

Trabajo Fin de Grado

Aplicación de técnicas de Inteligencia Artificial para
optimizar la generación de requisitos en el desarrollo de

software
Application of Artificial Intelligence techniques to

optimize requirements generation in software
development

Autora

Elizabeth Lilai Naranjo Ventura

Directores

José Javier Merseguer Hernaiz
Jorge Raul Bernad Lusilla

Grado en Ingeniería Informática

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2025

AGRADECIMIENTOS

Quiero expresar mi más sincero agradecimiento, en primer lugar, a mis tutores
José Merseguer y Jordi Bernad, por su guía constante, sus valiosos consejos y su
confianza en mí durante este proyecto.

Asimismo, agradezco a Gregorio de Miguel por su participación en el
formulario de validación y por permitirnos emplear los enunciados de sus
exámenes y prácticas para el desarrollo de este trabajo. Y agradezco a Javier
Nogueras también por completar el formulario.

Finalmente, mi gratitud más profunda a mi familia, pareja y amigos por su
paciencia, comprensión y ánimo incondicional, que me han acompañado en cada
paso del camino.

1

Aplicación de técnicas de Inteligencia Artificial
para optimizar la generación de requisitos en el

desarrollo de software

RESUMEN

La calidad de los requisitos en el desarrollo de software es un factor crítico que influye
directamente en el éxito o fracaso de los proyectos, pero su redacción manual conlleva
numerosos riesgos como ambigüedades, omisiones y errores humanos. Este Trabajo Fin de
Grado explora el uso de técnicas de Inteligencia Artificial, y en particular de modelos de
lenguaje de gran escala (LLMs), para asistir y automatizar la generación de requisitos a
partir de descripciones en lenguaje natural de sistemas software.

Para ello, se ha llevado a cabo una comparación entre distintos modelos de lenguaje,
incluyendo modelos de propósito general como ChatGPT y DeepSeek, y modelos de código
abierto como LLaMA y Mistral. Sobre estos últimos, se ha aplicado fine-tuning mediante
adaptadores LoRA y cuantización en 4 bits utilizando el dataset DaReC, especializado en
requisitos de software. Asimismo, se ha diseñado una metodología de evaluación subjetiva
basada en un formulario que analiza dimensiones como claridad, corrección gramatical,
consistencia, cobertura, nivel de detalle y diferenciación entre requisitos funcionales y no
funcionales.

Los resultados muestran que, si bien modelos generalistas como ChatGPT ofrecen una
calidad elevada desde el inicio, los modelos entrenados específicamente para esta tarea,
como Mistral tras el fine-tuning, logran mejorar la estructura y el nivel de detalle de sus
salidas. Sin embargo, aún persisten limitaciones como la cobertura y la redacción técnica
formal. Por otro lado, el análisis de acuerdo entre anotadores mediante el alfa de
Krippendorff y el coeficiente de Spearman reveló un bajo nivel de consistencia, lo que pone
de manifiesto la complejidad inherente a la evaluación subjetiva en este tipo de tareas.

En conclusión, este trabajo demuestra el potencial de los LLMs como herramientas de
apoyo en el desarrollo del software, especialmente cuando se adaptan al dominio
específico. A pesar de las limitaciones detectadas, los resultados obtenidos evidencian el
potencial de una línea de trabajo que podría contribuir a reducir errores humanos, mejorar la
calidad de los requisitos y aumentar la eficiencia del ciclo de vida del software desde sus
primeras etapas.

2

Application of Artificial Intelligence techniques to
optimize requirements generation in software

development

ABSTRACT

The quality of requirements in software development is a critical factor that directly
influences project success or failure. However, their manual specification entails numerous
risks, such as ambiguities, omissions, and human errors. This Bachelor’s Thesis explores the
use of Artificial Intelligence techniques, particularly large language models (LLMs), to
support and automate the generation of requirements from natural language descriptions
of software systems.

To this end, a comparative analysis was carried out between different LLMs, including
general-purpose models such as ChatGPT and DeepSeek, as well as open-source models
such as LLaMA and Mistral. Fine-tuning was applied to the latter using LoRA adapters and
4-bit quantization on the DaReC dataset, which is specialized in software requirements.
Additionally, a subjective evaluation methodology was designed through a questionnaire
assessing dimensions such as clarity, grammatical correctness, consistency, coverage, level
of detail, and the distinction between functional and non-functional requirements.

The results show that while general-purpose models like ChatGPT offer high-quality
outputs from the outset, models specifically fine-tuned for this task, such as Mistral,
demonstrated improvements in structure and level of detail. Nevertheless, limitations
remain in terms of coverage and formal technical phrasing. Furthermore, the analysis of
inter-annotator agreement using Krippendorff’s alpha and Spearman’s rank correlation
coefficient revealed a low level of consistency, highlighting the inherent complexity of
subjective evaluation in this context.

In conclusion, this work demonstrates the potential of LLMs as support tools in software
engineering, especially when adapted to domain-specific tasks. Despite current limitations,
the findings indicate a promising research direction that could help reduce human errors,
enhance requirement quality, and increase development lifecycle efficiency from the earliest
stages.

3

Tabla de contenidos
1. Introducción...6

1.1. Contexto y motivación..6

1.2. Planteamiento del problema..7

1.3. Objetivos...7

1.4. Fases del proyecto...8

1.5. Estructura de la memoria.. 8

2. Estado del arte y fundamentos teóricos.. 10

2.1. La ingeniería de requisitos en el desarrollo de software... 10

2.2. Procesamiento del lenguaje natural y su aplicación a la ingeniería de requisitos.....10

2.3. Modelos de lenguaje de gran escala (LLMs)..12

2.4. Arquitectura Transformer... 12

2.5. Técnicas de ajuste fino...13

2.6. Métodos de evaluación de salidas generadas...14

3. Metodología e implementación..15

3.1. Diseño de prompts... 15

3.2. Fuentes de datos...15

3.3. Conjunto de datos (dataset)..16

3.4. Modelos de lenguaje utilizados..18

3.5. Entrenamiento (fine-tuning).. 18

3.6. Inferencia..20

3.7. Validación.. 22

4. Resultados...24

4.1. Resultados de los modelos sin ajustar.. 24

4.2. Resultados tras fine-tuning... 26

4.3. Resultados del formulario de validación... 28

5. Discusión y conclusiones..32

4

5.1. Interpretación de resultados..32

5.2. Limitaciones del estudio... 33

5.3. Impacto en la reducción de errores y ambigüedades..34

5.4. Cumplimiento de objetivos.. 35

5.5. Líneas de investigación y mejoras futuras.. 35

Bibliografía.. 38

Acrónimos.. 42

Índice de figuras... 43

Índice de tablas...44

Anexo A. Prompts utilizados para la generación automática de requisitos........................ 46

