s Universidad
A0i  Zaragoza

1474

Trabajo Fin de Grado

Aplicacidon de técnicas de Inteligencia Artificial para
optimizar la generacion de requisitos en el desarrollo de
software

Application of Artificial Intelligence techniques to
optimize requirements generation in software
development

Autora

Elizabeth Lilai Naranjo Ventura

Directores

José Javier Merseguer Hernaiz
Jorge Raul Bernad Lusilla

Grado en Ingenieria Informatica

ESCUELA DE INGENIERIA Y ARQUITECTURA
2025



AGRADECIMIENTOS

Quiero expresar mi mas sincero agradecimiento, en primer lugar, a mis tutores
José Merseguer y Jordi Bernad, por su guia constante, sus valiosos consejos y su
confianza en mi durante este proyecto.

Asimismo, agradezco a Gregorio de Miguel por su participacion en el
formulario de validacién y por permitirnos emplear los enunciados de sus
examenes y practicas para el desarrollo de este trabajo. Y agradezco a Javier
Nogueras también por completar el formulario.

Finalmente, mi gratitud mas profunda a mi familia, pareja y amigos por su
paciencia, comprension y animo incondicional, que me han acompafiado en cada
paso del camino.



Aplicacion de técnicas de Inteligencia Artificial
para optimizar la generacion de requisitos en el
desarrollo de software

RESUMEN

La calidad de los requisitos en el desarrollo de software es un factor critico que influye
directamente en el éxito o fracaso de los proyectos, pero su redaccion manual conlleva
numerosos riesgos como ambigledades, omisiones y errores humanos. Este Trabajo Fin de
Grado explora el uso de técnicas de Inteligencia Artificial, y en particular de modelos de
lenguaje de gran escala (LLMs), para asistir y automatizar la generacidn de requisitos a
partir de descripciones en lenguaje natural de sistemas software.

Para ello, se ha llevado a cabo una comparacidon entre distintos modelos de lenguaje,
incluyendo modelos de propdsito general como ChatGPT y DeepSeek, y modelos de cddigo
abierto como LLaMA y Mistral. Sobre estos ultimos, se ha aplicado fine-tuning mediante
adaptadores LoRA vy cuantizacion en 4 bits utilizando el dataset DaReC, especializado en
requisitos de software. Asimismo, se ha disefiado una metodologia de evaluacidon subjetiva
basada en un formulario que analiza dimensiones como claridad, correccion gramatical,
consistencia, cobertura, nivel de detalle y diferenciacion entre requisitos funcionales y no
funcionales.

Los resultados muestran que, si bien modelos generalistas como ChatGPT ofrecen una
calidad elevada desde el inicio, los modelos entrenados especificamente para esta tarea,
como Mistral tras el fine-tuning, logran mejorar la estructura y el nivel de detalle de sus
salidas. Sin embargo, aun persisten limitaciones como la cobertura y la redaccion técnica
formal. Por otro lado, el analisis de acuerdo entre anotadores mediante el alfa de
Krippendorff y el coeficiente de Spearman reveld un bajo nivel de consistencia, lo que pone
de manifiesto la complejidad inherente a la evaluacidon subjetiva en este tipo de tareas.

En conclusion, este trabajo demuestra el potencial de los LLMs como herramientas de
apoyo en el desarrollo del software, especialmente cuando se adaptan al dominio
especifico. A pesar de las limitaciones detectadas, los resultados obtenidos evidencian el
potencial de una linea de trabajo que podria contribuir a reducir errores humanos, mejorar la
calidad de los requisitos y aumentar la eficiencia del ciclo de vida del software desde sus
primeras etapas.



Application of Artificial Intelligence techniques to
optimize requirements generation in software
development

ABSTRACT

The quality of requirements in software development is a critical factor that directly
influences project success or failure. However, their manual specification entails numerous
risks, such as ambiguities, omissions, and human errors. This Bachelor’s Thesis explores the
use of Artificial Intelligence techniques, particularly large language models (LLMs), to
support and automate the generation of requirements from natural language descriptions
of software systems.

To this end, a comparative analysis was carried out between different LLMs, including
general-purpose models such as ChatGPT and DeepSeek, as well as open-source models
such as LLaMA and Mistral. Fine-tuning was applied to the latter using LoRA adapters and
4-bit quantization on the DaReC dataset, which is specialized in software requirements.
Additionally, a subjective evaluation methodology was designed through a questionnaire
assessing dimensions such as clarity, grammatical correctness, consistency, coverage, level
of detail, and the distinction between functional and non-functional requirements.

The results show that while general-purpose models like ChatGPT offer high-quality
outputs from the outset, models specifically fine-tuned for this task, such as Mistral,
demonstrated improvements in structure and level of detail. Nevertheless, limitations
remain in terms of coverage and formal technical phrasing. Furthermore, the analysis of
inter-annotator agreement using Krippendorff's alpha and Spearman’s rank correlation
coefficient revealed a low level of consistency, highlighting the inherent complexity of
subjective evaluation in this context.

In conclusion, this work demonstrates the potential of LLMs as support tools in software
engineering, especially when adapted to domain-specific tasks. Despite current limitations,
the findings indicate a promising research direction that could help reduce human errors,
enhance requirement quality, and increase development lifecycle efficiency from the earliest
stages.



Tabla de contenidos

1. INErOAUCCION....cceeeeieiccncrrersiettecesasasasassss st sstse e s s asasassssssssasssssssassssssssssssssssassessnsassssssssssasans 6
1.1, CoONtEXLO Y MOLIVACION...cuivviiiececeeeecece ettt sttt as st a s b s s sas s senas 6
1.2. Planteamiento del problema...... ettt 7
1.3, OJELIVOS. ottt sttt sttt s et s st e a ettt n e et s senananans 7
1.4, FASES AL PrOYECEO. ..ottt ettt et s st as b be s s besensanenas 8
1.5, Estructura de 1@ MEemMOKia......ccicrcciceciec et 8

2. Estado del arte y fuNdamentos tEOIICOS. ......cuueerereerreeerereerennesesesseseesessessesessessssessesssessesenes 10
2.1. La ingenieria de requisitos en el desarrollo de software..........cccoceeecreecreeccrceeereeree. 10
2.2. Procesamiento del lenguaje natural y su aplicacion a la ingenieria de requisitos.....10
2.3. Modelos de lenguaje de gran escala (LLMS) ... 12
2.4, ArquUItECtUIra TranSTOIMET ... ..ottt ettt ettt aeaean 12
2.5. TECNICAS A€ GJUSEE FINO...uoeiereiicecteeeeete ettt ettt st s st s sssanaes 13
2.6. Métodos de evaluacion de salidas generadas..........cccueeveeeicveecveeeeseseee e 14

3. Metodologia € iIMPLlEmMENtACION.........cccrericerirecenecctnreeseenesesessesessesesssssesessessssssssesssssssssssssasans 15
3.1. DiSENO B PrOMPLS...cuiieiieiirieieiieerieietsiesestessasssas et sssesss et sssssssssssssssssssssesessssssssessssssssssesesssssnss 15
3.2. FUENTES AE dATOS.....oiii et 15
3.3. Conjunto de datos (AAtASEL)......c ettt ettt 16
3.4. Modelos de lenguaje ULILIZAdos.. ...ttt s s ssssassens 18
3.5. Entrenamiento (fINE-TUNING) ..ottt ettt 18
30, INFEIENCIA. .. ettt 20
3.7 ValICION ... ettt 22

T TV =T [ T 24
4.1. Resultados de los Modelos SiN @JUSTar.......c..ieceieeceee et 24
4.2. Resultados tras fiN@-tUNING ...ttt ettt asasseaes 26
4.3. Resultados del formulario de validacion..........cc.ccrrinineineineinee e eaeees 28

5. DiSCUSION Y CONCLUSIONES.......cuceeeeeeereeetererecteseeseeseseesesseseesessessssessssessesssssssessessssessesssessesesensssens 32



5.1. Interpretacion de reSULLAAOS. ...ttt naesenans 32

5.2. LImitaciones del @STUIO. ...t 33
5.3. Impacto en la reduccidn de errores y ambigliedades...........ceeeveeeeeereeeereeeeneenens 34
5.4. Cumplimiento de ObJELIVOS......ccccceeee et ee 35
5.5. Lineas de investigacion y Mejoras fUtUras........c.ceeiereeeeieineeesesisssess s sesssssesansans 35
BIbLIOGrafia......cucvceeeeeerenreerenriesesseestsseestesesessssesessssesessssesesssssssssssssssssssssssssesessssessssssesessssessssssenssseseses 38
ACTONIMOS......ccucuinininrunisiiittscessssssassssssssstsssse s s ssasasssssesesassessssssassssssssesesassssesssssssssssssessassssesssssssses 42
indice de FIGUIAS .. eeeeeceecrteectecseee st e sseeesaeesseesseeesaessssessssesssessessssassssessasesssessasessssessssssasesssassseens 43
INAICE A tABLAS....vecrvveerrreereseeesssensssessssassssssssssasssssssssssesssesesssasesssasesssasesssasesssassssssssssasessassssssenes 44
Anexo A. Prompts utilizados para la generacién automatica de requisitos........cccceceeveunene 46
ANexo B. Métodos de ValUACiON.........ccccceeeererurrrneccceesesaseseeeeesassessassssesesssssssssssasasasnenes 49
Anexo C. Detalle de los modelos de lenguaje utilizados.........ccceveerererervererercecreennerseereeeeenes 52



Capitulo 1

Introduccion

Este capitulo contextualiza el trabajo realizado, destacando la relevancia de la
Inteligencia Artificial (IA), y en particular de las técnicas de Procesamiento del Lenguaje
Natural (NLP, por sus siglas en inglés) [1], en el ambito de la ingenieria de requisitos [2]. Se
plantea el problema abordado, motivado por las limitaciones de los métodos tradicionales
en la generacidon de requisitos de software y, a continuacion, se presentan los objetivos
principales del proyecto, las fases en las que se ha estructurado el trabajo y la organizacién
general del documento.

1.1. Contexto y motivacion

La fase de definicidn y analisis de requisitos es una de las mas criticas en el desarrollo de
software, ya que establece las bases sobre las que se construird el sistema final. Una
especificacion incorrecta, deficiente o ambigua de los requisitos de un sistema puede
derivar en errores costosos, malentendidos entre los implicados, o incluso en la
insatisfaccion del cliente con el producto entregado. La calidad de los requisitos impacta
directamente en el éxito de un proyecto de software [2].

Un ejemplo paradigmatico de las consecuencias que puede acarrear una mala
especificacion es el fallo del cohete Ariane 5 en 1996 [3]. La misién fue abortada apenas 40
segundos después del despegue debido a un error en el software de navegacion,
provocado por una conversion de datos incorrecta no contemplada adecuadamente en los
requisitos del sistema. El resultado fue la destruccion del vehiculo y la pérdida de
aproximadamente 370 millones de dédlares. Este incidente ilustra la importancia critica de
unos requisitos precisos, completos vy verificables.

Tradicionalmente, los requisitos se han obtenido mediante entrevistas, analisis de
documentacidn, talleres y otras técnicas manuales que dependen en gran medida de la
experiencia y habilidad del analista. Estas técnicas, aunque ampliamente utilizadas, estan
sujetas a errores humanos, omisiones y ambigledades inherentes al lenguaje natural [4, 5].

Con la aparicion de técnicas avanzadas de NLP y el auge de los modelos de lenguaje de
gran tamano (Large Language Models, LLMs) [6], se abren nuevas oportunidades para
automatizar tareas que antes requerian intervencién humana intensiva, como la generacién
de requisitos. En este marco, el presente trabajo se plantea como una oportunidad para
explorar el uso de modelos de lenguaje en la automatizacion del proceso de generacion de
requisitos, con el objetivo de aumentar la eficiencia, reducir los errores inherentes a los
enfoques tradicionales y mejorar la calidad de los requisitos generados, lo que deberia
optimizar el desarrollo del software desde sus etapas iniciales.



1.2. Planteamiento del problema

A pesar del avance en metodologias y herramientas para el desarrollo de software, la
elicitaciéon y especificacion de requisitos continla dependiendo en gran medida de la
intervencion humana, por lo que sigue siendo propenso a errores humanos, ambigiedades
y malentendidos que, si no se detectan a tiempo, pueden propagarse al resto del ciclo de
vida del software, provocando fallos funcionales, sobrecostes o retrasos.

Ademas, aunque existen modelos de lenguaje entrenados sobre grandes corpus de
texto, su rendimiento en tareas especializadas como la generacion de requisitos formales o
semiformales aun presenta limitaciones. Estos modelos pueden generar resultados
gramaticalmente correctos pero semanticamente inadecuados, o bien no adaptarse con
suficiente precisién a los formatos y estilos requeridos en documentos de ingenieria de
requisitos debido a que no estan especificamente optimizados para este dominio.

Por tanto, el problema que se aborda en este trabajo es la mejora del proceso de
generacion de requisitos mediante técnicas automadticas que reduzcan la intervencion
humana y la necesidad de evaluar y ajustar los modelos de NLP existentes para que se
adapten eficazmente a este dominio tan especifico.

1.3. Objetivos

El principal objetivo de este Trabajo Fin de Grado (TFG) es investigar y aplicar técnicas
de IA, concretamente del ambito del NLP, con el fin de optimizar la generacidon de requisitos
en el desarrollo de software. La idea central consiste en explorar el potencial de los LLMs
para asistir e incluso automatizar el proceso de redaccidon de requisitos, tradicionalmente
realizado de forma manual por analistas humanos.

Con este marco general, se plantean los siguientes objetivos especificos:

- Explorar distintos modelos de lenguaje preentrenados (como GPT [7], LLaMA [8],
DeepSeek [9], entre otros) para evaluar su capacidad de generar requisitos de
software a partir de descripciones en lenguaje natural o escenarios funcionales.

- Implementar una metodologia de evaluacion comparativa, en la que se midan
diversos aspectos de la calidad de los requisitos generados, tales como su
coherencia, completitud, correccion linglistica vy utilidad practica para
desarrolladores y analistas.

- Aplicar técnicas de ajuste fino (fine-tuning) y adaptacion de modelos, como LoRA
(Low-Rank Adaptation) [10], con el objetivo de especializar los modelos en el
dominio de la ingenieria de requisitos, mejorando asi su rendimiento especifico en
esta tarea.

