamente, sigue teniendo un impacto en el rendimiento del sistema.
Como linea futura, se plantea eliminar por completo estos tiempos de bloqueo mediante
técnicas de paralelizacion mas avanzadas con el objetivo de mantener la transmision

continua del AP sin interrupciones.
88

— Integracion de la clasificacion de trafico con el controlador SDN Ryu:
El marcado de trafico mediante DSCP se ha realizado en el router mientras,
paralelamente, se ha desarrollado el marcado de paquetes con Ryu. Una posible mejora
es integrar esta funcion en NeWLAN, lo que permitiria una gestion mas centralizada,
programable y dinamica de las politicas de QoS en funcién del estado de la red y de las

aplicaciones activas.

89

BIBLIOGRAFIA

[1] Manuel Rivas Morillo. “Implementacion de algoritmo de control de tasa y desarrollo

2]

del entorno experimental para su evaluacion”. Trabajo de Fin de Grado, Universidad

de Zaragoza, 2024.

Julia Santacruz Lacambra. “Despliegue de redes WLAN coordinadas basadas en
arquitecturas programables y virtualizadas”. Trabajo de Fin de Grado, Universidad

de Zaragoza, 2024.

[3] Sara Ibafiez Alloza. “Propuesta y desarrollo de mecanismos para el RAN Slicing en

[6]

redes WLAN 5G en entorno real experimental”. Trabajo de Fin de Grado,

Universidad de Zaragoza, 2024.

M. Canales, J. Santacruz, J. R. Géllego, J. Ruiz-Mas, A. Hernandez-Solana, J.
Navajas, y J. Ortin, “Leveraging Kubernetes for Automated Deployment and
Orchestration in Virtualized Wi-Fi Networks”, IEEE Transactions on Network and

Service Management. En revision (enviado el 6 de marzo de 2025).

L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao, “Towards
programmable enterprise WLANs with Odin,” in Proceedings of the First Workshop
on Hot Topics in Software Defined Networks, HotSDN ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 115-120. [Online]. Available:
https://doi.org/10. 1145/2342441.2342465

R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski, and T. Rasheed,
“Programming abstractions for software-defined wireless networks,” IEEE

Transactions on Network and Service Management, vol. 12, no. 2, pp. 146-162,
2015.

[7] E. Coronado, R. Riggio, J. Villalon, and A. Garrido, “Joint mobility management and

multicast rate adaptation in software-defined enterprise WLANs,” IEEE

Transactions on Network and Service Management, vol. 15, no. 2, pp. 625-637,
2018.

90

[8] E. Coronado, S. N. Khan, and R. Riggio, “5G-EmPOWER: A software-defined
networking platform for 5G radio access networks,” IEEE Transactions on Network
and Service Management, vol. 16, no. 2, pp. 715-728, 2019.

[9] A. Zubow, S. Zehl, and A. Wolisz, “BIGAP — Seamless handover in high-
performance enterprise IEEE 802.11 networks,” in NOMS 2016 — 2016 IEEE/IFIP
Network Operations and Management Symposium, 2016, pp. 445-453.

[10] J. Saldana, R. Munilla, S. Eryigit, O. Topal, J. Ruiz-Mas, J. Ferndndez-Navajas, and
L. Sequeira, “Unsticking the Wi-Fi client: Smarter decisions using a software-

defined wireless solution,” IEEE Access, vol. 6, pp. 30917-30931, 2018.

[11]J. Saldana, J. Ruiz-Mas, J. Fernandez-Navajas, J. L. S. Riafio, J.-P. Javaudin, J.-M.
Bonnamy, and M. Le Dizes, “Attention to Wi-Fi diversity: Resource management in

WLANs with heterogeneous APs,” IEEE Access, vol. 9, pp. 6961-6980, 2021.

[12] J. Lucas Vieira, D. Mosse, and D. Passos, “LEAF: Improving handoff flexibility of
IEEFE 802.11 networks with an SDN-based virtual access point framework,” IEEE
Transactions on Network and Service Management, vol. 21, no. 6, pp. 6630-6642,
2024.