Anexo B. Métodos de evaluación... 49

Anexo C. Detalle de los modelos de lenguaje utilizados... 52

5

Capítulo 1
Introducción

Este capítulo contextualiza el trabajo realizado, destacando la relevancia de la
Inteligencia Artificial (IA), y en particular de las técnicas de Procesamiento del Lenguaje
Natural (NLP, por sus siglas en inglés) [1], en el ámbito de la ingeniería de requisitos [2]. Se
plantea el problema abordado, motivado por las limitaciones de los métodos tradicionales
en la generación de requisitos de software y, a continuación, se presentan los objetivos
principales del proyecto, las fases en las que se ha estructurado el trabajo y la organización
general del documento.

1.1.​ Contexto y motivación

La fase de definición y análisis de requisitos es una de las más críticas en el desarrollo de
software, ya que establece las bases sobre las que se construirá el sistema final. Una
especificación incorrecta, deficiente o ambigua de los requisitos de un sistema puede
derivar en errores costosos, malentendidos entre los implicados, o incluso en la
insatisfacción del cliente con el producto entregado. La calidad de los requisitos impacta
directamente en el éxito de un proyecto de software [2].

Un ejemplo paradigmático de las consecuencias que puede acarrear una mala
especificación es el fallo del cohete Ariane 5 en 1996 [3]. La misión fue abortada apenas 40
segundos después del despegue debido a un error en el software de navegación,
provocado por una conversión de datos incorrecta no contemplada adecuadamente en los
requisitos del sistema. El resultado fue la destrucción del vehículo y la pérdida de
aproximadamente 370 millones de dólares. Este incidente ilustra la importancia crítica de
unos requisitos precisos, completos y verificables.

Tradicionalmente, los requisitos se han obtenido mediante entrevistas, análisis de
documentación, talleres y otras técnicas manuales que dependen en gran medida de la
experiencia y habilidad del analista. Estas técnicas, aunque ampliamente utilizadas, están
sujetas a errores humanos, omisiones y ambigüedades inherentes al lenguaje natural [4, 5].

Con la aparición de técnicas avanzadas de NLP y el auge de los modelos de lenguaje de
gran tamaño (Large Language Models, LLMs) [6], se abren nuevas oportunidades para
automatizar tareas que antes requerían intervención humana intensiva, como la generación
de requisitos. En este marco, el presente trabajo se plantea como una oportunidad para
explorar el uso de modelos de lenguaje en la automatización del proceso de generación de
requisitos, con el objetivo de aumentar la eficiencia, reducir los errores inherentes a los
enfoques tradicionales y mejorar la calidad de los requisitos generados, lo que debería
optimizar el desarrollo del software desde sus etapas iniciales.

6

1.2.​ Planteamiento del problema

A pesar del avance en metodologías y herramientas para el desarrollo de software, la
elicitación y especificación de requisitos continúa dependiendo en gran medida de la
intervención humana, por lo que sigue siendo propenso a errores humanos, ambigüedades
y malentendidos que, si no se detectan a tiempo, pueden propagarse al resto del ciclo de
vida del software, provocando fallos funcionales, sobrecostes o retrasos.

Además, aunque existen modelos de lenguaje entrenados sobre grandes corpus de
texto, su rendimiento en tareas especializadas como la generación de requisitos formales o
semiformales aún presenta limitaciones. Estos modelos pueden generar resultados
gramaticalmente correctos pero semánticamente inadecuados, o bien no adaptarse con
suficiente precisión a los formatos y estilos requeridos en documentos de ingeniería de
requisitos debido a que no están específicamente optimizados para este dominio.

Por tanto, el problema que se aborda en este trabajo es la mejora del proceso de
generación de requisitos mediante técnicas automáticas que reduzcan la intervención
humana y la necesidad de evaluar y ajustar los modelos de NLP existentes para que se
adapten eficazmente a este dominio tan específico.

1.3.​ Objetivos

El principal objetivo de este Trabajo Fin de Grado (TFG) es investigar y aplicar técnicas
de IA, concretamente del ámbito del NLP, con el fin de optimizar la generación de requisitos
en el desarrollo de software. La idea central consiste en explorar el potencial de los LLMs
para asistir e incluso automatizar el proceso de redacción de requisitos, tradicionalmente
realizado de forma manual por analistas humanos.

Con este marco general, se plantean los siguientes objetivos específicos:

-​ Explorar distintos modelos de lenguaje preentrenados (como GPT [7], LLaMA [8],
DeepSeek [9], entre otros) para evaluar su capacidad de generar requisitos de
software a partir de descripciones en lenguaje natural o escenarios funcionales.

-​ Implementar una metodología de evaluación comparativa, en la que se midan
diversos aspectos de la calidad de los requisitos generados, tales como su
coherencia, completitud, corrección lingüística y utilidad práctica para
desarrolladores y analistas.

-​ Aplicar técnicas de ajuste fino (fine-tuning) y adaptación de modelos, como LoRA
(Low-Rank Adaptation) [10], con el objetivo de especializar los modelos en el
dominio de la ingeniería de requisitos, mejorando así su rendimiento específico en
esta tarea.

-​ Realizar experimentos con diferentes configuraciones, incluyendo ajustes de
hiperparámetros y distintas variantes de entrada, para determinar qué
combinaciones ofrecen los mejores resultados según los criterios de evaluación
definidos.

7

-​ Reflexionar sobre la utilidad real de los modelos de lenguaje en este contexto y
proponer recomendaciones para su uso práctico, así como posibles mejoras o líneas
futuras de trabajo.