- Realizar experimentos con diferentes configuraciones, incluyendo ajustes de
hiperparametros y distintas variantes de entrada, para determinar qué
combinaciones ofrecen los mejores resultados segun los criterios de evaluacion
definidos.



Reflexionar sobre la utilidad real de los modelos de lenguaje en este contexto y
proponer recomendaciones para su uso practico, asi como posibles mejoras o lineas
futuras de trabajo.

1.4. Fases del proyecto

El desarrollo del trabajo se ha dividido en las siguientes fases, cada una con una
duracion y objetivos definidos:

1.5.

Fase 1 — Formacién en modelos de lenguaje y NLP (1 mes)

Fase 2 — Preparacion del dataset y experimentacion inicial (2 semanas)

Fase 3 — Seleccion del modelo pre-entrenado y configuracion inicial (1 semana)
Fase 4 — Entrenamiento y ajuste del modelo (1,5 meses)

Fase 5 — Evaluacion y analisis de resultados (1 mes)

Fase 6 — Redaccion del informe final y preparacidn de su defensa (2 semanas)

Estructura de la memoria

La presente memoria se estructura en cinco capitulos, que reflejan de forma coherente el
desarrollo del trabajo. Cada uno de ellos aborda un aspecto fundamental del TFG, desde la
motivacion inicial hasta la exposicidn de los resultados obtenidos y las conclusiones finales.

A continuacidn, se describe brevemente el contenido de cada uno:

Capitulo 1 - Introduccién: Presenta el contexto general del trabajo, la motivacion
que lo impulsa, el problema abordado, los objetivos perseguidos, la planificacidn
seguida y la estructura general del documento.

Capitulo 2 — Estado del arte y fundamentos tedricos: Se analizan los conceptos
clave relacionados con la ingenieria de requisitos y el NLP, incluyendo los modelos
de lenguaje actuales, técnicas de fine-tuning y enfoques previos aplicados a la
generacion de requisitos. Este capitulo proporciona el marco tedrico necesario para
comprender las decisiones metodoldgicas adoptadas.

Capitulo 3 - Metodologia e implementacidn: Describe el enfoque seguido para
llevar a cabo el trabajo. Se detallan las caracteristicas del dataset empleado, las
fuentes de datos y los modelos utilizados, el proceso de entrenamiento, la
generacion de resultados (inferencia) y los criterios de validacidn aplicados.

Capitulo 4 - Resultados: Expone los resultados obtenidos en cada uno de los
diferentes escenarios de prueba utilizados y una comparativa entre distintas
configuraciones de modelos y técnicas aplicadas. Este capitulo constituye el nicleo
empirico del trabajo.



e Capitulo 5 - Discusion y conclusiones: Se interpretan los resultados obtenidos y su
impacto en la mejora de la calidad de los requisitos, se analizan las principales
limitaciones del estudio, se recogen las principales conclusiones alcanzadas, el
grado de cumplimiento de los objetivos establecidos inicialmente y se proponen
posibles lineas de trabajo futuro que podrian ampliar o profundizar los resultados
obtenidos.

e Bibliografia: Incluye todas las referencias bibliograficas consultadas y citadas a lo
largo del trabajo, que han servido de base para el desarrollo del mismo.

Con esta estructura se busca ofrecer una vision completa y ordenada del trabajo
realizado, facilitando su comprensién y evaluacion.



Capitulo 2

Estado del arte y fundamentos teoricos

2.1. Laingenieria de requisitos en el desarrollo de software

La ingenieria de requisitos (IR) [2] es una fase fundamental dentro del ciclo de vida del
software. Su objetivo principal es identificar, documentar y gestionar las necesidades y
restricciones que debe satisfacer un sistema software, es decir, sus requisitos. Dichos
requisitos se pueden clasificar en diferentes tipos segun su naturaleza y propdsito:

e Requisitos funcionales: Describen comportamientos especificos del sistema.

e Requisitos no funcionales: Especifican atributos de calidad del sistema, como
rendimiento, usabilidad, fiabilidad o seguridad.

o Requisitos de usuario: Engloban los requisitos funcionales y no funcionales pero
expresados desde el punto de vista del usuario final y redactados en lenguaje
natural.

e Requisitos del sistema: Requisitos de usuario redactados de manera técnica y
detallada, que emplean los desarrolladores como base para el disefio e
implementacion del sistema [11].

No obstante, en este trabajo, se distingue Unicamente entre requisitos funcionales y no
funcionales, ya que esta clasificacidn resulta suficiente y practica para abordar el problema
de generacion automatica de requisitos mediante modelos de lenguaje.

2.2. Procesamiento del lenguaje natural y su aplicacidn a la
ingenieria de requisitos

El procesamiento del lenguaje natural (NLP) es una rama de la inteligencia artificial que
se ocupa de la interaccién entre los ordenadores y el lenguaje humano [1]. Su objetivo es
que las maquinas comprendan, interpreten, generen y respondan al lenguaje natural de
forma similar a como lo haria un ser humano vy, para ello, combina técnicas de linglistica
computacional, aprendizaje automatico y modelos estadisticos. EL NLP ha permitido mejorar
en el rendimiento de tareas como la comprensidn lectora, el andlisis de sentimientos o la
generacion de texto, marcando un punto de inflexién en el desarrollo de aplicaciones
basadas en lenguaje [12].

El funcionamiento del NLP suele incluir las siguientes fases [12, 13]:

o Preprocesamiento del texto: Limpiar y normalizar el texto antes de procesarlo.

10



e Tokenizacidn: Dividir el texto en unidades mas pequenas como palabras, frases o
caracteres.

e Eliminacion de stopwords: Quitar palabras vacias como "el", "de", "y", etc.
e Lematizacion/stemming: Reducir las palabras a su forma base o raiz.
e Normalizacidn: Pasar a minusculas, eliminar puntuacidn, correccidn ortografica, etc.

e Analisis sintactico: Analizar la estructura gramatical de las oraciones segun las
reglas del idioma.

e Analisis semantico: Representar el significado del texto a través de vectores o
embeddings.

e Andlisis pragmatico: Interpretar el significado del texto en funcién del contexto.

e Tareas especificas: Clasificacion de texto, extraccion de entidades, resumen
automatico, traduccion o generacidn de lenguaje natural.

En el contexto del desarrollo de software, el NLP tiene multiples aplicaciones en la IR,
entre las que se identifican cuatro categorias principales [14]:

e Clasificacion de requisitos (por ejemplo, funcionales vs. no funcionales).

e Extraccion automatica de requisitos desde, por ejemplo, documentos de texto o
especificaciones.

e Transformacion y formalizacion de los requisitos a modelos estructurados o
semiformales.

e Analisis de calidad, detectando ambigliedades, redundancias o incoherencias.

En este ambito, se han desarrollado herramientas y prototipos de investigacion, como
por ejemplo, un sistema que emplea técnicas de NLP para identificar automaticamente
requisitos ambiguos en especificaciones escritas en lenguaje natural. EL enfoque se basa en
el analisis de patrones linglisticos y el uso de modelos preentrenados para detectar
expresiones vagas, modales indefinidos o construcciones condicionales poco claras, lo que
permite a los analistas mejorar la calidad de los requisitos desde etapas tempranas [5].

A pesar de los avances, aun existen desafios importantes como la escasez de datasets
publicos y etiquetados, la falta de estandarizacion en los criterios de evaluacion, la
dependencia del dominio y la necesidad de intervencion humana para validar los
resultados. Por ello, este trabajo se enmarca en una linea de investigacion activa que busca
aprovechar modelos LLMs ajustados para generar requisitos mas utiles y fiables [14].

11



2.3. Modelos de lenguaje de gran escala (LLMSs)

Los modelos de lenguaje de gran escala (Large Language Models, LLMs) son modelos
de aprendizaje automatico tipicamente basados en arquitecturas de tipo Transformer [18]
(véase Seccion 2.4) y entrenados con grandes cantidades de texto para aprender las
estructuras y patrones del lenguaje natural. Su principal objetivo es modelar la probabilidad
de ocurrencia de secuencias linglisticas, lo que les permite predecir, completar o generar
texto coherente. Ademas, estos modelos se caracterizan por contar con miles de millones
de parametros, lo que les otorga una gran capacidad de representacidn semantica.
Ejemplos populares de LLMs incluyen GPT-4 [7], PaLM [15], Claude [16], LLaMA [8] o
Mistral [17], entre otros.

A nivel funcional, los LLMs se entrenan inicialmente mediante un proceso de
preentrenamiento no supervisado, donde el objetivo es predecir tokens faltantes o
siguientes en un texto. Posteriormente, pueden ajustarse mediante técnicas como
fine-tuning, instruction tuning o aprendizaje por refuerzo con retroalimentacion humana
(RLHF) para especializarlos en tareas concretas. Todo ello permite resolver problemas
como la traduccidn automatica, generacion de resimenes, clasificacion de texto, extraccion
de informacidn o asistencia conversacional, sin necesidad de disefiar sistemas especificos
para cada tarea [18, 19].

Los LLMs utilizan mecanismos de atencién, que permiten capturar relaciones
contextuales a largo plazo entre palabras o frases dentro de un texto y mejorar la
comprension semantica y la generacidn coherente de respuestas.

En el contexto de la ingenieria de requisitos, los LLMs abren nuevas posibilidades para
automatizar tareas como la generacion de requisitos a partir de descripciones textuales, la
clasificacion semantica, la deteccién de ambigledades o la transformacion de texto natural
a lenguajes formales [19, 20].

2.4. Arquitectura Transformer

Mientras que modelos como las redes recurrentes (RNN) o las redes LSTM (Long
Short-Term Memory) procesaban texto de forma secuencial, la arquitectura Transformer
emplea mecanismos de atencidon que permiten procesar toda la secuencia de texto en
paralelo (cada palabra del input puede acceder directamente a cualquier otra del contexto,
independientemente de su posicidn) [21]. El componente clave de esta arquitectura es el
mecanismo de self-attention, que permite al modelo asignar diferentes pesos a cada
palabra del contexto a la hora de procesar un token determinado calculando cémo de
relevante es cada palabra con respecto a las demas.

Ademas, esta arquitectura se compone de dos bloques: el codificador (encoder), que
recibe como entrada una secuencia de tokens y genera su representacion contextualizada, y
el decodificador (decoder), que genera la secuencia de salida de manera autoregresiva, es
decir, token a token, condicionada a la entrada codificada por el encoder. Cada bloque esta
formado por una pila de capas idénticas que contienen [21]:

12



Mecanismo de atencion multi-cabeza (Multi-Head Attention): Permite que cada
token preste atencion a otros tokens de la misma secuencia, capturando relaciones
internas sin importar la distancia entre palabras.

Capa feed-forward: Una red neuronal conectada que se aplica de forma
independiente a cada token para transformar su representacion.

Normalizacion y conexiones residuales: Ayudan a estabilizar y mejorar el
entrenamiento.

Codificacion posicional: Dado que la arquitectura no tiene una nocién inherente del
orden de las palabras, se introducen vectores de posicion (positional encodings)
para incorporar esta informacion.

Actualmente, muchos modelos de lenguaje utilizan variantes de esta arquitectura. En
funcién del tipo de tarea, se emplean diferentes configuraciones [21]:

Modelos encoder-decoder: Como T5 [22] o BART [23], se usan principalmente en
tareas de traduccidon, resumen o respuesta automatica, donde se transforma una
secuencia de entrada en otra completamente distinta.

Modelos sélo con bloque decoder: Como GPT-4 [7], LLaMA [8] o Mistral [17], estan
disenados para tareas de generacion de texto, donde solo se requiere producir una
secuencia de salida a partir de un prompt, sin una entrada que deba ser codificada
por separado.

Modelos solo encoder: Como BERT [24], se utilizan en tareas de clasificacidn,
extraccion de entidades o analisis semantico, donde es necesario comprender el
significado del texto pero no generar texto nuevo.

Los modelos de lenguaje de gran escala utilizados en este trabajo se basan
exclusivamente en el bloque decoder, ya que su propdsito principal es la generacidon de

texto.

2.5.

Técnicas de ajuste fino

El ajuste fino (fine-tuning) es una técnica para adaptar modelos de lenguaje
preentrenados (modelos base entrenados con grandes cantidades de datos generales) a
tareas especificas mediante una segunda fase de entrenamiento sobre un conjunto de datos
mas pequeno y representativo del problema [25]. Este proceso aprovecha el conocimiento
general que el modelo ya ha aprendido, evitando la necesidad de entrenar desde cero y
reduciendo significativamente el coste computacional y de datos. A continuacion se
describen las principales técnicas:

Fine-tuning supervisado clasico: Consiste en reentrenar todos los parametros del
modelo base con los nuevos datos, lo que implica tener una gran capacidad de
GPU/TPU [26].

13



Instruction tuning: Se basa en entrenar al modelo con pares de entrada-salida en
forma de prompt + respuesta para ensenar al modelo a seguir instrucciones
expresadas en lenguaje natural [27].

Aprendizaje por refuerzo con retroalimentacién humana (RLHF): Tras un primer
ajuste supervisado, se recopila feedback humano sobre salidas generadas y se
entrena un reward model. A continuacion, se aplica aprendizaje por refuerzo para
maximizar dicha recompensa, alineando las respuestas con criterios de calidad
definidos por evaluadores humanos [28].

Adaptadores ligeros (LoRA): Inyecta matrices de bajo rango entrenables en
determinadas capas del modelo, manteniendo el resto de pesos congelados y
permitiendo asi adaptar el comportamiento del modelo con un nimero muy
reducido de parametros entrenables [10].

En este proyecto, se emplean adaptadores ligeros (LoRA) a través del framework PEFT
de Hugging Face [29] y se entrenan los modelos mediante instruction tuning.

2.6.

Métodos de evaluacion de salidas generadas

Para evaluar la calidad de los textos generados por modelos de lenguaje se suelen
combinar métodos automaticos y evaluaciones humanas, de manera que se cubren tanto
aspectos cuantitativos como cualitativos. En este trabajo se ha optado unicamente por una
evaluacion humana de las salidas generadas mediante un formulario, dado que los criterios
de calidad considerados como claridad, gramatica, detalle o ambigledad no pueden ser
capturados adecuadamente mediante métricas automaticas convencionales. Para valorar la
fiabilidad del juicio de los anotadores, se han empleado dos métricas estadisticas:

Alfa de Krippendorff («): mide el grado de acuerdo entre varios evaluadores,
adaptandose a diferentes tipos de escalas (nominal, ordinal, de intervalo) y
tolerando datos faltantes. Su valor varia entre 1 (acuerdo perfecto), O (acuerdo por
azar) y valores negativos (desacuerdo sistematico).