[13] A. Hernandez-Solana, J. Ruiz, M. Canales, J. Fernandez-Navajas, J. Gallego, y S.
Ibaniez-Alloza, “Practical Challenges of Implementing Slicing in 5G SDN WLAN
Networks”, IEEE Transactions on Network and Service Management. Major

revision (enviado el 10 de enero de 2025).

91

ANEXO A — TABLA DE INFORMACION DE INDICES MCS

MCS Index - 802.11n and 802.11ac

Tabla 8. Informacion de indices MCS

20MHz
Data Rate Data Rate

HT VHT
MCS MCS Spatial
Index Index Streams Modulation Coding No SGI
0 0 1 BPSK 12 6.5
1 1 1 QPSK 12 13
2 2 1 QPSK 3/4 19:5
3 3 1 16-QAM 12 26
4 4 1 16-QAM 3/4 39
5 5 1 64-QAM 2/3 52
6 6 1 64-QAM 3/4 58.5
7 i 1 64-QAM 5/6 65
8 1 256-QAM 3/4 78
9 1 256-QAM 5/6 n/a
8 0 2 BPSK 12 13
9 1 2 QPSK 12 26
10 2 2 QPSK 3/4 39
" 3 2 16-QAM 1/2 52
12 4 2 16-QAM 3/4 78
13 5 2 64-QAM 2/3 104
14 6 2 64-QAM 3/4 17
15 7 2 64-QAM 5/6 130
8 2 256-QAM 3/4 156
9 2 256-QAM 5/6 n/a
16 0 3 BPSK 172 19.5
17 1 3 QPSK 172 39
18 2 3 QPSK 3/4 58.5
19 3 3 16-QAM 172 78
20 4 3 16-QAM 3/4 117
21 5 3 64-QAM 2/3 156
22 6 3 64-QAM 3/4 175.5
23 7 3 64-QAM 5/6 195
8 3 256-QAM 3/4 234
9 3 256-QAM 5/6 260

SGI

7.2
14.4
21.7
28.9
433
57.8

65
72.2
86.7

n/a

14.4
28.9
43.3
57.8
86.7
115.6
130.3
144.4
173.3

n/a

21.7
433
65
86.7
130
1733
195
216.7
260
288.9

40MHz

Data Rate
No SGI

13:5
27
40.5
54
81
108
121.5
135
162
180

27
54
81
108
162
216
243
270
324
360

40.5
81
121.5
162
243
324
364.5
405
486
540

Data Rate
SGI
15
30
45
60
90
120
135
150
180
200

30
60
90
120
180
240
270
300
360
400

45
90
135
180
270
360
405
450
540
600

80MHz

Data Rate Data Rate

No SGlI

29.3
58.5
87.8
117
175.5
234
263.3
292.5
351
390

58.5
117

175.5
234

468
526.5
585
702
780

87.8
175.5
263.3

351
526.5

702

877.5
1053
1170

SGI

325
65
975
130
195
260
2925
325
390
4333

65
130
195
260
390
520
585
650
780

866.7

97.5
195
292.5
390
585
780

975
1170
1300

802.11n 802.11ac

160MHz
Data Rate Data Rate

No SGlI

780

117
234
351

702
936
1053
1170
1404
1560

175.5
351
526.5
702
1053
1404
1579.5
1755
2106
n/a

SGI

130
195
260
390
520
585
650
780
866.7

130
260
390
520
780
1040
1170
1300
1560
1733.3

195
390
585
780
1170
1560
1755
1950
2340
n/a

92

ANEXO B - PSEUDOCODIGO DE ALGORITMOS ADWRR

A continuacion, se presenta el pseudocodigo que muestra el funcionamiento de los

algoritmos s/icing en este trabajo. Se muestran el proceso de encolado y desencolado, el

algoritmo ADWRR inter-slice e intra-slice y los distintos algoritmos de redistribucion de

airtime (igual ratio de satisfaccion y preferencia al indice menor).

Los algoritmos han sido extraidos de [3], donde se explica el desarrollo de estos en

el entorno experimental /nymon.