1.4.​ Fases del proyecto

El desarrollo del trabajo se ha dividido en las siguientes fases, cada una con una
duración y objetivos definidos:

●​ Fase 1 – Formación en modelos de lenguaje y NLP (1 mes)

●​ Fase 2 – Preparación del dataset y experimentación inicial (2 semanas)

●​ Fase 3 – Selección del modelo pre-entrenado y configuración inicial (1 semana)

●​ Fase 4 – Entrenamiento y ajuste del modelo (1,5 meses)

●​ Fase 5 – Evaluación y análisis de resultados (1 mes)

●​ Fase 6 – Redacción del informe final y preparación de su defensa (2 semanas)

1.5.​ Estructura de la memoria

La presente memoria se estructura en cinco capítulos, que reflejan de forma coherente el
desarrollo del trabajo. Cada uno de ellos aborda un aspecto fundamental del TFG, desde la
motivación inicial hasta la exposición de los resultados obtenidos y las conclusiones finales.

A continuación, se describe brevemente el contenido de cada uno:

●​ Capítulo 1 – Introducción: Presenta el contexto general del trabajo, la motivación
que lo impulsa, el problema abordado, los objetivos perseguidos, la planificación
seguida y la estructura general del documento.

●​ Capítulo 2 – Estado del arte y fundamentos teóricos: Se analizan los conceptos
clave relacionados con la ingeniería de requisitos y el NLP, incluyendo los modelos
de lenguaje actuales, técnicas de fine-tuning y enfoques previos aplicados a la
generación de requisitos. Este capítulo proporciona el marco teórico necesario para
comprender las decisiones metodológicas adoptadas.

●​ Capítulo 3 – Metodología e implementación: Describe el enfoque seguido para
llevar a cabo el trabajo. Se detallan las características del dataset empleado, las
fuentes de datos y los modelos utilizados, el proceso de entrenamiento, la
generación de resultados (inferencia) y los criterios de validación aplicados.

●​ Capítulo 4 – Resultados: Expone los resultados obtenidos en cada uno de los
diferentes escenarios de prueba utilizados y una comparativa entre distintas
configuraciones de modelos y técnicas aplicadas. Este capítulo constituye el núcleo
empírico del trabajo.

8

●​ Capítulo 5 – Discusión y conclusiones: Se interpretan los resultados obtenidos y su
impacto en la mejora de la calidad de los requisitos, se analizan las principales
limitaciones del estudio, se recogen las principales conclusiones alcanzadas, el
grado de cumplimiento de los objetivos establecidos inicialmente y se proponen
posibles líneas de trabajo futuro que podrían ampliar o profundizar los resultados
obtenidos.

●​ Bibliografía: Incluye todas las referencias bibliográficas consultadas y citadas a lo
largo del trabajo, que han servido de base para el desarrollo del mismo.

Con esta estructura se busca ofrecer una visión completa y ordenada del trabajo
realizado, facilitando su comprensión y evaluación.

9

Capítulo 2
Estado del arte y fundamentos teóricos

2.1.​ La ingeniería de requisitos en el desarrollo de software

La ingeniería de requisitos (IR) [2] es una fase fundamental dentro del ciclo de vida del
software. Su objetivo principal es identificar, documentar y gestionar las necesidades y
restricciones que debe satisfacer un sistema software, es decir, sus requisitos. Dichos
requisitos se pueden clasificar en diferentes tipos según su naturaleza y propósito:

●​ Requisitos funcionales: Describen comportamientos específicos del sistema.

●​ Requisitos no funcionales: Especifican atributos de calidad del sistema, como
rendimiento, usabilidad, fiabilidad o seguridad.

●​ Requisitos de usuario: Engloban los requisitos funcionales y no funcionales pero
expresados desde el punto de vista del usuario final y redactados en lenguaje
natural.

●​ Requisitos del sistema: Requisitos de usuario redactados de manera técnica y
detallada, que emplean los desarrolladores como base para el diseño e
implementación del sistema [11].

No obstante, en este trabajo, se distingue únicamente entre requisitos funcionales y no
funcionales, ya que esta clasificación resulta suficiente y práctica para abordar el problema
de generación automática de requisitos mediante modelos de lenguaje.

2.2.​ Procesamiento del lenguaje natural y su aplicación a la
ingeniería de requisitos

El procesamiento del lenguaje natural (NLP) es una rama de la inteligencia artificial que
se ocupa de la interacción entre los ordenadores y el lenguaje humano [1]. Su objetivo es
que las máquinas comprendan, interpreten, generen y respondan al lenguaje natural de
forma similar a como lo haría un ser humano y, para ello, combina técnicas de lingüística
computacional, aprendizaje automático y modelos estadísticos. El NLP ha permitido mejorar
en el rendimiento de tareas como la comprensión lectora, el análisis de sentimientos o la
generación de texto, marcando un punto de inflexión en el desarrollo de aplicaciones
basadas en lenguaje [12].

El funcionamiento del NLP suele incluir las siguientes fases [12, 13]:

●​ Preprocesamiento del texto: Limpiar y normalizar el texto antes de procesarlo.

10

●​ Tokenización: Dividir el texto en unidades más pequeñas como palabras, frases o
caracteres.

●​ Eliminación de stopwords: Quitar palabras vacías como "el", "de", "y", etc.

●​ Lematización/stemming: Reducir las palabras a su forma base o raíz.

●​ Normalización: Pasar a minúsculas, eliminar puntuación, corrección ortográfica, etc.

●​ Análisis sintáctico: Analizar la estructura gramatical de las oraciones según las
reglas del idioma.

●​ Análisis semántico: Representar el significado del texto a través de vectores o
embeddings.

●​ Análisis pragmático: Interpretar el significado del texto en función del contexto.

●​ Tareas específicas: Clasificación de texto, extracción de entidades, resumen
automático, traducción o generación de lenguaje natural.

En el contexto del desarrollo de software, el NLP tiene múltiples aplicaciones en la IR,
entre las que se identifican cuatro categorías principales [14]:

●​ Clasificación de requisitos (por ejemplo, funcionales vs. no funcionales).

●​ Extracción automática de requisitos desde, por ejemplo, documentos de texto o
especificaciones.

●​ Transformación y formalización de los requisitos a modelos estructurados o
semiformales.