Coeficiente de correlacion de Spearman (g): analiza la similitud en el ordenamiento
de modelos por parte de pares de anotadores, sin requerir coincidencia exacta en los
valores absolutos. Su valor oscila entre —1 (orden completamente inverso) y 1
(orden idéntico).

Para una descripcion mas detallada de estas métricas y sus formulas, asi como otros
métodos de evaluacion existentes, véase el Anexo B.

14



Capitulo 3

Metodologia e implementacion

Este capitulo describe en detalle la metodologia seguida para llevar a cabo el proyecto,
asi como los detalles de implementacion técnica. Se abordan los aspectos clave
relacionados con las fuentes de datos utilizadas, el diseno de los prompts empleados, los
modelos de lenguaje seleccionados, el proceso de ajuste fino de los modelos y las
estrategias de inferencia y validacion aplicadas. Esta seccion constituye el nucleo
experimental del trabajo y sirve de base para el analisis de resultados que se presenta en el
siguiente capitulo.

3.1. Diseno de prompts

La forma en la que se formula la entrada (prompt) de un modelo de lenguaje tiene un
impacto significativo en la calidad, relevancia y precision del resultado obtenido ya que los
modelos generan texto a partir de instrucciones en lenguaje natural [37]. Por esta razoén, se
ha llevado a cabo un analisis y disefio sistematico de diferentes tipos de prompts, con el
objetivo de conseguir la mejor calidad en los requisitos generados y reducir al minimo
posible las ambigledades o formulaciones poco claras.

Para abordar este disefio, se exploraron distintas estrategias de prompting incluyendo,
entre otros, enfoques directos (“Extrae los requisitos funcionales y no funcionales del
siguiente sistema: ...”) o enfoques en los que se presentaban previamente varios requisitos
de ejemplo (few-shot prompting). También se experimentd con variaciones en la forma de
la redaccion, el nivel de contexto proporcionado y el uso de instrucciones explicitas para
fomentar un lenguaje técnico, especifico y orientado a requisitos de software reales.

Ademas, se evalud la influencia del idioma (espafiol frente a inglés) en la calidad de los
requisitos generados, comparando prompts equivalentes redactados en espafiol y en inglés.
Esto se debe a que algunos modelos han sido entrenados mayoritariamente con datos en
inglés, lo que puede influir en su rendimiento en otros idiomas. El conjunto completo de
prompts evaluados durante el estudio se encuentran recogidos en el Anexo A.

3.2. Fuentes de datos

Durante el desarrollo del TFG se han empleado tres fuentes de datos distintas, con el
objetivo de disponer de descripciones variadas de sistemas software en lenguaje natural
que permitieran evaluar la capacidad de los modelos para generar requisitos funcionales y
no funcionales de calidad. Estas fuentes cubren distintos niveles de formalidad, idioma y
estructura, lo que ha permitido una evaluacién mas robusta de los resultados generados.

15



1. Enunciados de problemas de examen (Universidad de Zaragoza)

Se utilizaron enunciados redactados en castellano, procedentes de examenes y
practicas de la asignatura Ingenieria de Requisitos del Grado en Ingenieria
Informatica de la Universidad de Zaragoza. Estos enunciados presentan escenarios
detallados y estructurados, a partir de los cuales los estudiantes deben identificar y
redactar los requisitos funcionales y no funcionales.

Durante la fase inicial del trabajo, estos enunciados se emplearon para realizar
pruebas preliminares de inferencia. Ademas, se generaron versiones resumidas y
mas informales de algunos de ellos, con el objetivo de evaluar como los modelos se
comportaban frente a entradas mas cercanas al lenguaje natural no técnico.

2. DaReC (Dataset for Requirements Classification)

El dataset DaReC, disponible publicamente a través de GitHub [38], contiene
descripciones de sistemas reales recopiladas de diversas fuentes, redactadas en
inglés y cada una acompanada de una lista de requisitos funcionales y no
funcionales.

En este trabajo, DaReC fue utilizado para entrenar los modelos mediante técnicas de
ajuste fino (fine-tuning), asi como para evaluarlos posteriormente. Esto permitid
evaluar la capacidad del modelo para generalizar tras haber sido expuesto a este
dominio concreto.

3. Descripciones de aplicaciones (Google Play Store)

Se recopilaron descripciones publicas de aplicaciones en la Google Play Store,
escritas en castellano, como fuente adicional de descripciones informales y reales de
sistemas software.

Estas descripciones se utilizaron para realizar pruebas preliminares de inferencia y
observar el comportamiento de los modelos ante entradas del mundo real y
orientadas al usuario final, con una redaccién mas abierta y con menor nivel de
formalizacion.

3.3. Conjunto de datos (dataset)

Para la construccion del conjunto de datos utilizado en la fase de fine-tuning de los
modelos de lenguaje, se valoraron las distintas fuentes de datos descritas en la seccion
anterior. El objetivo era contar con descripciones de sistemas en lenguaje natural
acompanadas de requisitos correctamente formulados para que los modelos supieran el
formato y estilo requerido. Finalmente, se optd por utilizar Unicamente el dataset DaReC
para la construccion del conjunto de datos ya que era la Unica fuente que ofrecia
descripciones acompanadas de requisitos asociados.

No obstante, el dataset original de DaReC fue adaptado y transformado para ajustarse a
las necesidades del proyecto. De los 50 sistemas que posee el dataset original de DaReC,
se emplearon un total de 49 para la creacién del nuevo conjunto de datos, reservando uno

16



exclusivamente para la validacidn posterior a la fase de fine-tuning. Esta eleccidn se realizd
manualmente, seleccionando un sistema representativo pero no demasiado especifico, de
modo que sirviera para evaluar la capacidad de generalizacién del modelo sin estar influido
por ejemplos similares vistos durante el entrenamiento. El sistema no incluido en el dataset
es el 2001 - space fractions, cuya descripcion es la siguiente:

The Space Fractions project is a learning tool created to help improve fraction-solving skills
for sixth-grade students. The product will be a web-based, interactive game. At the end of
the game, students will be given feedback based on their game scores. We are also providing
an umbrella for the past games created. The umbrella will be a web-based menu system
allowing the user to choose between the games.

El dataset construido se almacend en formato CSV, con tres columnas:
- system: Nombre del fichero o sistema original.

- prompt: Plantilla de entrada en inglés utilizada para guiar al modelo en la
generacion de requisitos.

- requirements: Requisitos esperados, estructurados de forma estandarizada.

Tras probar y analizar los resultados de las distintas variantes de prompts (véase
Seccidn 3.1), se selecciond aquel que ofrecia mejores resultados tanto en completitud como
en claridad de las salidas generadas. Este prompt incluye instrucciones especificas para
minimizar ambigledades, inducir ejemplos concretos y forzar una organizacion clara en
requisitos funcionales y no funcionales. A continuacidon se muestra el formato del prompt
utilizado:

Given the following system description, tell me in full detail and without ambiguities or
vagueness everything that someone implementing the system should know. If necessary,
make assumptions as you see fit, providing concrete examples for any potential doubts that
may arise—for instance, when there are references to time without specific durations, when
conditions are mentioned but not explicitly defined, or when dealing with device connections,
etc. Present the information in the form of functional and non-functional requirements.

<descripcion del sistema>

En cuanto al formato de los requisitos esperados, se optd por una estructura basada en
las recomendaciones del estandar |IEEE Std 830-1998 [39]. En particular, se siguid la
formula habitual “The system shall...” como base para expresar los requisitos de manera
clara y formal, y se empled una codificacion estructurada (FR1, FR2, NFR1...) para asegurar
que cada requisito fuese identificable de forma Unica.

Functional Requirements (FR)
FR1: The system shall ...

Non-Functional Requirements (NFR)
NFR1: ...

17



Para garantizar la coherencia, se adaptaron algunos requisitos originales de DaReC al
nuevo formato, aplicando ajustes minimos cuando fue necesario. El dataset final se
encuentra disponible en el repositorio del TFG ReqGen-Al-Opt.

3.4. Modelos de lenguaje utilizados

En este trabajo se utilizaron diversos LLMs, todos ellos basados en la arquitectura
Transformer y afinados mediante técnicas de instruction tuning [27]. Esto les permite
interpretar instrucciones expresadas en lenguaje natural y generar texto de forma
coherente, aspecto fundamental para la tarea de generacidon automatica de requisitos a
partir de descripciones informales de sistemas. Concretamente se emplearon:

e Modelos de propdsito general: Son accesibles a través de plataformas web y se
emplearon Unicamente para inferencia.

o GPT-40 Mini [41]
o DeepSeek-R1 [44]

e Modelos open-source (de cédigo abierto): Estan disponibles desde la plataforma
Hugging Face, la cual permite emplear sus modelos gratuitamente para
investigacion vy, por lo tanto, permitio emplearlos tanto para inferencia como para su
ajuste fino.

o meta-llama/Meta-Llama-3.2-1B-Instruct [45]
o meta-llama/Meta-Llama-3.2-3B-Instruct [46]
o meta-llama/Meta-Llama-3.1-8B-Instruct [47]
o mistralai/Mistral-7B-Instruct-v0.3 [48]

Para mas informacion y detalles técnicos de los modelos véase el Anexo C.

3.5. Entrenamiento (fine-tuning)

El proceso de fine-tuning se llevd a cabo exclusivamente sobre los modelos de codigo
abierto disponibles en Hugging Face: los modelos de la familia Meta-Llama 3 Instruct (1B,
3B y 8B) y Mistral 7B Instruct. Debido a sus tamanos (que oscilan entre 1.000 y 8.000
millones de parametros) y las elevadas necesidades de memoria que implican, no fue viable
realizar el entrenamiento en plataformas como Google Colab. En su lugar, se recurrié al
servidor Berlin [49], un servidor de practicas de la Universidad de Zaragoza que cuenta con
un procesador AMD EPYC 7313P, sistema operativo CentOS GNU/Linux, y una GPU
NVIDIA A10 con 24 Gb de VRAM, proporcionando asi una infraestructura adecuada para
este tipo de tareas intensivas en cdmputo.

! https://github.com/lilainaranjo/ReqGen-Al-Opt

18


https://github.com/lilainaranjo/ReqGen-AI-Opt

El script de entrenamiento fue desarrollado en Python utilizando la biblioteca
Transformers de Hugging Face y su clase Trainer, que proporcionan una interfaz flexible
para cargar, configurar y entrenar modelos de lenguaje preentrenados. Para el manejo de
datos se empled el mddulo datasets, que facilita el procesamiento y manipulacion del
conjunto de datos, y para la aplicacién de técnicas de ajuste eficiente se utilizé la libreria
peft (Parameter-Efficient Fine-Tuning) [29]. El entrenamiento se realizd con un batch size de
1 y una learning rate de le-4, parametros que se mantuvieron constantes debido a las
limitaciones de memoria. Se exploraron otras combinaciones de estos hiperparametros,
pero la memoria limitada y la capacidad computacional restringida impidieron experimentar
con batch sizes mayores. EL nimero de épocas oscild entre 1 y 32 para observar su efecto
en la calidad de los resultados.

Durante el proceso de entrenamiento, el modelo recibe cada bloque de entrada y calcula
mediante forward pass (procesar la secuencia de entrada tokenizada a través de sus capas
para generar una prediccion de los tokens de salida) la probabilidad de los tokens de salida
esperados. A continuacion, se evalua la pérdida entre la salida real del modelo y el requisito
“ground-truth” (los requisitos esperados en el dataset). Esta pérdida se retropropaga para
obtener los gradientes de cada parametro vy, finalmente, un optimizador actualiza los pesos
del modelo y los parametros de los adaptadores LoRA, si los hay, en la direccion que
minimiza la funcidén de pérdida. Repetir este ciclo a lo largo de varias épocas hace que el
modelo aprenda patrones especificos del dominio de requisitos, ajustando sus
representaciones internas para generar texto mas preciso y coherente con los ejemplos de
entrenamiento.

Dado el reducido tamafo del dataset (49 descripciones de sistemas), no se realizé una
division convencional en subconjuntos de entrenamiento, validacién y test. Reservar una
parte para validacion habria reducido aun mas la muestra disponible, y el objetivo del
trabajo no era obtener métricas cuantitativas estandar para evaluar la calidad de los
requisitos generados (véase Seccion 3.7). En su lugar, se optd por reservar un sistema no
visto durante el entrenamiento para comprobar la capacidad del modelo afinado de
generalizar a nuevos escenarios. Este sistema es el 2001 - space fractions, mencionado
anteriormente en la Seccién 3.3.

Una parte fundamental del entrenamiento fue el preprocesamiento del dataset para
adaptarlo al formato conversacional esperado por los modelos Instruct por lo que se utilizd
el método apply_chat_template del tokenizer de Hugging Face para generar secuencias de
entrada con los roles "system", "user" y "assistant". En un primer intento, se intentd pasar
toda la conversacidon como una Unica secuencia, pero debido a errores por falta de memoria,
se modificd la funcion tokenize_with_chat_template para dividir las secuencias generadas
en bloques mas pequefios de longitud fija (context_length = 2048). Esta estrategia de
division evitd errores de memoria a costa de cierta pérdida de contexto y coherencia en los
ejemplos. El cddigo completo utilizado para el entrenamiento se encuentra disponible en el

repositorio del TFG ReqGen-Al-Opt™.

Se probaron distintas longitudes de corte para evaluar si era posible evitar el uso de
técnicas de optimizacion de memoria, pero el entrenamiento completo de los modelos mas

19



grandes requeria mas memoria de la disponible. Por este motivo, en los modelos de mayor
tamano (3B, 7B y 8B) fue necesario recurrir a dos técnicas complementarias:

e Cuantizacidon en 4 bits: mediante la clase BitsAndBytesConfig, que permite reducir
el tamano de los tensores del modelo utilizando representaciones mas compactas,
con un impacto limitado en la precision.

e Adaptadores LoRA (Low-Rank Adaptation): implementados mediante la libreria
peft, los cuales permiten insertar capas ligeras entrenables dentro del modelo base,
evitando la necesidad de ajustar todos sus parametros.