Algoritmo 1 Proceso de encolado

LoD R

D> Ghead: Paquete en la cabeza de la cola
> qtq41: paquete al final de la cola
D> @size: tamano de la cola

Se guardan todos los valores necesarios relativos al paquete en la variable nodo
if g1.aqd == NULL then > Sila cola esta vacia el nuevo paquete es el Uinico
Qhead ~ nodo
Gtail = nodo
else > Si ya habia paquetes, se afiade al final de la cola
Qtail— > next =nodo
tail = nodo
end if
Qsize T= 1

Algoritmo 2 Proceso de desencolado

R AR Ul S

> qhead: Paquete en la cabeza de la cola
> qiq41: paquete al final de la cola

> @size: tamano de la cola

> nodo: paquete desencolado

nodo = qreqq > Se guarda el paquete a desencolar en una variable

if gread = Qtai; then > Si solo hay un paquete en la cola, se vacia
Ghead = NULL
Qtail = NULL

else > Siya hay mas de un paquete, actualiza el que estd en cabeza
Qhead = Qhead — > next

end if

Qsize == 1

return nodo

93

Tabla 9. Variables ADWRR

Variable

Descripcion

airtime[s, i

Airtime (tiempo de vuelo) estimado del primer paquete de la cola ¢ del slice s (sin re-
transmisiones)

Q[s] Quantum del slice s (configurado por el controlador)

W[s, z] Peso de la cola 7 del slice s (W), configurado por el controlador)
De ficit[s] Déficit del slice s

Deficit[s, i Déficit de la cola i del slice s

De ficitetrics|s] Déficit acumulado del slice s debido a las retransmisiones

D(jfZ.CZ.tretTies [S! 7’}

Déficit acumulado de la cola ¢ del slice s debido a las retransmisiones

Nsli(‘es

Numero de slices

Nqueue [9}

Numero de colas del slice s

Algoritmo 3 Inter-slice scheduling ADRR

l:

2

3:

9:
10:

11

> Actualiza el déficit con el quantum y el déficit del slice s debido a las retransmisiones anteriores. Deficit
Deficit[s] += Q|s| - Deficit etries|s]

Mientras la ocupacion fisica del buffer del driver sea el umbral, espera

#Actualiza el déficit del slice s si tiene paquetes que enviar
if Slice[s|.empty == false then > Las colas de s tienen paquetes

siempre es > 0

retries

#Envia los paquetes del slice mientras Deficit/s/>0 y haya paquetes con airtime mas pequeiio que su Deficit(s/

ALGORITMO INTRA-SLICE para servir las colas (Alg. 46 8)

s=0
: loop every
Deficitretries[s] =0

end if
#Continia con el siguiente slice
if s < (Ngjjces - 1) then s++
else s=0

: end loop

94

Algoritmo 4 Algoritmo Intra-Slice para servir las colas del slice. Opcion ADRR

—

12:
13:

14:
15:

40:
41:

AN

#Suma el déficit de todas las colas del slice s

: wQuaueI\roEnvpLy [S] - Zv-g(_‘,,wwe.‘, T'V[S, 2]

: for cada cola i no vacia del slice s do

Qls,i] = (Ws, il /wguene NoEmpty) * Q8]
Deficit[s,i] += Q[s,i] — De ficityeirics|s:i]
Deficitrerpies[s,i] =0

. end for

#Proceso de desencolado

t Gini = Slice[s].Queue_indexr > Guarda el indice inicial de la cola para continuar la ronda

L= Ginid

. while De ficit[s] > 0 do

while Deficit[s,i] > 0 and Queue[s, i|.empty == false do
Mientras la ocupacion fisica del buffer del driver sea el umbral, espera

#0pcion de no agregacion de paquetes

1> Calcula el airtime del primer paquete de Queuefs,if
airtime[s, i) = Queue[s, i].airtime(head packet)
npAggr =1

#0pcion de agregacion de paquetes

> Calcula el nimero de paquetes que pueden ser agregados (npAggr) basado en el Deficit/s,i], el maximo nimero de la agregacion
y el nimero de paquetes de la cola (A-MSDU)

npAggr = Queue(s, i|. MaxAggregationAllowed(De ficit[s, i)

airtimel[s, i| = Queue[s, i].airtime(npAggr)

if airtime(s, i < Deficit]s, i] then

> Desencola el paquete de la cabeza (A-MSDU) de la cola i (uno o més si pueden ser agregados) del slice s
Queue(s, i].dequeue(npAggr)