●​ Análisis de calidad, detectando ambigüedades, redundancias o incoherencias.

En este ámbito, se han desarrollado herramientas y prototipos de investigación, como
por ejemplo, un sistema que emplea técnicas de NLP para identificar automáticamente
requisitos ambiguos en especificaciones escritas en lenguaje natural. El enfoque se basa en
el análisis de patrones lingüísticos y el uso de modelos preentrenados para detectar
expresiones vagas, modales indefinidos o construcciones condicionales poco claras, lo que
permite a los analistas mejorar la calidad de los requisitos desde etapas tempranas [5].

A pesar de los avances, aún existen desafíos importantes como la escasez de datasets
públicos y etiquetados, la falta de estandarización en los criterios de evaluación, la
dependencia del dominio y la necesidad de intervención humana para validar los
resultados. Por ello, este trabajo se enmarca en una línea de investigación activa que busca
aprovechar modelos LLMs ajustados para generar requisitos más útiles y fiables [14].

11

2.3.​ Modelos de lenguaje de gran escala (LLMs)

Los modelos de lenguaje de gran escala (Large Language Models, LLMs) son modelos
de aprendizaje automático típicamente basados en arquitecturas de tipo Transformer [18]
(véase Sección 2.4) y entrenados con grandes cantidades de texto para aprender las
estructuras y patrones del lenguaje natural. Su principal objetivo es modelar la probabilidad
de ocurrencia de secuencias lingüísticas, lo que les permite predecir, completar o generar
texto coherente. Además, estos modelos se caracterizan por contar con miles de millones
de parámetros, lo que les otorga una gran capacidad de representación semántica.
Ejemplos populares de LLMs incluyen GPT-4 [7], PaLM [15], Claude [16], LLaMA [8] o
Mistral [17], entre otros.

A nivel funcional, los LLMs se entrenan inicialmente mediante un proceso de
preentrenamiento no supervisado, donde el objetivo es predecir tokens faltantes o
siguientes en un texto. Posteriormente, pueden ajustarse mediante técnicas como
fine-tuning, instruction tuning o aprendizaje por refuerzo con retroalimentación humana
(RLHF) para especializarlos en tareas concretas. Todo ello permite resolver problemas
como la traducción automática, generación de resúmenes, clasificación de texto, extracción
de información o asistencia conversacional, sin necesidad de diseñar sistemas específicos
para cada tarea [18, 19].

Los LLMs utilizan mecanismos de atención, que permiten capturar relaciones
contextuales a largo plazo entre palabras o frases dentro de un texto y mejorar la
comprensión semántica y la generación coherente de respuestas.

En el contexto de la ingeniería de requisitos, los LLMs abren nuevas posibilidades para
automatizar tareas como la generación de requisitos a partir de descripciones textuales, la
clasificación semántica, la detección de ambigüedades o la transformación de texto natural
a lenguajes formales [19, 20].

2.4.​ Arquitectura Transformer

Mientras que modelos como las redes recurrentes (RNN) o las redes LSTM (Long
Short-Term Memory) procesaban texto de forma secuencial, la arquitectura Transformer
emplea mecanismos de atención que permiten procesar toda la secuencia de texto en
paralelo (cada palabra del input puede acceder directamente a cualquier otra del contexto,
independientemente de su posición) [21]. El componente clave de esta arquitectura es el
mecanismo de self-attention, que permite al modelo asignar diferentes pesos a cada
palabra del contexto a la hora de procesar un token determinado calculando cómo de
relevante es cada palabra con respecto a las demás.

Además, esta arquitectura se compone de dos bloques: el codificador (encoder), que
recibe como entrada una secuencia de tokens y genera su representación contextualizada, y
el decodificador (decoder), que genera la secuencia de salida de manera autoregresiva, es
decir, token a token, condicionada a la entrada codificada por el encoder. Cada bloque está
formado por una pila de capas idénticas que contienen [21]:

12

●​ Mecanismo de atención multi-cabeza (Multi-Head Attention): Permite que cada
token preste atención a otros tokens de la misma secuencia, capturando relaciones
internas sin importar la distancia entre palabras.

●​ Capa feed-forward: Una red neuronal conectada que se aplica de forma
independiente a cada token para transformar su representación.

●​ Normalización y conexiones residuales: Ayudan a estabilizar y mejorar el
entrenamiento.

●​ Codificación posicional: Dado que la arquitectura no tiene una noción inherente del
orden de las palabras, se introducen vectores de posición (positional encodings)
para incorporar esta información.

Actualmente, muchos modelos de lenguaje utilizan variantes de esta arquitectura. En
función del tipo de tarea, se emplean diferentes configuraciones [21]:

●​ Modelos encoder-decoder: Como T5 [22] o BART [23], se usan principalmente en
tareas de traducción, resumen o respuesta automática, donde se transforma una
secuencia de entrada en otra completamente distinta.

●​ Modelos sólo con bloque decoder: Como GPT-4 [7], LLaMA [8] o Mistral [17], están
diseñados para tareas de generación de texto, donde solo se requiere producir una
secuencia de salida a partir de un prompt, sin una entrada que deba ser codificada
por separado.

●​ Modelos solo encoder: Como BERT [24], se utilizan en tareas de clasificación,
extracción de entidades o análisis semántico, donde es necesario comprender el
significado del texto pero no generar texto nuevo.

Los modelos de lenguaje de gran escala utilizados en este trabajo se basan
exclusivamente en el bloque decoder, ya que su propósito principal es la generación de
texto.

2.5.​ Técnicas de ajuste fino

El ajuste fino (fine-tuning) es una técnica para adaptar modelos de lenguaje
preentrenados (modelos base entrenados con grandes cantidades de datos generales) a
tareas específicas mediante una segunda fase de entrenamiento sobre un conjunto de datos
más pequeño y representativo del problema [25]. Este proceso aprovecha el conocimiento
general que el modelo ya ha aprendido, evitando la necesidad de entrenar desde cero y
reduciendo significativamente el coste computacional y de datos. A continuación se
describen las principales técnicas:

●​ Fine-tuning supervisado clásico: Consiste en reentrenar todos los parámetros del
modelo base con los nuevos datos, lo que implica tener una gran capacidad de
GPU/TPU [26].