Estas técnicas estan descritas con mas detalle en la Seccidon 2.5. Su uso resultd
imprescindible para lograr completar el proceso de fine-tuning en los modelos mas
complejos, preservando la viabilidad del experimento sin comprometer gravemente la
calidad de las salidas a pesar de las posibles pérdidas de fidelidad asociadas al uso de
cuantizacién y fragmentacién del contexto. La Tabla 3.5.1 resume qué técnicas fueron
necesarias segun el modelo empleado:

Modelo Cuantizacién 4-bit Adaptadores LoRA
Meta-Llama 3 1B No Si
Meta-Llama 3 3B Si Si
Meta-Llama 3 8B Si Si
Mistral 7B Instruct Si Si

Tabla 3.5.1 Técnicas de optimizacion empleadas por cada modelo

Como se observa, sélo el modelo Meta-Llama 1B pudo ser ajustado directamente sin
necesidad de cuantizacion. Para todos los demas modelos, el ajuste fino habria sido inviable
sin aplicar ambas técnicas de optimizaciéon de memoria.

3.6. Inferencia

La fase de inferencia tuvo como objetivo evaluar la capacidad de los modelos, tanto
preentrenados como ajustados mediante fine-tuning, para generar requisitos de software a
partir de descripciones de sistemas en lenguaje natural. Esta evaluacion se llevd a cabo en
distintos momentos del proyecto y sobre diversos tipos de entrada, con el fin de analizar el
comportamiento de los modelos en escenarios variados y realistas.

Antes de entrenar los modelos open-source, se probaron ChatGPT y DeepSeek Chat
para obtener una primera valoracion de las formulaciones de prompt disefiadas (ver Seccidn
3.1) y analizar si los modelos generaban mejores salidas respecto a unas categorias/temas
u otras. Esto permitié contrastar la claridad y completitud de los requisitos segun cada
variante de prompt, identificar qué estilo de redaccién inducia salidas mas organizadas y
tecnoldgicas, ajustar el prompt final definitivo que, posteriormente, se utilizaria también

20



para los modelos entrenados y elegir las fuentes de datos que se emplearian en el dataset

final.

Las fuentes de entrada empleadas en estas primeras pruebas fueron las descritas en la
Seccién 3.2. En concreto:

Descripciones del dataset DaReC, en inglés. Se emplearon un total de 13
descripciones de las 50 totales, seleccionadas para cubrir distintos dominios y
niveles de complejidad.

Enunciados técnicos de practicas y examenes de la asignatura Ingenieria de
Requisitos de la Universidad de Zaragoza. Se emplearon un total de 14
descripciones (7 originales y 7 adaptadas con tono mas informal).

Descripciones informales de aplicaciones reales de la Google Play Store. Se
emplearon un total de 7 descripciones con diversidad tematica.

Cuando se utilizdé como entrada una descripcion del dataset DaReC, fue posible
comparar las salidas generadas por los modelos con los requisitos originales de referencia.
En estos casos, se analizaron las salidas en base a los siguientes criterios:

Cobertura de requisitos: Capacidad de extraer todos los requisitos funcionales y no
funcionales presentes en la especificacion original.

Claridad estructural: Diferenciacion clara entre requisitos funcionales (RF) y no
funcionales (RNF), uso de identificadores Unicos, organizacion formal.

Nivel de detalle: Precisidon en la redaccidn, especificidad o ejemplos adicionales que
no aparecian en el enunciado.

La Tabla 3.6.1 refleja cobmo se ha valorado cada uno de los criterios.

Cobertura de requisitos Claridad estructural Nivel de detalle

< 15% de los requisitos | Lista sin separacion RF/RNF

Muy bajo . . . ., Enunciados genéricos
originales cubiertos ni numeracion
. 15-30% de los requisitos = Separacion en RF/RNF, pero .
Bajo . . s , Redaccidn sin ejemplos
originales cubiertos sin identificadores Unicos
Medio 30-60% de los requisitos = Numeracion Unica parcial Algun ejemplo o
originales cubiertos con estructura inconsistente suposicién minima
Numeracién Unica
60-80% de los requisitos . iy Varios ejemplos y matices
Alto originales cubiertos consistente y agrupacion de implementacién
d clara en RF/RNF P
Muv atto TS 80% de los requisitos Inclusion de subtitulos o Ejemplos de pseudocddigo,
v originales cubiertos jerarquias avanzadas casos de uso

Tabla 3.6.1 Criterios de evaluacidn y umbrales cualitativos

21



Con el resto de descripciones de sistemas, donde no se disponia de un conjunto de
requisitos de referencia con los que comparar, la evaluacidén fue puramente cualitativa,
basada en inspeccién manual.

Con el prompt final seleccionado y el dataset construido, se generaron requisitos usando
los modelos ajustados de Hugging Face (Meta-Llama Instruct 1B/3B/8B y Mistral 7B)
mediante un script desarrollado en Python, utilizando las bibliotecas Transformers, PEFT y
BitsAndBytes de Hugging Face, las cuales permitieron cargar los modelos con adaptadores
LoRA vy aplicar cuantizacidon para optimizar el uso de memoria durante la generacion. Para
controlar el nimero de tokens generados, se establecid un limite de salida de 3000 tokens.
No obstante, algunos modelos generaban salidas notablemente mas cortas. A medida que
se aumentaban las épocas de entrenamiento (especialmente a partir de 8), se detectaron
problemas de repeticion en las salidas, tanto a nivel de frase como en bloques enteros de
requisitos. Para mitigar este problema, se utilizé el parametro repetition_penalty durante la
inferencia, experimentando con distintos valores que oscilaron entre 1.1 y 1.5. El cddigo
completo empleado para esta fase estd disponible en el repositorio del TFG
RegGen-Al-Opt.

3.7. Validacidn

La validacion del sistema se llevd a cabo mediante una evaluacién manual (véase
Seccidén 2.6). El objetivo de esta fase era valorar la calidad global de los requisitos
generados por distintos modelos, asi como detectar fortalezas y debilidades en aspectos
clave como precision, claridad, coherencia y utilidad practica. Para ello, se disefié un
formulario de evaluacion en Google Forms, donde se recopilaron valoraciones de
anotadores humanos sobre un conjunto de salidas generadas por distintos modelos para
una misma descripcidn de sistema. Concretamente se evalud una de las salidas generada
por:

- ChatGPT

-  DeepSeek

- meta-llama/Meta-Llama-3.1-8B-Instruct sin ajustar

- meta-llama/Meta-Llama-3.2-1B-Instruct sin ajustar

- DaReC

- mistralai/Mistral-7B-Instruct-v0.3 sin ajustar

- mistralai/Mistral-7B-Instruct-v0.3 ajustado (4 épocas, repetition_penalty=1.3)

La eleccion de estos modelos respondid al objetivo de cubrir una muestra representativa
de todos los modelos estudiados, asi como una instancia del dataset DaReC para contar
con una referencia humana original. Pese a que se ajustaron varios modelos de Hugging
Face con diversas configuraciones, solo se selecciond uno de esos modelos ajustados para
su evaluacion, eligiendo aquel cuya salida ofrecia mayor completitud o coherencia. Esta

22



decision respondié a limitaciones observadas durante la inferencia, como fallos de
generacion, repeticiones excesivas o salidas incompletas en muchas ejecuciones.

Se seleccionaron ejemplos con el mismo sistema como punto de partida (2001 - space
fractions), de forma que se pudiera realizar una comparacién directa entre sus salidas y las
valoraciones se realizaron a través de siete preguntas, cada una puntuada en una escala del
1 (muy deficiente) al 10 (excelente):

1. ;Qué tan correctamente han sido etiquetados los requisitos como funcionales o no
funcionales?

2. iQué tan precisos y libres de ambigliedad son los términos empleados en los
requisitos generados?

3. (Qué tan correctos estan los requisitos en cuanto a gramatica, estilo y ortografia?

4. ;Qué tan faciles de entender e interpretar resultan los requisitos sin necesidad de
aclaraciones adicionales?

5. ¢/Qué tan consistente es el conjunto de requisitos entre si (sin contradicciones, sin
duplicados o copias)?

6. (Qué tan bien equilibrado esta el nivel de detalle (suficiente para entender, sin
exceso de “micro-requisitos”)?

7. Valoracion general de la salida

El proceso contd con la participacion de cuatro anotadores con diferentes perfiles y
niveles de experiencia: una estudiante de grado en Ingenieria Informatica, dos profesores de
la rama de ingenieria del software y un profesor especialista en la asignatura de Ingenieria
de Requisitos. Esta diversidad de perfiles permitié recoger opiniones desde distintos niveles
de experiencia, combinando la perspectiva de usuarios finales con la de expertos
académicos en el dominio.

Con el fin de cuantificar el nivel de acuerdo entre las evaluaciones emitidas por los
distintos anotadores, se calculd el alfa de Krippendorff en su variante ordinal, adecuada
para escalas como la utilizada en este estudio (1 a 10). Adicionalmente, para explorar la
relacion entre las valoraciones otorgadas por distintos anotadores y evaluar si siguen
patrones similares en la ordenacion de las salidas, se calculé también el coeficiente de
correlacion de Spearman por pares. La combinacidn de ambas métricas proporciona una
vision mas completa sobre la consistencia interna de la evaluacidon: mientras que
Krippendorff refleja el nivel de acuerdo exacto, Spearman revela si los anotadores tienden a
priorizar o penalizar los mismos modelos de manera coherente. Para mas informacidn sobre
estas métricas véase la Seccion 2.6 y el Anexo B.

23



Capitulo 4

Resultados

Este capitulo recoge los resultados obtenidos tras aplicar las distintas configuraciones y
técnicas descritas en el capitulo anterior. Se presentan los resultados de los modelos sin
ajustar, los obtenidos tras el entrenamiento, y los derivados del formulario de validacidn, asi
como el grado de acuerdo entre anotadores.

4.1. Resultados de los modelos sin ajustar

En esta seccidon se presentan los resultados obtenidos al aplicar diferentes tipos de
prompts sobre modelos de lenguaje de propdsito general (ChatGPT y DeepSeek), asi como
sobre modelos de HuggingFace sin ajustar, utilizando todas las descripciones explicadas en
la Seccidn 3.6 (13 de DaReC, 14 de examenes y 7 de Google Play Store). Esto proporciond
una referencia inicial para medir la mejora que aportan los modelos ajustados
posteriormente.

En el caso de ChatGPT y DeepSeek, se utilizaron multiples variantes de prompting,
descritas en el Anexo A, incluyendo versiones simples, detalladas, con ejemplos (few-shot
prompting) y con definiciones de lo que son los requisitos. En el caso de los modelos de
HuggingFace sin ajustar (Meta-Llama 1B, 3B, 8B y Mistral), se evaluaron unicamente los
prompts simple y detallado. A continuacién, la Tabla 4.1.1 resume los resultados mas
representativos respecto a cobertura, claridad y detalle, que se han categorizado segun los
umbrales explicados en la Seccidn 3.6.

Modelo Prompt Cobertura Claridad Detalle
ChatGPT Simple Muy baja Baja Bajo
ChatGPT Detallado Baja Alta Muy alto
ChatGPT Con ejemplo Muy baja Media Medio

ChatGPT Con definicion Muy baja Baja Bajo
de requisitos

DeepSeek Simple Muy baja Media Medio
DeepSeek Detallado Baja Alta Muy alto
DeepSeek Con ejemplo Muy baja Alta Medio

Con definicién
D j Baj Baj
eepSeek de requisitos Muy baja aja ajo

24



Meta-Llama 1B Detallado Muy baja Baja Medio

Meta-Llama 3B Detallado Muy baja Baja Alto
Meta-Llama 8B Detallado Muy baja Baja Medio
Mistral Detallado Muy baja Baja Medio

Tabla 4.1.1 Rendimiento de los modelos sin ajustar

Uno de los principales factores que ha condicionado los resultados ha sido el contenido y
longitud de las descripciones originales del sistema. En aquellos casos donde el sistema
estaba definido con escaso contexto, la cobertura fue especialmente baja, incluso con
prompts detallados. Por el contrario, sistemas mas extensamente descritos permitieron
extraer un mayor numero de requisitos incluso con prompts simples, aunque no siempre
coincidentes con los definidos originalmente en DaReC.

Respecto a los modelos de propdsito general, ChatGPT y DeepSeek han generado
salidas similares. DeepSeek ha ofrecido salidas mas estructuradas en algunos escenarios,
especialmente al utilizar prompts detallados, donde su claridad fue superior, pero en
términos de cobertura y nivel de detalle ambos modelos tuvieron un rendimiento similar:
generaron algunos requisitos no alineados con los de referencia, mostrando una tendencia
a “imaginar” funcionalidades no descritas explicitamente, sobre todo con prompts
detallados y respecto a los requisitos no funcionales debido a la falta de contexto explicito
en muchas descripciones. Ademas, fueron capaces de incluir subrequisitos y matices
adicionales cuando se emplearon prompts detallados pero se observé que, en algunos
casos, agruparon multiples requisitos bajo un mismo encabezado, lo que dificultaba su
identificacion individual. En cuanto a la numeracidn y organizacion, se detectaron diferencias
segun el prompt. Los prompts simples y con definicidn de requisitos numeraban listas por
separado para RF y RNF, repitiendo identificadores mientras que los prompts detallados y
con ejemplos mejoraron la consistencia, generando identificadores unicos para cada
requisito (por ejemplo, RF1, NF1, etc.), especialmente en los modelos generalistas.

Los modelos open-source evaluados (LLaMA y Mistral) mostraron resultados limitados
en todas las métricas, incluso con prompts detallados. Si bien el nivel de detalle fue
aceptable en algunos casos, la estructura y cobertura fueron deficientes. En general, no
asignaron identificadores Unicos a cada requisito y, en algunos casos, generaron listas
planas con afirmaciones demasiado genéricas. Ademas, la escala del modelo (1B, 3B, 8B)
no implicd mejoras sustanciales en esta fase, lo que sugiere que el modelo necesita un
ajuste fino especifico para adaptarse a tareas especializadas como la generacién de
requisitos.

Es importante destacar que la métrica de cobertura se evalud en relacidn a los requisitos
existentes en el dataset DaReC como ground-truth. Bajo este criterio estricto, muchos
modelos no alcanzaron un buen rendimiento. Sin embargo, si no se tuviera en cuenta dicha
comparacion directa, es decir, si se valoraran los requisitos generados Unicamente por su
adecuacion al dominio descrito, las salidas de los modelos podrian considerarse
razonablemente completas. Esto indica que los modelos, aunque no reproduzcan los

25



requisitos esperados, son capaces de generar descripciones funcionales coherentes, aunque
a menudo divergentes respecto al conjunto de referencia.