Construye la trama agregada con los paquetes desencolados

Send(frame)

De fieit|s] -= airtime]s, 1]

De ficit[s, i] -= airtime|s, |

if Queue[s, i|.empty == true then
> El iltimo paquete de la cola / ha sido enviado. Su déficit es redistribuido proporcionalmente entre las colas activas
basado en su quantum
wWQueueNoBmpty|s] = 3 vic s Wls. 1]
for cada cola j no vacia del slice s do
| Deficitls, jl+=(W s,]/ Wquewe NoEmpty [8])* De ficit[s, i]
end for
Defieit[s,i] =0
break > Siguiente cola
end if
else break © Siguiente cola
end if
end while

#Contintia con la siguiente cola del slice s
if i <(Ngueues[s] - 1) then i++
elser =0
end if
if i == g;,,; then
Slice[s].Queue_index =i
break > Siguiente slice
end if

if Slice[s].empty == true then Deficit[s] =0 Siguiente slice
end while

95

REDISTRIBUCION INTRA-SLICE

Tabla 10. Variables de la redistribucion Intra-Slice

Variable

Descripcion

T

Intervalo de actualizacion

airtimer|[s, i

Airtime estimada de todos los paquetes servidos por la cola 7 del slice s en el intervalo 7',
donde 7n,esries €8 €l nGmero de retransmisiones.
Y ovker (1+ Rretries[s, i, k] - airtimels, i, k])

Airtime estimado de todas las colas del slice s.

2t L .
airlimer|s] Y vies airtimen|s, i]
. Airtime estimado para todas los slices.
arrtimer .
D s airtimer|s]
MBR|s, 1] Tasa Maxima de Bits (Maximum Bit Rate) de la cola i del slice s.

Rdemanded [37 Z]

Tasa de datos en bps a transmitir de la cola 4.

Rachieved [S> Z]

Tasa de datos efectiva en bps (nivel IP) de la cola 7.

Sunsatisfied [3]

Grupo de colas insatisfechas del slice s.

Sunderutilized|s] | Grupo de colas del slice s que tienen pesos para ceder.
Whoml$,] Peso nominal de la cola ¢ del slice s (configurado por el controlador).
Peso usado por la cola i del slice s en el intervalo T'.
Whoml$,] por defecto.
Wis, 1] Wiom[8,%] - Weedea]$, ¢] sila cola ¢ da peso a otras colas insatisfechas del mismo slice slice
S.
Whoml8; 1] + Wadded|5, 7] si 1a cola 7 recibe peso de colas satisfechas del mismo slice s.
Suma de los pesos de las colas del slice s. Esto se mantiene constante en todos los intervalos
Wiotal[s] de tiempo.

ZViEs Wnom [3, f’]

chded [51 ia J]

Peso cedido por la cola 7 a la cola j del slice s. Tiene el mismo valor que Wa4edls, 7, 7]

chded [31 Z]

Peso total cedido por la cola ¢ del slice s.
ZV;}ES chded[& Z,]]

unsatisfied[s]

Wadded[se 1, .7]

Peso recibido por la cola 7 de la cola 7 del slice s. Mismo valor que W egeqls, 7,]

Peso total recibido por la cola ¢ del slice s.

Wadded|$, i C
oo [} Zvjesunderutﬂized{s] Wadded[s’) '7]
wer sl Peso extra esperado de la cola i para ser cedido.
Wneed [4] Peso requerido por la cola i del slice s para estar satisfecha.
Wis,i] Porcentaje de airtime esperado (en el AP) usado por la cola i del slice s respecto a la asig-
Wiotats] nacion de su slice.
Grado de satisfaccion (Degree of Satisfaction) de la cola ¢ del slice s (0=totalmente insatis-
fecho, 1=totalmente satisfecho).
DS[S, 2] Ru_chiﬂved [S: ﬂ/Rdemanded [3) i] si
Riemanded [3, 3] < MBR[S, %]
Rochicved(s,i)/MBR[s,] si Riemanded|s,] > MBR([s,i]
IDSewP]s, i El incremento de DS[s, 7] de la cola ¢ del slice s esperado para el incremento de una unidad

de peso.