13

●​ Instruction tuning: Se basa en entrenar al modelo con pares de entrada-salida en
forma de prompt + respuesta para enseñar al modelo a seguir instrucciones
expresadas en lenguaje natural [27].

●​ Aprendizaje por refuerzo con retroalimentación humana (RLHF): Tras un primer
ajuste supervisado, se recopila feedback humano sobre salidas generadas y se
entrena un reward model. A continuación, se aplica aprendizaje por refuerzo para
maximizar dicha recompensa, alineando las respuestas con criterios de calidad
definidos por evaluadores humanos [28].

●​ Adaptadores ligeros (LoRA): Inyecta matrices de bajo rango entrenables en
determinadas capas del modelo, manteniendo el resto de pesos congelados y
permitiendo así adaptar el comportamiento del modelo con un número muy
reducido de parámetros entrenables [10].

En este proyecto, se emplean adaptadores ligeros (LoRA) a través del framework PEFT
de Hugging Face [29] y se entrenan los modelos mediante instruction tuning.

2.6.​ Métodos de evaluación de salidas generadas

Para evaluar la calidad de los textos generados por modelos de lenguaje se suelen
combinar métodos automáticos y evaluaciones humanas, de manera que se cubren tanto
aspectos cuantitativos como cualitativos. En este trabajo se ha optado únicamente por una
evaluación humana de las salidas generadas mediante un formulario, dado que los criterios
de calidad considerados como claridad, gramática, detalle o ambigüedad no pueden ser
capturados adecuadamente mediante métricas automáticas convencionales. Para valorar la
fiabilidad del juicio de los anotadores, se han empleado dos métricas estadísticas:

●​ Alfa de Krippendorff (𝛼): mide el grado de acuerdo entre varios evaluadores,
adaptándose a diferentes tipos de escalas (nominal, ordinal, de intervalo) y
tolerando datos faltantes. Su valor varía entre 1 (acuerdo perfecto), 0 (acuerdo por
azar) y valores negativos (desacuerdo sistemático).

●​ Coeficiente de correlación de Spearman (𝜌): analiza la similitud en el ordenamiento
de modelos por parte de pares de anotadores, sin requerir coincidencia exacta en los
valores absolutos. Su valor oscila entre –1 (orden completamente inverso) y 1
(orden idéntico).

Para una descripción más detallada de estas métricas y sus fórmulas, así como otros
métodos de evaluación existentes, véase el Anexo B.

14

Capítulo 3
Metodología e implementación

Este capítulo describe en detalle la metodología seguida para llevar a cabo el proyecto,
así como los detalles de implementación técnica. Se abordan los aspectos clave
relacionados con las fuentes de datos utilizadas, el diseño de los prompts empleados, los
modelos de lenguaje seleccionados, el proceso de ajuste fino de los modelos y las
estrategias de inferencia y validación aplicadas. Esta sección constituye el núcleo
experimental del trabajo y sirve de base para el análisis de resultados que se presenta en el
siguiente capítulo.

3.1.​ Diseño de prompts

La forma en la que se formula la entrada (prompt) de un modelo de lenguaje tiene un
impacto significativo en la calidad, relevancia y precisión del resultado obtenido ya que los
modelos generan texto a partir de instrucciones en lenguaje natural [37]. Por esta razón, se
ha llevado a cabo un análisis y diseño sistemático de diferentes tipos de prompts, con el
objetivo de conseguir la mejor calidad en los requisitos generados y reducir al mínimo
posible las ambigüedades o formulaciones poco claras.

Para abordar este diseño, se exploraron distintas estrategias de prompting incluyendo,
entre otros, enfoques directos (“Extrae los requisitos funcionales y no funcionales del
siguiente sistema: …”) o enfoques en los que se presentaban previamente varios requisitos
de ejemplo (few-shot prompting). También se experimentó con variaciones en la forma de
la redacción, el nivel de contexto proporcionado y el uso de instrucciones explícitas para
fomentar un lenguaje técnico, específico y orientado a requisitos de software reales.

Además, se evaluó la influencia del idioma (español frente a inglés) en la calidad de los
requisitos generados, comparando prompts equivalentes redactados en español y en inglés.
Esto se debe a que algunos modelos han sido entrenados mayoritariamente con datos en
inglés, lo que puede influir en su rendimiento en otros idiomas. El conjunto completo de
prompts evaluados durante el estudio se encuentran recogidos en el Anexo A.

3.2.​ Fuentes de datos

Durante el desarrollo del TFG se han empleado tres fuentes de datos distintas, con el
objetivo de disponer de descripciones variadas de sistemas software en lenguaje natural
que permitieran evaluar la capacidad de los modelos para generar requisitos funcionales y
no funcionales de calidad. Estas fuentes cubren distintos niveles de formalidad, idioma y
estructura, lo que ha permitido una evaluación más robusta de los resultados generados.

15

1.​ Enunciados de problemas de examen (Universidad de Zaragoza)

Se utilizaron enunciados redactados en castellano, procedentes de exámenes y
prácticas de la asignatura Ingeniería de Requisitos del Grado en Ingeniería
Informática de la Universidad de Zaragoza. Estos enunciados presentan escenarios
detallados y estructurados, a partir de los cuales los estudiantes deben identificar y
redactar los requisitos funcionales y no funcionales.

Durante la fase inicial del trabajo, estos enunciados se emplearon para realizar
pruebas preliminares de inferencia. Además, se generaron versiones resumidas y
más informales de algunos de ellos, con el objetivo de evaluar cómo los modelos se
comportaban frente a entradas más cercanas al lenguaje natural no técnico.

2.​ DaReC (Dataset for Requirements Classification)

El dataset DaReC, disponible públicamente a través de GitHub [38], contiene
descripciones de sistemas reales recopiladas de diversas fuentes, redactadas en
inglés y cada una acompañada de una lista de requisitos funcionales y no
funcionales.

En este trabajo, DaReC fue utilizado para entrenar los modelos mediante técnicas de
ajuste fino (fine-tuning), así como para evaluarlos posteriormente. Esto permitió
evaluar la capacidad del modelo para generalizar tras haber sido expuesto a este
dominio concreto.