Por ultimo, otro aspecto observado en los requisitos generados, tanto por modelos
ajustados como sin ajustar, fue la falta de una clasificacién explicita segin el grado de
obligatoriedad. Ninguno de los modelos aplicé una redaccion diferenciada utilizando verbos
modales como “debe” (requisito obligatorio), “deberia” (requisito deseable) o “podria”
(requisito opcional), lo cual es habitual en metodologias formales de especificacién de
requisitos. Esta carencia puede afectar a la utilidad practica de los requisitos generados en
entornos reales de desarrollo.

En resumen, en esta fase preliminar, los modelos generalistas (ChatGPT y DeepSeek)
ofrecieron un rendimiento superior al de los modelos open-source sin ajustar,
especialmente en claridad estructural y nivel de detalle, aunque todos mostraron
limitaciones importantes en cobertura y alineacion con requisitos de referencia.

4.2. Resultados tras fine-tuning

En esta seccion se presentan los resultados obtenidos tras aplicar técnicas de
fine-tuning sobre los modelos open-source Meta-Llama y Mistral, con el objetivo de
mejorar su rendimiento en la tarea de generacidon automatica de requisitos. Esta evaluacion
permite valorar en qué medida el entrenamiento especifico con el dataset DaReC aporta
mejoras respecto a los modelos sin ajustar y cdmo se comparan con modelos de propdsito
general como ChatGPT o DeepSeek.

Para esta evaluacion se utilizd el prompt simple y el detallado (el que ofrecid mejores
resultados en la fase anterior) y se emplearon Unicamente dos sistemas de DaReC: 2001 -
space fractions, no empleado para el entrenamiento, y un segundo sistema, empleado en el
entrenamiento, para contrastar el efecto de la adaptacion. Aplicando los umbrales definidos
en la Seccidn 3.6 para cobertura, claridad y detalle, la Tabla 4.2.1 recoge los resultados
mas representativos:

Modelo Prompt Cobertura Claridad Detalle
Meta-Llama 1B Simple Muy baja Baja Bajo
Meta-Llama 1B Detallado Muy baja Baja Medio
Meta-Llama 3B Simple Muy baja Baja Bajo
Meta-Llama 3B Detallado Muy baja Baja Medio

Mistral Detallado Muy baja Alta Alto

Tabla 4.2.1 Rendimiento de los modelos open-source tras fine-tuning

Los resultados muestran que el ajuste fino ha permitido ciertas mejoras, especialmente
en el modelo Mistral, que generd requisitos mas estructurados, mejord en la asignacién de

26



identificadores uUnicos a cada requisito, y tuvo un mayor nivel de detalle en la redaccion. Aun
asi, la cobertura siguié siendo limitada, en gran medida debido a la brevedad o ambigliedad
de algunas descripciones presentes en el dataset DaReC. En este sentido, es importante
volver a destacar que la cobertura se evalué comparando con los requisitos definidos en
dicho dataset como ground-truth, lo que implica un criterio muy estricto. Si se evaluaran
unicamente los requisitos generados por su coherencia con el dominio del sistema,
independientemente de su coincidencia exacta con los de DaReC, los resultados podrian
considerarse mas satisfactorios.

En los modelos Meta-Llama (1B y 3B), en cambio, no se observaron mejoras notables, lo
que sugiere que el tamano del modelo y su arquitectura podrian estar limitando su
capacidad para aprender patrones y generar salidas estructuradas incluso tras el
entrenamiento adicional. Ademads, durante la evaluacidn se detecté que estos modelos
tendian a repetir frases o entrar en bucles, lo cual afecté negativamente tanto a la claridad
como a la utilidad de las salidas.

Tanto en los modelos ajustados como en los no ajustados, se mantuvo la ausencia de
una clasificacion por grado de obligatoriedad. Ninguno de ellos incorporé una redaccion
diferenciada mediante verbos modales como “debe” (obligatorio), “deberia” (deseable) o
“podria” (opcional), una practica habitual en especificaciones formales de requisitos, como
se comentd anteriormente.

Dado que Mistral-7B fue el Unico modelo que demostré una mejora significativa en las
métricas evaluadas, fue el seleccionado como representante de los modelos fine-tuned
para la evaluaciéon humana (véase Seccion 3.7).

Para ofrecer una vision comparativa mas clara, en la Figura 4.2.1 se muestra una grafica
resumen que compara el rendimiento de los open-source antes y después del fine-tuning
de los modelos para cada una de las métricas evaluadas:

[l Detalle Claridad [ Cobertura

10

Meta-LLaMA 1B Meta-LLaMA 1B Meta-LLaMA 3B Meta-LLaMA 3B Mistral Mistral
(sin ajustar) (ajustado) (sin ajustar) (ajustado) (sin ajustar) (ajustado)

Figura 4.2.1 Comparativa del rendimiento de modelos open-source antes y después del
fine-tuning. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto).

27



Finalmente se incluye también en la Figura 4.2.2 una comparativa del rendimiento
observado en los modelos comerciales ChatGPT y DeepSeek y el modelo Mistral ajustado,
segun la misma escala:

B Detalle Claridad [ Cobertura
10

Mistral ChatGPT DeepSeek

Figura 4.2.2 Comparativa del rendimiento de modelos open-source ajustados y modelos de
propdsito general. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto).

Esta visualizacién permite observar cémo el ajuste fino ha tenido un impacto positivo en
la estructura y el detalle de los requisitos generados del modelo Mistral. No obstante, los
modelos ajustados aun no alcanzan el nivel de rendimiento global de los modelos de
propdsito general como ChatGPT o DeepSeek.

4.3. Resultados del formulario de validacion

Tras el analisis cuantitativo de las salidas generadas, tanto por modelos sin ajustar como
por modelos tras fine-tuning, se considerd fundamental complementar los resultados con
una evaluacion subjetiva. Para ello, se diseid un formulario de validacion dirigido a
usuarios, cuyo objetivo era identificar qué modelo (independientemente de su arquitectura o
ajuste) generaba requisitos percibidos como mas claros, completos y utiles desde una
perspectiva humana (véase Seccidn 3.7).

A partir de las puntuaciones obtenidas en todas las preguntas, se calcularon las medias
globales de cada salida, considerando todas las dimensiones evaluadas. Esto permite
establecer un ranking general de las salidas y, en consecuencia, de los modelos que las
generaron en funcion de la percepcidn por parte de los usuarios. En la Tabla 4.3.1 se
resumen estos resultados:

Salida Media global

Llama 8B (sin ajustar) 6,64
Mistral (ajustado) 6,43
ChatGPT 6,29

28



Mistral (sin ajustar) 5,82

Llama 1B (sin ajustar) 5,46
DaReC 5,43
DeepSeek 5,25

Tabla 4.3.1 Puntuacion media global por modelo (escala de 1 a 10).

Como puede observarse, el modelo Llama 8B sin ajustar obtuvo la puntuacién media
mas alta, superando incluso a modelos ampliamente utilizados como ChatGPT. También
destaca el buen rendimiento del modelo Mistral tras el fine-tuning, que se situé como el
segundo modelo mejor valorado, por delante del resto de modelos sin ajustar e incluso del
modelo base DaReC. Este resultado refuerza la hipdtesis de que el entrenamiento
especifico con datos de requisitos puede mejorar significativamente la percepcidn subjetiva
de calidad de las salidas generadas.

Ademas del promedio global, se calcularon las medias por cada pregunta del formulario,
lo que permitié analizar el rendimiento de los modelos en aspectos concretos como
claridad, correccién gramatical, cobertura o ambigliedad, entre otros. La Figura 4.3.1
muestra las puntuaciones medias obtenidas por cada modelo en cada dimension evaluada:

B DaReC [ ChatGPT Llama 1B sin ajustar [} DeepSeek [ Mistral ajustado [ Llama 8B sin ajustar Mistral sin ajustar

7,75

65
6,25 6,25 ﬁ ,25

Etiquetado RF/RN  Precision / ausencia ~ Gramatica, estiloy  Legibilidad (clarldad e Consistencia interna  Nivel de detalle (sin  Valoracion general
de ambigedad ortografia interpretacion) (sin duplicados, sin micro-requisitos)
contradicciones)

Figura 4.3.1 Puntuacion media por pregunta y modelo

Los resultados muestran que el modelo Llama 8B sin ajustar, el mejor valorado en
términos generales, obtuvo puntuaciones especialmente altas en el etiquetado correcto de
RF/RNF, la precisidon/ausencia de ambigledad, la consistencia interna y la legibilidad. El
modelo Mistral ajustado fue también consistentemente bien valorado en la mayoria de
dimensiones, especialmente en gramatica, estilo y ortografia, y en el nivel de detalle.

Por su parte, ChatGPT fue el modelo mejor puntuado en precision y legibilidad, lo que
confirma su robustez como modelo de propdsito general, si bien fue notablemente peor en
la diferenciacidon entre requisitos funcionales y no funcionales, una dimension
especialmente relevante en este contexto. El modelo DeepSeek obtuvo puntuaciones
discretas y, en general, inferiores a las de los modelos mas avanzados, lo que podria indicar
una menor adecuacion de este modelo a la tarea especifica de generacion de requisitos.

29



En cuanto al modelo DaReC, que representa los requisitos originales del dataset, se
observé una buena puntuacion en el etiquetado RF/RNF (6,25), lo que refleja su
consistencia estructural, pero una valoracién general mas baja (4,75), posiblemente debido
a una redaccion menos clara o pulida que la de los modelos generativos actuales, mas
centrados en la fluidez y comprensién del lenguaje natural.

Con el objetivo de analizar la fiabilidad de la validacién subjetiva, se calcularon métricas
de consistencia interanotador. En particular, se utilizé el alfa de Krippendorff como medida
del grado de acuerdo entre los evaluadores, tanto de forma global como por cada una de
las preguntas del formulario.

En la Tabla 4.3.2 se presentan los valores del alfa obtenidos para cada una de las
dimensiones evaluadas:

Dimensién evaluada Alfa de Krippendorff

Etiguetado RF/RNF -0,165
Precision / ausencia de ambigliedad -0,141
Gramatica, estilo y ortografia -0,146
Legibilidad (claridad e interpretacion) -0,171
Consistencia interna -0,156

Nivel de detalle -0,213
Valoracion general -0,150

Media global -0,163

Tabla 4.3.2 Alfa de Krippendorff por dimensién

Como puede observarse, todos los valores obtenidos fueron negativos, lo cual indica que
el nivel de acuerdo entre los anotadores fue incluso inferior al que se esperaria por azar.
Este resultado sugiere una notable disparidad en la manera en que los distintos
participantes interpretaron y evaluaron las salidas generadas por los modelos. Este
desacuerdo puede deberse a factores como la subjetividad inherente a cada dimension
evaluada, diferencias de criterio personales, la falta de una guia de evaluacién comun vy
detallada o la diferencia en la formacion o experiencia entre los participantes.

Por otro lado, de los siete criterios evaluados, el de gramatica, estilo y ortografia y el de
precision / ausencia de ambigliedad mostraron el menor desacuerdo entre anotadores,
mientras que el de nivel de detalle y legibilidad registraron el mayor, lo que indica que los
juicios puramente linguisticos son mas uniformes que los basados en criterios
interpretativos.

Con el fin de complementar el analisis de la fiabilidad interanotador, se calcularon
también los coeficientes de correlacion de Spearman entre los rankings otorgados por cada

30



pareja de evaluadores (Tabla 4.3.3). Esta medida permite cuantificar el grado de relacién
monotdnica entre los juicios de los distintos participantes, evaluando si tienden a coincidir
en su ordenacidn relativa de las salidas generadas, aunque no necesariamente en los
valores absolutos asignados.

Par de anotadores Correlacion de Spearman

Anotador 1 - Anotador 2 -0,185
Anotador 1 - Anotador 3 0,436
Anotador 1 - Anotador 4 -0,714
Anotador 2 - Anotador 3 0,585
Anotador 2 - Anotador 4 0,482
Anotador 3 - Anotador 4 0,200

Media global 0,134

Tabla 4.3.3 Correlacion de Spearman entre anotadores

Como puede observarse, los coeficientes obtenidos son muy variables. Algunos pares de
evaluadores muestran una correlacion moderadamente positiva (por ejemplo, Anotador 2 -
Anotador 3 con p = 0,585), lo que sugiere cierta coherencia en la forma de valorar las
respuestas. Sin embargo, en otros casos, como Anotador 1 - Anotador 4 (p = -0,714), se
observa una fuerte correlacidon negativa, lo que indica que las respuestas mejor valoradas
por un anotador fueron sistematicamente peor valoradas por el otro.

En conjunto, los resultados obtenidos mediante la correlacion de Spearman refuerzan lo
ya apuntado por el alfa de Krippendorff, es decir, existe una alta variabilidad en las
valoraciones individuales, lo que refleja la dificultad de alcanzar un consenso claro en la
evaluacidn subjetiva de requisitos generados automaticamente.

31



Capitulo 5

Discusion y conclusiones

Este capitulo integra el analisis critico de los resultados obtenidos con las conclusiones
finales del trabajo. En primer lugar, se interpretan los datos generados durante la
experimentacidn, destacando las tendencias observadas y contrastandolas con los
objetivos iniciales del proyecto. A continuacion, se discuten las principales limitaciones
técnicas y metodoldgicas del estudio, asi como el impacto potencial de las técnicas
aplicadas en la reduccion de errores y ambigliedades durante la generacién de requisitos.
Finalmente, se evalua el grado de cumplimiento de los objetivos planteados, se sintetizan
las conclusiones mas relevantes y se proponen posibles lineas de mejora y futuras
investigaciones que podrian ampliar el alcance y la aplicabilidad de este enfoque.

5.1. Interpretacion de resultados

Los resultados obtenidos en el presente trabajo permiten extraer patrones relevantes
sobre el comportamiento y las limitaciones de los distintos modelos de lenguaje aplicados a
la generacidn automatica de requisitos.

Los modelos de propdsito general (ChatGPT y DeepSeek) ofrecieron una cobertura
reducida respecto a los requisitos originales del dataset DaReC, extrayendo solo los RF
mas evidentes, independientemente del estilo de prompt empleado. Sin embargo, sus
salidas fueron mas estructuradas, claras y detalladas que las de los modelos open-source
sin ajustar, especialmente cuando se emplearon prompts detallados. Este comportamiento
puede atribuirse en parte al tamafio y la escala de los modelos de propdsito general
(disponen de decenas o cientos de miles de millones de parametros frente a las 1-8 B de
los modelos open-source), asi como a técnicas avanzadas como el instruction tuning y el
RLHF, que aportan una mayor capacidad para organizar y enriquecer las respuestas aun sin
entrenamiento especifico en el dominio.