96

Algoritmo 5 Redistribucion Intra-Slice del quantum no usado

#1dentificar colas insatisfechas del slice s
> DS[s, i]: Grado de satisfaccion de la cola ¢ del slice s
> IDS®P[s,]: El aumento de DS esperado para el incremento de una unidad de peso

1: for cada cola i € slice s do

2 DS[S’Z] =max(1§;emandedig‘;],ﬁ ‘IVI‘B}i[‘Sli"]g!z)

3| if DS[s,i] <1 then

4: | Afiade i al grupo de Sy, pnsatis fiea]s] ¥ guarda el par (W s, i], DS[s, 1))
5 end if

6: IDSe*P(s, 4] = DS[s,1]/W](s,]

7: ds[s,i| = DS[s,i] > Variable que guarda la tasa de satisfaccion esperada
8: end for

#Estima DS si el peso fuera el nominal
> Sceded|s, 1]: grupo de colas que han cedido recursos alacolai € s
> Weeded(3: %,] = Waddedl$, 7, 7]: recursos cedidos por lacolaialaj € s
> Wadded [59 Z] = E‘V‘jesceded[ssi] chded[sa ja ""]
> W[S, 7'] =Whnom [5) 2] + Wadded[sa ""} - chded[sa 7']
9: for cada cola i € slice s cuyo W s, i] > Whnom|s,] do

10: for cada cola j € Scededls, 1] do

11: W[51J] += Wcﬂded[51j9 ""]

12: ds[s,] = min(ds[s, j] + IDS®®P[s, §1*W eded[s, 7, %), 1)
13: W[Své] - Wadded[svéwj]

14: ds[s, 7] = max(ds[s, 7] - IDS*P[s, i|*W,aded[s, 1, 7], 0)
15: end for

16: if ds[s,] < 1 then Afiade la cola i al grupo Synsatis fied[s]
17: else Elimina a la cola ¢ del grupo Synsatis fied[s]

18: end for

> Los pesos han sido reseteados, por lo que W /[s,i] = Whom/[s,i] Vi € s
Weedeals,ijl=Waddedls5i]=Weededls,i1=Wadded/s,i] =0 Vi, j € s

#Identificar colas infrautilizadas del slice s

> excess|s, i]: porcentaje de la porcion de recursos que tedricamente corresponden a la cola ¢ y no estdn ocupados

19: for cada cola i & Synsatis fiea[s] do
20: excess|s, i]=(Wisii] airtimeﬂs'i]) /(Lo,)

Wiotat|s] airiimer[s] Wiotatls]
21: | if excess[s,i] > « then
22 Afiade a la cola i al grupo Sy derutitized|S]
23: WSorP s, i] = (excess[s, i]-a)*Ws,i] > Peso extra para ceder
24: end if
25: end for

#0pcion Redistribuir pesos para conseguir una tasa de satisfaccién similar

26 Weeded = ZV%‘ES W::id [Sa 3]

underutilized[s]

> Distribuir weeqeq entre las colas € Synsatis fied(s]
27| while weeqeq > 0 do
28: Encuentra lacola j € Sy, psatisfied[s] con menor ds[s, j]

29: Encuentra la cola ¢ € Sunderutitized|[s] con mayor Wit [s,i]

30 | if [Whom[s, 4] * 8] < weeded then step = [Waom[s, i] * 8]

31: else step = Weeded

32 Weeded — Step

33: W s, i] = step

34 Weededls, t] += step and Weegedls, '51.7] += step
35: Wadded[sa .7}+= step and Waa‘.ded[S: Js 7’] += step

36: W(s,i] = step

37 W (s, j] += step

38: ds[s, j] +=I1DS**P|s, j] * step

39; if ds[s, j] > 1 then Elimina la cola j del grupo Sy, sqtisficdlS)

40; if Sunsatisfied [5] = (then

41: if Rgemanded(s,J] > M BR|[s, j] para alguna j then

42, Redefine Synsatisfied[s] €0n Riemanded real (repite lineas 1-7)
43; if Sunsatisfied[s] sigue vacio then Salir de while