3.​ Descripciones de aplicaciones (Google Play Store)

Se recopilaron descripciones públicas de aplicaciones en la Google Play Store,
escritas en castellano, como fuente adicional de descripciones informales y reales de
sistemas software.

Estas descripciones se utilizaron para realizar pruebas preliminares de inferencia y
observar el comportamiento de los modelos ante entradas del mundo real y
orientadas al usuario final, con una redacción más abierta y con menor nivel de
formalización.

3.3.​ Conjunto de datos (dataset)

Para la construcción del conjunto de datos utilizado en la fase de fine-tuning de los
modelos de lenguaje, se valoraron las distintas fuentes de datos descritas en la sección
anterior. El objetivo era contar con descripciones de sistemas en lenguaje natural
acompañadas de requisitos correctamente formulados para que los modelos supieran el
formato y estilo requerido. Finalmente, se optó por utilizar únicamente el dataset DaReC
para la construcción del conjunto de datos ya que era la única fuente que ofrecía
descripciones acompañadas de requisitos asociados.

No obstante, el dataset original de DaReC fue adaptado y transformado para ajustarse a
las necesidades del proyecto. De los 50 sistemas que posee el dataset original de DaReC,
se emplearon un total de 49 para la creación del nuevo conjunto de datos, reservando uno

16

exclusivamente para la validación posterior a la fase de fine-tuning. Esta elección se realizó
manualmente, seleccionando un sistema representativo pero no demasiado específico, de
modo que sirviera para evaluar la capacidad de generalización del modelo sin estar influido
por ejemplos similares vistos durante el entrenamiento. El sistema no incluido en el dataset
es el 2001 - space fractions, cuya descripción es la siguiente:

The Space Fractions project is a learning tool created to help improve fraction-solving skills
for sixth-grade students. The product will be a web-based, interactive game. At the end of
the game, students will be given feedback based on their game scores. We are also providing
an umbrella for the past games created. The umbrella will be a web-based menu system
allowing the user to choose between the games.

El dataset construido se almacenó en formato CSV, con tres columnas:

-​ system: Nombre del fichero o sistema original.

-​ prompt: Plantilla de entrada en inglés utilizada para guiar al modelo en la
generación de requisitos.

-​ requirements: Requisitos esperados, estructurados de forma estandarizada.

Tras probar y analizar los resultados de las distintas variantes de prompts (véase
Sección 3.1), se seleccionó aquel que ofrecía mejores resultados tanto en completitud como
en claridad de las salidas generadas. Este prompt incluye instrucciones específicas para
minimizar ambigüedades, inducir ejemplos concretos y forzar una organización clara en
requisitos funcionales y no funcionales. A continuación se muestra el formato del prompt
utilizado:

Given the following system description, tell me in full detail and without ambiguities or
vagueness everything that someone implementing the system should know. If necessary,
make assumptions as you see fit, providing concrete examples for any potential doubts that
may arise—for instance, when there are references to time without specific durations, when
conditions are mentioned but not explicitly defined, or when dealing with device connections,
etc. Present the information in the form of functional and non-functional requirements.

<descripción del sistema>

En cuanto al formato de los requisitos esperados, se optó por una estructura basada en

las recomendaciones del estándar IEEE Std 830-1998 [39]. En particular, se siguió la
fórmula habitual “The system shall…” como base para expresar los requisitos de manera
clara y formal, y se empleó una codificación estructurada (FR1, FR2, NFR1…) para asegurar
que cada requisito fuese identificable de forma única.

Functional Requirements (FR)
FR1: The system shall ...

Non-Functional Requirements (NFR)
NFR1: ...

17

Para garantizar la coherencia, se adaptaron algunos requisitos originales de DaReC al

nuevo formato, aplicando ajustes mínimos cuando fue necesario. El dataset final se
encuentra disponible en el repositorio del TFG ReqGen-AI-Opt1.

3.4.​ Modelos de lenguaje utilizados

En este trabajo se utilizaron diversos LLMs, todos ellos basados en la arquitectura
Transformer y afinados mediante técnicas de instruction tuning [27]. Esto les permite
interpretar instrucciones expresadas en lenguaje natural y generar texto de forma
coherente, aspecto fundamental para la tarea de generación automática de requisitos a
partir de descripciones informales de sistemas. Concretamente se emplearon:

●​ Modelos de propósito general: Son accesibles a través de plataformas web y se
emplearon únicamente para inferencia.

○​ GPT-4o Mini [41]

○​ DeepSeek-R1 [44]

●​ Modelos open-source (de código abierto): Están disponibles desde la plataforma
Hugging Face, la cual permite emplear sus modelos gratuitamente para
investigación y, por lo tanto, permitió emplearlos tanto para inferencia como para su
ajuste fino.

○​ meta-llama/Meta-Llama-3.2-1B-Instruct [45]

○​ meta-llama/Meta-Llama-3.2-3B-Instruct [46]

○​ meta-llama/Meta-Llama-3.1-8B-Instruct [47]

○​ mistralai/Mistral-7B-Instruct-v0.3 [48]

Para más información y detalles técnicos de los modelos véase el Anexo C.

3.5.​ Entrenamiento (fine-tuning)

El proceso de fine-tuning se llevó a cabo exclusivamente sobre los modelos de código
abierto disponibles en Hugging Face: los modelos de la familia Meta-Llama 3 Instruct (1B,
3B y 8B) y Mistral 7B Instruct. Debido a sus tamaños (que oscilan entre 1.000 y 8.000
millones de parámetros) y las elevadas necesidades de memoria que implican, no fue viable
realizar el entrenamiento en plataformas como Google Colab. En su lugar, se recurrió al
servidor Berlin [49], un servidor de prácticas de la Universidad de Zaragoza que cuenta con
un procesador AMD EPYC 7313P, sistema operativo CentOS GNU/Linux, y una GPU
NVIDIA A10 con 24 Gb de VRAM, proporcionando así una infraestructura adecuada para
este tipo de tareas intensivas en cómputo.