Por su parte, los modelos open-source de Hugging Face (Meta-Llama 1B/3B/8B vy
Mistral) sin ajustar mostraron un rendimiento inferior: claridad estructural pobre, listas
planas sin numeracidén Unica y detalle escaso. Tras aplicar fine-tuning con LoRA y
cuantizacidn 4-bit, unicamente el modelo Mistral mejoré en la claridad y detalle de los
requisitos, aunque sin incrementar la cobertura. En cambio, las variantes LLaMA 1B y 3B
apenas experimentaron cambios, lo que sugiere que debido a su menor tamafno requieren
un volumen de datos mayor o ajustes mas intensivos para lograr una adaptacion eficaz al
dominio de DaReC.

El buen desempeiio del modelo Mistral ajustado, especialmente en cuanto a claridad,
estructura y nivel de detalle, motivd su seleccidon para el formulario de validacion. Su
capacidad para generar secciones RF/RNF numeradas de forma consistente y enriquecerlas

32



con ejemplos y casos de uso coincidid con la percepcion de mayor calidad por parte de los
anotadores.

La baja cobertura general observada se atribuye en gran parte a la ambigledad vy
brevedad de muchas descripciones de DaReC. Enunciados muy cortos no proporcionan
contexto suficiente para extraer todos los requisitos y, en consecuencia, todos los sistemas
fallaron al intentar cubrir el conjunto de referencia completo. Esto pone de manifiesto que,
mas alla de la potencia del modelo, el disefio del prompt y la riqueza del input son
determinantes para maximizar la cobertura de requisitos.

La evaluacion humana confirmé que los modelos open-source de gran tamafo
(Llama-8B y Mistral-7B) lideran la percepcion general de calidad, junto con ChatGPT.
Ademas, estos modelos mantienen perfiles elevados y relativamente planos a lo largo de
los siete criterios, mientras que modelos como DeepSeek y DaReC presentan descensos
pronunciados en aspectos como detalle y consistencia. Por otra parte, Mistral ajustado
alcanza picos destacados en gramatica, legibilidad y detalle, confirmando la eficacia del
fine-tuning aplicado.

Para cuantificar la consistencia de estas valoraciones, se calculd el alfa de Krippendorff
por cada criterio (Tabla 4.3.2). Los valores negativos (entre —0,213 y —-0,141) obtenidos en
todos los casos indican que el acuerdo entre anotadores quedd por debajo del nivel
aleatorio esperado, reflejando la alta subjetividad y la falta de una guia de evaluacion
homogénea. Esta baja fiabilidad sugiere que cada evaluador interpretd de forma distinta los
criterios, especialmente en el nivel de detalle (a = -0,213) vy legibilidad (a = -0,171). Este
analisis por criterio sugiere que, aunque el acuerdo general es bajo, existe mayor fiabilidad
en los criterios técnicos, mientras que criterios mas interpretativos requieren pautas de
evaluacidn mas precisas para reducir la variabilidad entre anotadores.

Complementariamente, el coeficiente de Spearman entre pares de anotadores (Tabla
4.3.3) ofrece una visidon del grado de concordancia en los rankings de modelos. Con una
media global de p = 0,134, el acuerdo es muy bajo. Solo el par de anotadores 2-3 mostré
correlacion moderada (p = 0,585). La gran variabilidad refuerza la conclusion de que las
valoraciones son altamente personales y dificiles de alinear.

En resumen, estos analisis indican que, aunque ciertos modelos destacan de forma
consistente (Llama-8B y Mistral fine-tuned), la fiabilidad de la evaluacion subjetiva es baja.
Para futuros estudios, seria recomendable ampliar la muestra de evaluadores, estandarizar
las pautas de anotacion y explorar métricas de acuerdo alternativas (por ejemplo, ICC) o
agrupar criterios para mejorar la consistencia interanotador.

5.2. Limitaciones del estudio

El presente estudio presenta una serie de limitaciones que deben ser tenidas en cuenta
al interpretar sus resultados. En primer lugar, el dataset empleado en el fine-tuning se
construyd Unicamente a partir de 49 descripciones, una muestra que aunque suficiente para
prototipos exploratorios, resulta reducida para entrenar y evaluar modelos de gran escala
de forma robusta. Por esta misma limitacion del nimero de sistemas con requisitos ya
formulados, se empled una Unica descripcidon como conjunto de validacion para evaluar el

33



entrenamiento, lo que no permite valorar completamente la adaptabilidad del modelo a
dominios variados o a sistemas con caracteristicas muy distintas.

Por otro lado, el nimero de evaluadores participantes fue reducido (sélo 4), con perfiles
diversos (distintos niveles de formacidn, experiencia y familiaridad con la ingenieria de
requisitos) y no contaban con una guia de evaluacion formal, lo que puede haber
contribuido a la variabilidad observada en las puntuaciones asignadas y Llimita la
generalizacion de las conclusiones extraidas. Asimismo, el proceso de evaluacidn se centrd
exclusivamente en la percepcidon subjetiva de las salidas generadas, sin considerar el
impacto que estas podrian tener en fases posteriores del ciclo de vida del software, como el
diseno, la implementacion o las pruebas.

Por ultimo, las técnicas de optimizacidn de memoria (cuantizacidn en 4 bits y LoRA)
fueron imprescindibles, pero también introdujeron degradaciones en el entrenamiento y la
coherencia de las salidas. Asimismo, la imposibilidad de entrenar variantes de mayor
tamafio o explorar mas configuraciones de hiperparametros restringe la exhaustividad del
analisis.

En conjunto, estas limitaciones sugieren que, para avanzar hacia una solucidn
industrialmente viable, seria necesario ampliar y diversificar el dataset, mejorar la fiabilidad
de la evaluacidon humana, explorar métricas automaticas, probar arquitecturas de mayor
escala y perfeccionar las estrategias de prompting y fine-tuning.

5.3. Impacto en la reduccion de errores y ambigutiedades

Uno de los objetivos principales del presente trabajo era explorar el potencial de los
modelos de lenguaje para contribuir a la reduccion de errores y ambigliedades en la fase de
generacion de requisitos.

Gracias al prompt detallado vy al fine-tuning, Mistral-7B y Llama-8B producen listas de
requisitos correctamente agrupados en funcionales y no funcionales, con numeracion unica
y consistente (por ejemplo, RF1, RNF1..). Este formato estandarizado disminuye la
probabilidad de omisiones o duplicaciones y facilita la revision por parte de analistas
humanos.

Aunque los modelos aun no realizan una clasificacion por grado de obligatoriedad en su
redaccion, los modelos fine-tuned generan descripciones gramaticalmente correctas y usan
terminologia precisa, reduciendo ambigliedades asociadas a verbos modales imprecisos.
Estos modelos consiguieron la mayor puntuacién (6,5) de entre todos los modelos
evaluados en la categoria de gramatica y estilo.

Por otro lado, el prompt detallado induce la generacion de supuestos explicitos, asi como
ejemplos de uso o flujos de interaccion. Al anticipar posibles casos limite, estos detalles
minimizan malentendidos o errores en etapas posteriores de disefio e implementacion.

En conjunto, estos avances automatizan tareas de redaccidn que suelen estar sujetas a
errores humanos (olvidos, inconsistencias de estilo, ambigledades de lenguaje natural) y
proporcionan un punto de partida estructurado y completo. Aunque aln es necesaria la
supervisidon de analistas de requisitos para validar y ajustar el resultado final, los modelos

34



fine-tuned ofrecen un impacto tangible en la eficiencia y calidad de la fase de
especificacion, reduciendo tanto la tasa de errores como la ambigledad inherente a la
documentacion de requisitos.

5.4. Cumplimiento de objetivos

El propdsito principal de este TFG era poner a prueba el potencial de los LLMs para
asistir y automatizar la redaccion de requisitos de software. Los resultados obtenidos
demuestran que, con un disefio de prompt apropiado y técnicas de fine-tuning especificas,
los modelos de lenguaje pueden ofrecer un apoyo real y significativo al proceso
tradicionalmente manual de elaboracién de requisitos.

Respecto a los objetivos mas especificos, se han explorado distintos LLMs como GPT,
LLaMA, DeepSeek y Mistral para realizar pruebas de generacion de requisitos con
diferentes prompts y descripciones, asi como para aplicar técnicas fine-tuning (LoRA junto
con cuantizacién en 4 bits). Ademas, se experimentd con diferentes configuraciones e
hiperparametros (épocas, repetition_penalty), lo que permitié seleccionar las combinaciones
Optimas para cada modelo, destacando la importancia de adaptar tanto los datos de
entrada como los parametros de generacion.

ChatGPT y DeepSeek proporcionaron un baseline sélido en claridad y detalle, mientras
que las variantes de LLaMA y Mistral requirieron ajuste fino para acercarse a ese nivel de
calidad. Esta comparacidn permitié identificar que los servicios web destacan de salida,
pero que un modelo open-source como Mistral-7B, tras LoRA y cuantizacion, podria
alcanzar su desempeno en criterios clave.

Los capitulos 3 y 4 reflejan la metodologia de evaluacion comparativa llevada a cabo,
abarcando desde la generacién de requisitos hasta su valoracion por cuatro anotadores en
siete criterios, proporcionando asi un diagndstico exhaustivo de cada sistema.

Finalmente, en este capitulo 5 se recoge la reflexidon sobre la utilidad practica de los
LLMs y las posibles lineas futuras. Si bien la revision humana experta sigue siendo
necesaria, los modelos afinados pueden reducir drasticamente las ambigledades y errores
en la fase de redaccion de requisitos, liberando a los analistas para tareas de mayor valor
anadido.

5.5. Lineas de investigacion y mejoras futuras

Los resultados obtenidos en este trabajo abren diversas vias para continuar investigando
y mejorar la aplicacidon de técnicas de inteligencia artificial en la generacion automatica de
requisitos en el desarrollo de software. Algunas lineas de investigacion y mejoras futuras
relevantes son las siguientes:

e Ampliacidon y diversificacion del dataset: La calidad y generalizacion de los
modelos ajustados se ven limitadas por el tamafio y la diversidad del conjunto de
datos disponible. En futuros trabajos, seria recomendable recopilar y anotar un
mayor volumen de descripciones de sistemas junto con sus requisitos, incluyendo

35



distintos dominios y niveles de complejidad, para mejorar la robustez y capacidad de
generalizacion del modelo.

Exploracidon de técnicas avanzadas de ajuste fino: Aunque en este proyecto se ha
utilizado LoRA y cuantizacién en 4 bits para optimizar el entrenamiento, existen
otras técnicas como el RLFH que podrian mejorar la alineacion de los modelos con
las expectativas reales de los usuarios y la calidad de los requisitos generados.

Mejora en la generacion y evaluacién de prompts: La calidad de las respuestas
generadas estd altamente condicionada por el disefio de los prompts por lo que en
investigaciones futuras, se podrian implementar técnicas automaticas o
semi-automaticas para la optimizacion de prompts, asi como explorar métodos de
evaluacion mas objetivos y automatizados que complementen la validacion
subjetiva.

Estudio de métricas de evaluacién y acuerdos entre anotadores: Dada la baja
consistencia observada en la validacion subjetiva, es necesario investigar métodos
mas robustos para evaluar la calidad de los requisitos generados, asi como
estrategias para mejorar la concordancia entre evaluadores, incluyendo formacién o
guias mas detalladas.

Pruebas en infraestructuras de mayor capacidad computacional: Experimentar con
modelos de mayor tamafio en clisteres equipados con GPUs de gran memoria
eliminaria las restricciones de batch size, longitud de contexto y necesidad de
cuantizacién extrema. Esto viabilizaria explorar ajustes de hiperpardmetros mas
agresivos, contextos mas largos y multiples épocas sin recurrir a compresion.

Fine-tuning de modelos comerciales de gran escala: Obtener acceso a APIs o
licencias para afinar modelos como GPT-4 con técnicas de LoRA o PEFT adaptadas
a su infraestructura permitiria combinar su amplia preformacidon con un ajuste
preciso al dominio de la ingenieria de requisitos. Esta linea evaluaria si los LLMs
lideres, ya entrenados con RLHF, pueden mejorar alin mas su rendimiento en tareas
especializadas.

Clasificacién de grado de obligatoriedad: Incorporar un médulo de post-proceso o
un prompt dindmico que distinga requisitos “debe” (obligatorios), “deberia”
(recomendables) y “podria” (opcionales) enriqueceria la semantica de las
especificaciones, alinedandose con metodologias formales y reduciendo
ambiguedades sobre prioridades.

Generacion automatica de casos de uso e historias de usuario: Extender la
capacidad de los modelos para que, a partir de cada requisito generado, produzcan
automaticamente casos de uso detallados o historias de usuario con roles, acciones
y criterios de aceptacion facilitaria la transicion desde la especificacién hasta el
disefio y desarrollo, promoviendo una documentacion mas completa y util para los
equipos de desarrollo y stakeholders.

36



Estas lineas futuras permitirdan profundizar en la integracion de técnicas de inteligencia
artificial en el desarrollo del software, aumentando su automatizacion, precisién vy
aplicabilidad en entornos reales.

37



Bibliografia

[11 Chowdhary, K., and Chowdhary, K. R. (2020). Natural language processing.
Fundamentals of artificial intelligence, 603-649.

[2] Nuseibeh, B., and Easterbrook, S. (2000, May). Requirements engineering: a roadmap. In
Proceedings of the Conference on the Future of Software Engineering (pp. 35-46).

[3] 'Alvy, A. 1. (2014, June 4). El error de software que convirtié un lanzamiento espacial en
carisimos fuegos artificiales. RTVE.es. Disponible en:
https://www.rtve.es/noticias/20140604/error-software-convirtio-lanzamiento-espacial-cari
simos-fuegos-artificiales/948262.shtml

[4] Martinez, O. G. E., Reyes, S. V., and Gonzalez, A. M. (2021). Use of natural language
processing techniques for software requirements detection. South Florida Journal of
Development, 2(5), 7323-7335. Available from:
https://ojs.southfloridapublishing.com/ojs/index.php/jdev/article/download/911/788/2595

[5] Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J.,, Ajagbe, M., Chioasca, E.-V., and
Batista-Navarro, R. T. (2021). Natural Language Processing for Requirements Engineering:
A Systematic Mapping Study. ACM Computing Surveys , 54(3), 1-41. Article 55. Available
from: https://doi.org/10.1145/3444689

[6] Chang, Y., Wang, X., Wang, J.,, Wu, Y., Yang, L., Zhu, K, ... and Xie, X. (2024). A survey on
evaluation of large language models. ACM transactions on intelligent systems and
technology, 15(3), 1-45.