44: end if

45: end if

46:| end while

97

47
48:
49

501
51:

52

53
54
55:

56:
57:
58:
59
60:
61:
62:
63:
64

65:
66:
67
68;

70:
71
72

#0pcion Redistribuye el peso siguiendo una prioridad
Calcula el W requerido por cada cola j para estar satisfecha W;‘;;jd [s, 4]

for cada cola i € Sy, pderutilized|s] ordenada de forma descendiente segin su WP [s, 4] do

while WP [s,4] > 0 do
Tterar las colas del grupo Synsatis fied[s] €n orden de prioridad
it Wrsed [s,j] > W7, s,] then

Wieed (s, 4] = Wit als, il
w =W ideals: il

else

Wrssdils,j]=0

w=Wigshle.d

end if

Wihals, i =w

Weeded[S, 1] += w and W_egedls, i, 7] =w

Wadded[$, 5] += w and Wygdedls, J, 1] =w

Wis, 1] =w

Wis,j]+=w

ds[s, j] +=1DS8**P[s, j] * w

if ds[s, j] > 1 then Elimina la cola j del grupo Synsatisfied|[s]

if Sunsatisfied [s] = 0 then
if Riemandedls, j] > MBR[s,] para alguna j then
Redefine Sy psatis fied[s] con el valor real Ryemanded (tepite lineas 1-7)
if Sunsatisficdls) sigue vacio then Salir de while
end if
end if
end while
end for

98

REDISTRIBUCION INTER-SLICE

Tabla 11. Variables de la redistribucion Inter-Slice

Variable

Descripcion

MBR]s]

Méxima Tasa de Bit (Maximum Bit Rate) del slice s

Rdemanded [5}

Tasa de datos en bps a transmitir del slice s

Rachicvcd [5]

Tasa de datos efectiva en bps (nivel IP) del slice s

Sunsatis fied Grupo de slices insatisfechos
Sunderutilized | Grupo de slices que tienen pesos para ceder
Quantum usado por el slice s en el intervalo T', @,0m [s] por defecto.
Qls] Qrom|8] = Qeededls] si ¢l slice s reduce su quantum para darselo a otros slices que estan
insatisfechos.
Qrom[s] + Qudded[s] si el slice s recibe quantum cedido por una o mas slices satisfechas.
Qroms] Quantum nominal del slice s (configurado por el controlador)
0 Suma el quantum de los slices. El valor se mantiene constante en todos los intervalos de tiempo
total zvs Qnom[s}
Qcededls, 7] Quantum cedido por el slice s al slice j. Mismo valor que QaddealJ, 3]
Qeodeds] Quantum total cedido por el slice ¢
- ZVjGSunsuﬁs fied Qeeded|s, 1]
QIh ls] Quantum extra esperado del slice spara ser cedido
Qadded[S,] Quantum recibido por el slice s del slice j. Mismo valor que Qceded[J, 5]
0 5] Quantum total que ha recibido el slice s
dded .
o Zvjesunderutili ed Qaddﬁd[s"j]
need [s] Quantum requerido por el slice s para estar satisfecho
% Porcentaje de airtime (en el AP) que se espera que use el slice s respecto al uso total
Grado de satisfaccion del slice s (O=totalmente insatisfecho, 1=totalmente satisfecho)
DS[S] Rachv}eved [S]/Rdemanded['s} if Rdemanded[s] < MBR[S]
Rachicved [S]/MBR[S} if Rgemanded [S] > MBR[.S‘]
IDSe*P[g] Incremento de DS[s] esperado para un incremento en una unidad de quantum

99

Algoritmo 6 Inter-Slice Redistribucion del quantum no usado

14:
15:

17:
18:

19:
20:

21:
22

23:

24
25:

26

27
28:

29

30:
31

33

34
35
36:
37
38
39:

40:
41:
42:
43:
44;
45:
46:

el AR

#ldentificar slices insatisfechos
> D.S[s]: Grado de satisfaccion del slice s
> I DS**P[s]: El incremento del DS esperado por el incremento de una unidad de quantum