1 https://github.com/lilainaranjo/ReqGen-AI-Opt

18

https://github.com/lilainaranjo/ReqGen-AI-Opt

El script de entrenamiento fue desarrollado en Python utilizando la biblioteca
Transformers de Hugging Face y su clase Trainer, que proporcionan una interfaz flexible
para cargar, configurar y entrenar modelos de lenguaje preentrenados. Para el manejo de
datos se empleó el módulo datasets, que facilita el procesamiento y manipulación del
conjunto de datos, y para la aplicación de técnicas de ajuste eficiente se utilizó la librería
peft (Parameter-Efficient Fine-Tuning) [29]. El entrenamiento se realizó con un batch size de
1 y una learning rate de 1e-4, parámetros que se mantuvieron constantes debido a las
limitaciones de memoria. Se exploraron otras combinaciones de estos hiperparámetros,
pero la memoria limitada y la capacidad computacional restringida impidieron experimentar
con batch sizes mayores. El número de épocas osciló entre 1 y 32 para observar su efecto
en la calidad de los resultados.

Durante el proceso de entrenamiento, el modelo recibe cada bloque de entrada y calcula
mediante forward pass (procesar la secuencia de entrada tokenizada a través de sus capas
para generar una predicción de los tokens de salida) la probabilidad de los tokens de salida
esperados. A continuación, se evalúa la pérdida entre la salida real del modelo y el requisito
“ground-truth” (los requisitos esperados en el dataset). Esta pérdida se retropropaga para
obtener los gradientes de cada parámetro y, finalmente, un optimizador actualiza los pesos
del modelo y los parámetros de los adaptadores LoRA, si los hay, en la dirección que
minimiza la función de pérdida. Repetir este ciclo a lo largo de varias épocas hace que el
modelo aprenda patrones específicos del dominio de requisitos, ajustando sus
representaciones internas para generar texto más preciso y coherente con los ejemplos de
entrenamiento.

Dado el reducido tamaño del dataset (49 descripciones de sistemas), no se realizó una
división convencional en subconjuntos de entrenamiento, validación y test. Reservar una
parte para validación habría reducido aún más la muestra disponible, y el objetivo del
trabajo no era obtener métricas cuantitativas estándar para evaluar la calidad de los
requisitos generados (véase Sección 3.7). En su lugar, se optó por reservar un sistema no
visto durante el entrenamiento para comprobar la capacidad del modelo afinado de
generalizar a nuevos escenarios. Este sistema es el 2001 - space fractions, mencionado
anteriormente en la Sección 3.3.

Una parte fundamental del entrenamiento fue el preprocesamiento del dataset para
adaptarlo al formato conversacional esperado por los modelos Instruct por lo que se utilizó
el método apply_chat_template del tokenizer de Hugging Face para generar secuencias de
entrada con los roles "system", "user" y "assistant". En un primer intento, se intentó pasar
toda la conversación como una única secuencia, pero debido a errores por falta de memoria,
se modificó la función tokenize_with_chat_template para dividir las secuencias generadas
en bloques más pequeños de longitud fija (context_length = 2048). Esta estrategia de
división evitó errores de memoria a costa de cierta pérdida de contexto y coherencia en los
ejemplos. El código completo utilizado para el entrenamiento se encuentra disponible en el
repositorio del TFG ReqGen-AI-Opt1.

Se probaron distintas longitudes de corte para evaluar si era posible evitar el uso de
técnicas de optimización de memoria, pero el entrenamiento completo de los modelos más

19

grandes requería más memoria de la disponible. Por este motivo, en los modelos de mayor
tamaño (3B, 7B y 8B) fue necesario recurrir a dos técnicas complementarias:

●​ Cuantización en 4 bits: mediante la clase BitsAndBytesConfig, que permite reducir
el tamaño de los tensores del modelo utilizando representaciones más compactas,
con un impacto limitado en la precisión.

●​ Adaptadores LoRA (Low-Rank Adaptation): implementados mediante la librería
peft, los cuales permiten insertar capas ligeras entrenables dentro del modelo base,
evitando la necesidad de ajustar todos sus parámetros.

Estas técnicas están descritas con más detalle en la Sección 2.5. Su uso resultó
imprescindible para lograr completar el proceso de fine-tuning en los modelos más
complejos, preservando la viabilidad del experimento sin comprometer gravemente la
calidad de las salidas a pesar de las posibles pérdidas de fidelidad asociadas al uso de
cuantización y fragmentación del contexto. La Tabla 3.5.1 resume qué técnicas fueron
necesarias según el modelo empleado:

Modelo Cuantización 4-bit Adaptadores LoRA

Meta-Llama 3 1B No Sí

Meta-Llama 3 3B Sí Sí

Meta-Llama 3 8B Sí Sí

Mistral 7B Instruct Sí Sí

Tabla 3.5.1 Técnicas de optimización empleadas por cada modelo

Como se observa, sólo el modelo Meta-Llama 1B pudo ser ajustado directamente sin
necesidad de cuantización. Para todos los demás modelos, el ajuste fino habría sido inviable
sin aplicar ambas técnicas de optimización de memoria.

3.6.​ Inferencia

La fase de inferencia tuvo como objetivo evaluar la capacidad de los modelos, tanto
preentrenados como ajustados mediante fine-tuning, para generar requisitos de software a
partir de descripciones de sistemas en lenguaje natural. Esta evaluación se llevó a cabo en
distintos momentos del proyecto y sobre diversos tipos de entrada, con el fin de analizar el
comportamiento de los modelos en escenarios variados y realistas.

Antes de entrenar los modelos open-source, se probaron ChatGPT y DeepSeek Chat
para obtener una primera valoración de las formulaciones de prompt diseñadas (ver Sección
3.1) y analizar si los modelos generaban mejores salidas respecto a unas categorías/temas
u otras. Esto permitió contrastar la claridad y completitud de los requisitos según cada
variante de prompt, identificar qué estilo de redacción inducía salidas más organizadas y
tecnológicas, ajustar el prompt final definitivo que, posteriormente, se utilizaría también

20

para los modelos entrenados y elegir las fuentes de datos que se emplearían en el dataset
final.

Las fuentes de entrada empleadas en estas primeras pruebas fueron las descritas en la
Sección 3.2. En concreto:

●​ Descripciones del dataset DaReC, en inglés. Se emplearon un total de 13
descripciones de las 50 totales, seleccionadas para cubrir distintos dominios y
niveles de complejidad.