[7] Brown, T. B,, et al. (2020). Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33, 1877-1901.

[8] Touvron, H., Lavril, T, lzacard, G., Martinet, X., Lachaux, M. A., Lacroix, T,, ... and Jegou, H.
(2023). LLaMA: Open and Efficient Foundation Language Models. arXiv preprint
arXiv:2302.13971.

[9] DeepSeek-Al, Xiao Biet al.. (2024). DeepSeek LLM: Scaling Open-Source Language
Models with Longtermism. arXiv. Available from: https://arxiv.org/abs/2401.02954

[10] Bergmann D. What is fine-tuning? IBM Think [Internet]. Available from:
https://www.ibm.com/think/topics/fine-tuning

[11] University Data Resource Centre, University of Lucknow. Available from:
https://udrc.lkouniv.ac.in/Content/DepartmentContent/SM_6b8ee085-2d45-4a29-9c72-5e
6c1d6d8551_34.pdf

[12] J. Cambria y B. White, “Jumping NLP Curves: A Review of Natural Language Processing
Research,” IEEE Computational Intelligence Magazine, vol. 9, no. 2, pp. 48-57, May 2014.

38


http://rtve.es
https://www.rtve.es/noticias/20140604/error-software-convirtio-lanzamiento-espacial-carisimos-fuegos-artificiales/948262.shtml
https://www.rtve.es/noticias/20140604/error-software-convirtio-lanzamiento-espacial-carisimos-fuegos-artificiales/948262.shtml
https://ojs.southfloridapublishing.com/ojs/index.php/jdev/article/download/911/788/2595
https://doi.org/10.1145/3444689
https://arxiv.org/abs/2401.02954
https://www.ibm.com/think/topics/fine-tuning
https://udrc.lkouniv.ac.in/Content/DepartmentContent/SM_6b8ee085-2d45-4a29-9c72-5e6c1d6d8551_34.pdf
https://udrc.lkouniv.ac.in/Content/DepartmentContent/SM_6b8ee085-2d45-4a29-9c72-5e6c1d6d8551_34.pdf

[13] GeeksforGeeks. (2025, May 1). Phases of Natural Language Processing (NLP).
GeeksforGeeks. Available from:
https://www.geeksforgeeks.org/machine-learning/phases-of-natural-language-processing-
nlp/

[14] Khan, M.A., Aydemir, F.B., Oriol, M. (2025) 8th International Workshop on Natural
Language Processing for Requirements Engineering (NLP4RE’25). Barcelona, Spain, April
7-11

[15] Chowdhery, A., et al.. (2022). PaLM: Scaling language modeling with Pathways.
Journal of Machine Learning Research, 24(240), 1-113.

[16] Priyanshu, A., Maurya, Y., and Hong, Z. (2024). Al governance and accountability: An
analysis of Anthropic's Claude. arXiv. Available from: https://arxiv.org/abs/2407.01557

[17] Moulton, B. (2024, 14 de septiembre). Mistral Large 2: French open source model
newcomer leading Al innovation, surpassing Llama3.1. Medium. Available from:
https://beckmoulton.medium.com/mistral-large-2-french-open-source-model-newcomer-le
ading-ai-innovation-surpassing-llama3-1-78d99f45414a

[18] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, ... and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30. Available from:
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Pap
er.pdf

[19] IBM. (n.d.). What are Large Language Models (LLMs)? IBM Think. Available from:
https://www.ibm.com/think/topics/large-language-models

[20] Cloudflare. (n.d.). What is a large language model? Available from:
https://www.cloudflare.com/es-es/learning/ai/what-is-large-language-model/

[21] ). P. Hutchison, “Language Model Perplexity and Overfit,” J. Comput. Linguist., 2012.

[22] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... and Liu, P. J.
(2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
Journal of Machine Learning Research, 21(140), 1-67.

[23] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O.,, .. and
Zettlemoyer, L. (2020). BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. ACL 2020.

[24] Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. (2019, April 21).
BERTScore: Evaluating Text Generation with BERT. arXiv.org. Available from:
https://arxiv.org/abs/1904.09675

[25] Howard, J., and Ruder, S. (2018). Universal Language Model Fine-tuning for Text
Classification. ACL 2018.

39


https://www.geeksforgeeks.org/machine-learning/phases-of-natural-language-processing-nlp/
https://www.geeksforgeeks.org/machine-learning/phases-of-natural-language-processing-nlp/
https://arxiv.org/abs/2407.01557
https://beckmoulton.medium.com/mistral-large-2-french-open-source-model-newcomer-leading-ai-innovation-surpassing-llama3-1-78d99f45414a
https://beckmoulton.medium.com/mistral-large-2-french-open-source-model-newcomer-leading-ai-innovation-surpassing-llama3-1-78d99f45414a
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.ibm.com/think/topics/large-language-models
https://www.cloudflare.com/es-es/learning/ai/what-is-large-language-model/
https://arxiv.org/abs/1904.09675

[26] Devlin, J., Chang, M. W.,, Lee, K., and Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. NAACL-HLT 2019.

[27] Wei, )., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B,, ... and Le, Q. (2022).
Finetuned Language Models Are Zero-Shot Learners. ICML 2022.

[28] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... and Christiano,
P. (2022). Training language models to follow instructions with human feedback. NeurlPS
2022.

[29] Hugging Face (2023). PEFT: Parameter-Efficient Fine-Tuning. Available from:
https://huggingface.co/blog/peft

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a Method
for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational Linguistics. Available from:
https://aclanthology.org/P02-1040.pdf

[31] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In
Text Summarization Branches Out, pages 74-81, Barcelona, Spain. Association for
Computational Linguistics. Available from: https://aclanthology.org/W04-1013.pdf

[32] K. Krippendorff, Content Analysis: An Introduction to Its Methodology, 3rd ed. Sage,
2013.

[33] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1), 37-46. Available from:
https://doi.org/10.1177/001316446002000104

[34] Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Available
from: Psychological Bulletin, 76(5), 378-382. Available from:
https://doi.org/10.1037/h0031619

[35] Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability.
Psychological Bulletin. Available from:
https://www.researchgate.net/file.PostFileLoader.htm(?id=573b2e9af7b67e2efd6743c6&a
ssetKey=AS:362744118300682@1463496346017

[36] Spearman, C. (1904). The Proof and Measurement of Association Between Two
Things. The American Journal of Psychology, 15(1), 72-101.

[37] EAE Barcelona. La importancia de los prompts en el uso de la IA. n.d. Available from:
https://www.eaebarcelona.com/es/blog/que-son-los-prompts-y-su-importancia

[38] diegomurciamart/DaReC. (n.d.). GitHub. Available from:
https://github.com/diegomurciamart/DaReC

40


https://huggingface.co/blog/peft
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/W04-1013.pdf
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1037/h0031619
https://www.researchgate.net/file.PostFileLoader.html?id=573b2e9af7b67e2efd6743c6&assetKey=AS:362744118300682@1463496346017
https://www.researchgate.net/file.PostFileLoader.html?id=573b2e9af7b67e2efd6743c6&assetKey=AS:362744118300682@1463496346017
https://www.eaebarcelona.com/es/blog/que-son-los-prompts-y-su-importancia
https://github.com/diegomurciamart/DaReC

[39] Méndez G. IEEE 830: Recommended Practice for Software Requirements
Specifications.  Universidad  Complutense de Madrid; n.d. Available from:
https://www.fdi.ucm.es/profesor/gmendez/docs/is0809/ieee830.pdf

[40] OpenAl. ChatGPT: Overview. n.d. Available from:
https://openai.com/es-ES/chatgpt/overview/

[41] OpenAl. GPT-4o0 Mini: Advancing cost-efficient intelligence. n.d. Available from:
https://openai.com/es-ES/index/gpt-40-mini-advancing-cost-efficient-intelligence/

[42] Brown T, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language Models
are Few-Shot Learners. arXiv preprint arXiv:2005.14165; 2020. Available from:
https://arxiv.org/pdf/2005.14165

[43] Deepseek Al. deepseek-ai. n.d. Available from: https://huggingface.co/deepseek-ai

[44] Deepseek Al. DeepSeek-R1-Distill-Llama-8B. n.d. Available from:
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

[45] Meta. Llama-3.2-1B-Instruct. n.d. Available from:
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

[46] Meta. Llama-3.2-3B-Instruct. n.d. Available from:
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct

[47] Meta. Llama-3.1-8B-Instruct. n.d. Available from:
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

[48] Mistral Al. Mistral-7B-Instruct-v0.3. n.d. Available from:
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

[49] José Antonio Gutierrez (Guti). Servidor de practicas hendrix. Departamento de
Informatica e Ingenieria de Sistemas, Universidad de Zaragoza; n.d. Available from:
https://diis.unizar.es/WebEst/hendrix/

41


https://www.fdi.ucm.es/profesor/gmendez/docs/is0809/ieee830.pdf
https://openai.com/es-ES/chatgpt/overview/
https://openai.com/es-ES/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://arxiv.org/pdf/2005.14165
https://huggingface.co/deepseek-ai
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://diis.unizar.es/WebEst/hendrix/

Acronimos

API Application Programming Interface
GPT Generative Pre-trained Transformer
1A Inteligencia Artificial

IR Ingenieria de Requisitos

LLaMA Large Language Model Meta Al
LLM Large Language Models (Modelos de Lenguaje a Gran Escala)

LoRA Low-Rank Adaptation

NLP Natural Language Processing (Procesamiento del Lenguaje Natural)

PEFT Parameter-Efficient Fine-Tuning

RF Requisito Funcional

RLEH Reinforcement Learning from Human Feedback (Aprendizaje por refuerzo

con retroalimentacion humana)

RNF Requisito No Funcional

42



Indice de figuras

Figura 4.2.1 Comparativa del rendimiento de modelos open-source antes y después del

fine-tuning. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto).......cccevereeeeererenece 26
Figura 4.2.2 Comparativa del rendimiento de modelos open-source ajustados y modelos de
propdsito general. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto)................... 27
Figura 4.3.1 Puntuacion media por pregunta y Modelo..........cccueveeeeueeeeueveeeeeeeeeeeeeseesesese e 28

43



Indice de tablas

Tabla 3.5.1 Técnicas de optimizacidon empleadas por cada modelo.........cccueeecvereeveeeecrercreennen. 19
Tabla 3.6.1 Criterios de evaluacidn y umbrales cualitativos..........ccceeeeueeeeeeeceeeecreeceeeeeeeee 20
Tabla 4.1.1 Rendimiento de los modelos Sin ajustar.........ceeeciceceeeeeeeee e 24
Tabla 4.2.1 Rendimiento de los modelos open-source tras fine-tuning........cccceeeeeveereeeennene. 25
Tabla 4.3.1 Puntuacion media global por modelo (escalade 1 @ 10)....eevvecevrierenne. 28
Tabla 4.3.2 Alfa de Krippendorff por diMENSION.........ciieeceee et ssasans 29
Tabla 4.3.3 Correlacion de Spearman entre anotadores.........ccccueeeueeeeveveeeeeeeveeeeeeeee e 30
Tabla A.8.1 Resumen de las variantes de prompts evaluadas.........ccceveeeeecerneccnnnessennnnns 47

44



Anexos

45



Anexo A

Prompts utilizados para la generacion automatica
de requisitos

A.1 Prompt directo (castellano)
Prompt simple en espanol, sin ejemplos previos.
Extrae los requisitos funcionales y no funcionales del siguiente sistema.

<descripcion del sistema>

A.2 Prompt directo (inglés)
Prompt equivalente al A.1, pero en inglés.
Extract the functional and non-functional requirements from the following system.

<descripcion del sistema>

A.3 Prompt directo (inglés) con definicion de términos

Prompt en inglés que solicita requisitos funcionales y no funcionales, con una breve
definicién de ambos tipos antes de formular la instruccidn principal.

Functional requirements are the requirements that the end user specifically demands as basic
facilities that the system should offer. All these functionalities need to be necessarily
incorporated into the system as a part of the contract. Non-functional requirements are the
quality constraints that the system must satisfy according to the project contract. The priority
or extent to which these factors are implemented varies from one project to another.

Now, based on this description, extract the functional and non-functional requirements from
the following system.

<descripcion del sistema>

A.4 Prompt contextualizado con ejemplo (few-shot, inglés)

Prompt que incluye un ejemplo previo de cémo estructurar los requisitos (técnica few-shot).

46



Here is an example of extracted requirements from another system and its description:

Description:
<descripcion del sistema>

Requirements:
<requisitos funcionales y no funcionales del sistema>

A.5 Prompt con system message (instrucciones detalladas, inglés)

Instruccion que podria usarse como system prompt (en entornos con roles diferenciados).
Define expectativas de formato, estilo y precision, con énfasis en la claridad y testabilidad.

I'll give you a system message to use through all the conversation:

You are an assistant tasked with taking the client proposals and producing a structured set of
functional and non-functional requirements. Specifically:

Include all explicitly stated requirements in the provided references.

Infer any implicit requirements that are suggested by context but not stated outright.

Write no vague or overly generic statements. Each requirement must be specific and
testable—avoid phrases like “the system should be user friendly.”

Group each requirement as functional or non-functional under clearly named sections, and
label them with a unique identifier (for example, “F1, F2, ...” for functional requirements and
“NF1, NF2,...” for non-functional requirements).

Make sure the final set of requirements has enough detail to guide a development team in
understanding and potentially implementing them.

Your output must be well-organized, clear, and sufficiently detailed to convey exactly what
the system needs to do (functional) and what constraints or qualities the system must meet
(non-functional).

<descripcion del sistema>

A.6 Prompt detallado (castellano)

Prompt en espafiol que solicita una interpretacidn precisa, asumiendo y concretando
ambiguedades potenciales, con orientacidon a implementacion.

Dada la siguiente descripcion de un sistema, dime con todo detalle y sin ambiguedades ni
vaguedades lo que deberia de saber alguien que fuera a implementar dicho sistema. Si es
necesario, asume como quieras dando ejemplos concretos, las dudas que podrian surgir como
por ejemplo, cuando haya algo sobre tiempos pero no se especifique cuanto concretamente,
cuando hay condiciones pero no esten expresamente cuales, temas de conexiones entre
dispositivos, etc. Presenta la informacidn en formato de requisitos funcionales y no
funcionales.