: for cada slice s do

o R i s] R ; E]
DS|s] = max(g achicsedls, Raghicuedlcl)

if DS[s] < 1 then

I Afladir slice s al grupo S’u.nsa.tisfi,ed y guardar par (Q[S], DS[S])
end if

IDS*P[s] = DS[s]/Qls]

ds[s]=DS[s] b Variable para guardar la tasa de satisfaccion esperada

: end for

#Estimar DS si el quantum es el nominal

> Scedea|s]: grupo de slices que han cedido recursos al slice s

> Qceded|[S; 7] = Qadded|ds 8] recursos cedidos por el slice s to j
> Qadded[‘s] = Zv_jes‘ceded[s] chded[jy 5]

> Q5] = Qnom[s] + Qaddeals] - Qeeded|s]

: for cada slice s cuyo Q[s] > Qrom/[s] do
10:
11:
12:

for cada slice j € Siegded[s] do
Q[J] += chded [js S]
ds[j] = min(ds[j] + IDS**P[j]*Qcedeals,], 1)
Qls] = Qaddedls, J]
ds[s] = max(ds[s] - IDS**P[s]*Quddeals, 7], O)
end for
if ds[s] < 1 then Afiade el slice s al grupo Synsatisfied
else Elimina al slice s del grupo Sunsatisfied
end for
& Los valores de quantum han sido reseteados, Q[s] = Qnom[s] Vs
chded[ss J] = Qadded[sr J] = Qceded [S] = Qadded [S] =0Vs,j

#ldentificar slices infrautilizados

> excess[s]: porcentaje de la porcion de recursos que tedricamente corresponden al slice s y no estin ocupados

for each slice s & Synsatisfica 40
eacess]s] - (el — wirtimerlel) / (alel)
if excess[s] > a then

Afiade el slice s al grupo Sunderutilized

QP sl = (ewcess[s]-a)*Q[s] > Peso extra para ceder
end if

end for

#Opcion Resdistribuir quantums para conseguir una tasa de satisfaccién similar

Qeeded = ZVSES Qz:ged [8]

underutilized

&> Distribute geegeq among slices € Sypsatis fied
while geegeq > 0 do
Find slice j € Sunsatisfieqd With lower ds|;]

Find s € Sunderutilized With the highest Q°o% [s]

if [Qnom[s] * 8] < qeeded then step = [Qnom|s] * 8]
else step = qgceded

Geeded —— Step

Qcedeals] = step

chded [3] += step and chded [3, J} += step
Qaddedli|+= step and Quddeald, s] += step

Q[s] = step

Q[j] += step

ds[j] += IDS*P[j] * step

if ds[j] > 1 then Remove j to Sunsatisfied Sroup

if Su.nsafisfied = () then
if Rgemanded|i] > M BR|[j] para alguna j then
Redefine Synsatisfied With real Rgemanded (repite lineas 1-7)
if Syunsatisfied still empty then Exit while
end if
end if
End while

100

47:

48:
49:;

50:
51:

52:
53:

55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

65:
66:
67:
68:
69:
70:
71:
72:

#0pcion Redistribuye quantum siguiendo una prioridad

- . . . d
Calcula el Q requerido por cada slice j para estar satisfecho Q755%

for cada slice s € Syunderutilized Ordenado de forma descendiente segin su Q2% . [s] do

]

while Q575 [s] > 0 do
Itera los slices del grupo Sy nsatisfied e orden de prioridad
if Q15524 > Qroh,qls] then
d
Zﬁfsed (1] = QCegeals]
ceded
else
Qﬁééﬁd] =
Qrddea D]
end lf
Qieheals] =4
chded[s] +=q and chded[sij] =q
Qaddedld] +=q and Qqadedld,] =q
Qlsl=q
Qlil+=4q
ds[j] +=1DS*"P[s, j] * ¢
if ds[j] > 1 then Elimina j del grupo Synsatis fied
if Sunsa,tésfied ={) then
if Rycmanded [.7] > MBR[J] para alguna j then
Redefine Synsatisfied €ON €l Rgemanded 1€al (repite lineas 1-7)
if Synsatisfied sigue vacio then Salir de while
end if
end if
end while
end for

101