<descripcion del sistema>

47



A.7 Prompt detallado (inglés)

Prompt equivalente al A.6, pero en inglés.

Given the following system description, tell me in full detail and without ambiguities or
vagueness everything that someone implementing the system should know. If necessary,
make assumptions as you see fit, providing concrete examples for any potential doubts that
may arise—for instance, when there are references to time without specific durations, when
conditions are mentioned but not explicitly defined, or when dealing with device connections,
etc. Present the information in the form of functional and non-functional requirements.

<descripcion del sistema>

A.8 Resumen de variantes evaluadas

Cddigo Idioma Estilo
A.l ES Directo
A2 EN Directo
A3 EN Directo con definiciones
A4 EN Few-short (con ejemplos)
A5 EN System prompt
A.6 ES Detallado
A7 EN Detallado

Tabla A.8.1 Resumen de las variantes de prompts evaluadas

48



Anexo B
Métodos de evaluacion

B.1 Evaluacidon automatica

Las métricas automaticas permiten medir rapidamente similitudes cuantitativas entre las
salidas del modelo y unos textos de referencia (ground-truth), pero no capturan aspectos
de claridad, consistencia interna o adecuacion al dominio. Algunas de las métricas mas
comunes son:

e Perplejidad (Perplexity): Mide la capacidad del modelo para predecir la siguiente
palabra en una secuencia. Cuanto menor sea la perplejidad, mejor se ajusta el
modelo al texto de referencia [21].

e BLEU (Bilingual Evaluation Understudy): Mide la coincidencia de n-gramas entre la
salida y una o varias referencias, penalizando la longitud excesiva [30].

o ROUGE (Recall-Oriented Understudy for Gisting Evaluation): Conjunto de
métricas centradas en recuperacidn de n-gramas y subsecuencias. ROUGE-N evaluia
n-gramas y ROUGE-L emplea la longitud de la subsecuencia mas larga comun [31].

e BERTScore: Mide la similitud semantica token-a-token usando embeddings de
BERT, calculando precision, recall y F1 sobre vectores de alto nivel [24].

B.2 Evaluacién humana

La evaluacion por anotadores expertos es esencial cuando la generacidn de texto debe
responder a criterios complejos de dominio, usabilidad o interpretacion. Suele implicar:

1. Definicidn de criterios: Se establecen dimensiones tales como correccién semantica
(adecuacion al contenido de referencia), coherencia y consistencia (sin
contradicciones ni repeticiones), claridad y legibilidad (gramatica, estilo) o
completitud y nivel de detalle.

2. Escalas de valoracién: Sistemas ordinales (por ejemplo, 1-5 o 1-10) o categdricos
(malo/regular/bueno/excelente).

3. Protocolo de anotacién: Guias claras para los evaluadores, ejemplos calibrados y
sesiones de entrenamiento para mitigar sesgos.

4. Muestreo de salidas: Evaluacion de un subconjunto representativo para comparar
mejoras.

49



B.3 Medidas de acuerdo interanotador

La fiabilidad de la evaluacion humana depende de la consistencia entre evaluadores.
Existen varias métricas que varian en la escala de valoracion (nominal vs. ordinal vs.
continuo) y el nimero de anotadores:

e Alfa de Krippendorff: Mide el acuerdo en datos nominales, ordinales o de
intervalos, y tolera valores faltantes. Se basa en discrepancias observadas vs.
esperadas por azar [32].

e Kappa de Cohen: Para dos anotadores, ajusta el porcentaje de acuerdo por el azar
[33].

e Kappa de Fleiss: Generaliza el kappa de Cohen a mas de dos anotadores, evaluando
la proporcidn de acuerdo mayor que el azar [34].

e Coeficiente de correlacién intraclase (ICC): Util para datos numéricos continuos o
intervalos, mide la consistencia de valoraciones individuales respecto a la varianza
total [35].

e Coeficiente de correlacidon de Spearman: Mide la fuerza y direccién de la asociacién
entre dos variables ordinales, basandose en los rangos en lugar de los valores
absolutos [36].

En este trabajo se emplean uUnicamente el alfa de Krippendorff y coeficiente de
correlacion de Spearman.

B.3.1 Alfa de Krippendorff

El alfa de Krippendorff (@) es una medida robusta de acuerdo interanotador que se
adapta a distintos niveles de medicidon (nominal, ordinal, de intervalo o de razén) y permite
valores faltantes y multiples evaluadores. Se define como:

azl—&
D,

donde D, es la discrepancia observada, es decir, el grado medio de desacuerdo real entre
los anotadores y D, es la discrepancia esperada por azar, es decir, la discrepancia que se
esperaria si los anotadores asignaran las puntuaciones aleatoriamente siguiendo la misma
distribucion.

La discrepancia observada D, se define como:

D, = %iiozj - 8(v;, v5)°

i=1 j=1

50



donde 0; es la proporcién de veces que dos anotadores asignaron respectivamente las
categorias v; y vjal mismo item y N es el numero total de comparaciones realizadas.

La discrepancia esperada D, se calcula como:
n n
2
D, = E E pi - pj - 0(vs, vj)
i=1 j=1
donde p;y p; son las proporciones marginales de aparicion de las categorias v; y v;.

Tanto D, como D, se calculan a partir de una funcién de distancia § entre las categorias.
En el caso de escalas ordinales (como la empleada en este estudio, del 1 al 10), se usa
tipicamente la distancia cuadratica:

§(a,b) = (a — b)?

Finalmente, el valor de a se interpreta de la siguiente forma:
e o = 1:acuerdo perfecto
e = 0:acuerdo igual al azar

e o < 0: desacuerdo sistematico

B.3.2 Coeficiente de correlacion de Spearman

Como complemento, se utilizd el coeficiente de correlacion de Spearman (o) para
estudiar el grado de similitud entre los rankings de puntuaciones asignados por pares de
anotadores. Este coeficiente mide si dos evaluadores tienden a ordenar los modelos de
forma similar, aunque usen escalas distintas, y se define como:

donde d; es la diferencia entre los rangos de un ftem 1 para dos anotadores y n es el
numero de items evaluados. Un valor de ¢ proximo a 1 indica una alta concordancia en el
orden relativo asignado a los modelos mientras que valores cercanos a O indican
ordenacidn no relacionada y negativos indican ordenaciones inversas.

51



Anexo C
Detalle de los modelos de lenguaje utilizados

C.1 GPT-40 Mini

El modelo GPT-40 Mini se empled a través de ChatGPT, el cual estd desarrollado por
OpenAl y es un servicio de modelo de lenguaje alojado en la nube que proporciona acceso a
variantes de la familia GPT (Generative Pre-Trained Transformer) mediante interfaz web o
API de pago [40]. No se pudo hacer fine-tuning de ninguno de los modelos de OpenAl ya
que para ello se necesita acceso a la APIl, que es de pago y excede los recursos
presupuestarios disponibles para este trabajo. Por esta razén, se utilizd la versidn gratuita
de ChatGPT, accesible en https://chatgpt.com/, Unicamente para inferencia.

No obstante, las pruebas de inferencia con ChatGPT se realizaron en marzo de 2025,
fecha en que la version gratuita ain no habia sido actualizada a GPT-40 y continuaba
ejecutando un modelo intermedio denominado GPT-40 Mini [41]. Las consultas siguieron
los disenos de prompt del Anexo A para explorar la capacidad del modelo de producir
requisitos funcionales y no funcionales a partir de descripciones de sistemas.

Respecto a su arquitectura, los modelos GPT estan basado en una arquitectura
Transformer de decodificador, entrenada en dos fases:

e Preentrenamiento autoregresivo con aprendizaje auto-supervisado (prediccion del
siguiente token).

e Fine-tuning instruccional, donde el modelo se entrena mediante instruction tuning y
posteriormente se aplica aprendizaje por refuerzo con retroalimentacion humana
(RLHF) para alinear las salidas con preferencias humanas.

Internamente, mantiene miles de millones de parametros distribuidos en multiples capas
de atencién multi-cabeza, alimentadas por embeddings posicionales y normalizaciones
residuales [42].

La eleccion de este modelo se debe a que ChatGPT es uno de los LLMs mas conocidos y
avanzados, ademas de que ha sido entrenado para generar salidas adaptadas al usuario.

C.2 DeepSeek-R1

DeepSeek Chat, desarrollado por DeepSeek Al, es un servicio de modelo de lenguaje
que proporciona acceso gratuito a través de su web oficial https://chat.deepseek.com/ al
modelo DeepSeek-R1 [44]. Aungue hay disponibles modelos de DeepSeek Al en Hugging
Face [43], estos no fueron empleados para fine-tuning ya que al generar texto, el modelo
genera razonamientos y explicaciones intermedias (“chain-of-thought”) que hace que se

52


https://chatgpt.com/
https://chat.deepseek.com/

consuman muchos mas tokens por peticidn. Se utilizd DeepSeek Chat a través de su web
unicamente para inferencia y las consultas siguieron los disefios de prompt del Anexo A.

EL modelo DeepSeek-R1 [44] se basa en una version destilada de LLaMA-8B (un
Transformer de decodificador) y aplica técnicas de knowledge distillation para conservar la
calidad de generacion de un modelo de gran tamafio, reduciendo al mismo tiempo sus
requisitos computacionales. Conserva capas de atencion multi-cabeza, feed-forward vy
positional encodings propios de LLaMA, pero reduce el numero total de tokens procesados
gracias a la destilacion.

C.3 Meta-Llama 3 Instruct

La serie de modelos Meta-Llama 3 Instruct son modelos open-source desarrollados por
Meta Al, basados en la tercera generacién de la familia LLaMA (Large Language Model
Meta Al) y disponibles a través de la plataforma Hugging Face. Los modelos empleados en
este trabajo fueron las versiones de 1.24 mil millones, 3.21 mil millones y 8.03 mil millones
de parametros, disponibles respectivamente en los repositorios:

e meta-llama/Meta-Llama-3.2-1B-Instruct [45]
e meta-llama/Meta-Llama-3.2-3B-Instruct [46]
e meta-llama/Meta-Llama-3.1-8B-Instruct [47]

Todos ellos estan basados en arquitectura Transformer de decodificador con multiples
capas de atencion multi-cabeza, normalizacidn y capas feed-forward y afiaden un paso de
instruction tuning tras el preentrenamiento inicial para seguir instrucciones en lenguaje
natural. Su inclusién en el estudio responde a su disponibilidad libre, su compatibilidad con
entornos de entrenamiento locales y su adecuacién a tareas de NLP centradas en extraccion
o generacion de informacion estructurada, por lo que se emplearon tanto en la fase de
fine-tuning como en inferencia.

C.4 Mistral 7B Instruct

El modelo mistralai/Mistral-7B-Instruct-v0.3 [48] es un modelo de lenguaje open-source
de 7.25 mil millones de parametros desarrollado por Mistral Al y disponible a través de la
plataforma Hugging Face. Esta basado en la arquitectura Transformer de decodificador y
también se le aplica instruction tuning para optimizarlo en la comprension de instrucciones
complejas. Al igual que los modelos Meta-Llama 3 Instruct, este modelo se empled tanto
para inferencia como para fine-tuning.

53



	Trabajo Fin de Grado 
	Aplicación de técnicas de Inteligencia Artificial para optimizar la generación de requisitos en el desarrollo de software 
	Application of Artificial Intelligence techniques to optimize requirements generation in software development 
	AGRADECIMIENTOS 
	RESUMEN 
	ABSTRACT 
	Tabla de contenidos 
	Capítulo 1 
	Introducción 
	1.1.​Contexto y motivación 
	1.2.​Planteamiento del problema 
	1.3.​Objetivos 
	1.4.​Fases del proyecto 
	1.5.​Estructura de la memoria 

	Capítulo 2 
	Estado del arte y fundamentos teóricos 
	2.1.​La ingeniería de requisitos en el desarrollo de software 
	2.2.​Procesamiento del lenguaje natural y su aplicación a la ingeniería de requisitos 
	2.3.​Modelos de lenguaje de gran escala (LLMs) 
	2.4.​Arquitectura Transformer 
	2.5.​Técnicas de ajuste fino 
	2.6.​Métodos de evaluación de salidas generadas 

	Capítulo 3 
	Metodología e implementación 
	3.1.​Diseño de prompts 
	3.2.​Fuentes de datos 
	3.3.​Conjunto de datos (dataset) 
	3.4.​Modelos de lenguaje utilizados 
	3.5.​Entrenamiento (fine-tuning) 
	Tabla 3.5.1 Técnicas de optimización empleadas por cada modelo 

	3.6.​Inferencia 
	Tabla 3.6.1 Criterios de evaluación y umbrales cualitativos 

	3.7.​Validación 

	Capítulo 4 
	Resultados 
	4.1.​Resultados de los modelos sin ajustar 
	Tabla 4.1.1 Rendimiento de los modelos sin ajustar 

	4.2.​Resultados tras fine-tuning 
	Tabla 4.2.1 Rendimiento de los modelos open-source tras fine-tuning 
	Figura 4.2.1 Comparativa del rendimiento de modelos open-source antes y después del fine-tuning. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto). 
	Figura 4.2.2 Comparativa del rendimiento de modelos open-source ajustados y modelos de propósito general. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto). 

	4.3.​Resultados del formulario de validación 
	Tabla 4.3.1 Puntuación media global por modelo (escala de 1 a 10). 
	Figura 4.3.1 Puntuación media por pregunta y modelo 
	Tabla 4.3.2 Alfa de Krippendorff por dimensión 
	Tabla 4.3.3 Correlación de Spearman entre anotadores 
	 


	Capítulo 5 
	Discusión y conclusiones 
	5.1.​Interpretación de resultados 
	5.2.​Limitaciones del estudio 
	5.3.​Impacto en la reducción de errores y ambigüedades 
	5.4.​Cumplimiento de objetivos 
	5.5.​Líneas de investigación y mejoras futuras 

	Bibliografía 
	Acrónimos 
	Índice de figuras 
	Índice de tablas 
	 
	 
	Anexos 
	 
	Anexo A 
	Prompts utilizados para la generación automática de requisitos 
	Tabla A.8.1 Resumen de las variantes de prompts evaluadas 

	Anexo B 
	Métodos de evaluación 
	Anexo C 
	Detalle de los modelos de lenguaje utilizados 