●​ Enunciados técnicos de prácticas y exámenes de la asignatura Ingeniería de
Requisitos de la Universidad de Zaragoza. Se emplearon un total de 14
descripciones (7 originales y 7 adaptadas con tono más informal).

●​ Descripciones informales de aplicaciones reales de la Google Play Store. Se
emplearon un total de 7 descripciones con diversidad temática.

Cuando se utilizó como entrada una descripción del dataset DaReC, fue posible
comparar las salidas generadas por los modelos con los requisitos originales de referencia.
En estos casos, se analizaron las salidas en base a los siguientes criterios:

●​ Cobertura de requisitos: Capacidad de extraer todos los requisitos funcionales y no
funcionales presentes en la especificación original.

●​ Claridad estructural: Diferenciación clara entre requisitos funcionales (RF) y no
funcionales (RNF), uso de identificadores únicos, organización formal.

●​ Nivel de detalle: Precisión en la redacción, especificidad o ejemplos adicionales que
no aparecían en el enunciado.

La Tabla 3.6.1 refleja cómo se ha valorado cada uno de los criterios.

 Cobertura de requisitos Claridad estructural Nivel de detalle

Muy bajo
< 15% de los requisitos

originales cubiertos
Lista sin separación RF/RNF

ni numeración
Enunciados genéricos

Bajo 15–30% de los requisitos
originales cubiertos

Separación en RF/RNF, pero
sin identificadores únicos

Redacción sin ejemplos

Medio 30–60% de los requisitos
originales cubiertos

Numeración única parcial
con estructura inconsistente

Algún ejemplo o
suposición mínima

Alto 60–80% de los requisitos
originales cubiertos

Numeración única
consistente y agrupación

clara en RF/RNF

Varios ejemplos y matices
de implementación

Muy alto > 80% de los requisitos
originales cubiertos

Inclusión de subtítulos o
jerarquías avanzadas

Ejemplos de pseudocódigo,
casos de uso

Tabla 3.6.1 Criterios de evaluación y umbrales cualitativos

21

Con el resto de descripciones de sistemas, donde no se disponía de un conjunto de
requisitos de referencia con los que comparar, la evaluación fue puramente cualitativa,
basada en inspección manual.

Con el prompt final seleccionado y el dataset construido, se generaron requisitos usando
los modelos ajustados de Hugging Face (Meta-Llama Instruct 1B/3B/8B y Mistral 7B)
mediante un script desarrollado en Python, utilizando las bibliotecas Transformers, PEFT y
BitsAndBytes de Hugging Face, las cuales permitieron cargar los modelos con adaptadores
LoRA y aplicar cuantización para optimizar el uso de memoria durante la generación. Para
controlar el número de tokens generados, se estableció un límite de salida de 3000 tokens.
No obstante, algunos modelos generaban salidas notablemente más cortas. A medida que
se aumentaban las épocas de entrenamiento (especialmente a partir de 8), se detectaron
problemas de repetición en las salidas, tanto a nivel de frase como en bloques enteros de
requisitos. Para mitigar este problema, se utilizó el parámetro repetition_penalty durante la
inferencia, experimentando con distintos valores que oscilaron entre 1.1 y 1.5. El código
completo empleado para esta fase está disponible en el repositorio del TFG
ReqGen-AI-Opt1.

3.7.​ Validación

La validación del sistema se llevó a cabo mediante una evaluación manual (véase
Sección 2.6). El objetivo de esta fase era valorar la calidad global de los requisitos
generados por distintos modelos, así como detectar fortalezas y debilidades en aspectos
clave como precisión, claridad, coherencia y utilidad práctica. Para ello, se diseñó un
formulario de evaluación en Google Forms, donde se recopilaron valoraciones de
anotadores humanos sobre un conjunto de salidas generadas por distintos modelos para
una misma descripción de sistema. Concretamente se evaluó una de las salidas generada
por:

-​ ChatGPT

-​ DeepSeek

-​ meta-llama/Meta-Llama-3.1-8B-Instruct sin ajustar

-​ meta-llama/Meta-Llama-3.2-1B-Instruct sin ajustar

-​ DaReC

-​ mistralai/Mistral-7B-Instruct-v0.3 sin ajustar

-​ mistralai/Mistral-7B-Instruct-v0.3 ajustado (4 épocas, repetition_penalty=1.3)

La elección de estos modelos respondió al objetivo de cubrir una muestra representativa
de todos los modelos estudiados, así como una instancia del dataset DaReC para contar
con una referencia humana original. Pese a que se ajustaron varios modelos de Hugging
Face con diversas configuraciones, solo se seleccionó uno de esos modelos ajustados para
su evaluación, eligiendo aquel cuya salida ofrecía mayor completitud o coherencia. Esta

22

decisión respondió a limitaciones observadas durante la inferencia, como fallos de
generación, repeticiones excesivas o salidas incompletas en muchas ejecuciones.

Se seleccionaron ejemplos con el mismo sistema como punto de partida (2001 - space
fractions), de forma que se pudiera realizar una comparación directa entre sus salidas y las
valoraciones se realizaron a través de siete preguntas, cada una puntuada en una escala del
1 (muy deficiente) al 10 (excelente):

1.​ ¿Qué tan correctamente han sido etiquetados los requisitos como funcionales o no
funcionales?

2.​ ¿Qué tan precisos y libres de ambigüedad son los términos empleados en los
requisitos generados?

3.​ ¿Qué tan correctos están los requisitos en cuanto a gramática, estilo y ortografía?

4.​ ¿Qué tan fáciles de entender e interpretar resultan los requisitos sin necesidad de
aclaraciones adicionales?

5.​ ¿Qué tan consistente es el conjunto de requisitos entre sí (sin contradicciones, sin
duplicados o copias)?

6.​ ¿Qué tan bien equilibrado está el nivel de detalle (suficiente para entender, sin
exceso de “micro-requisitos”)?

7.​ Valoración general de la salida

El proceso contó con la participación de cuatro anotadores con diferentes perfiles y
niveles de experiencia: una estudiante de grado en Ingeniería Informática, dos profesores de
la rama de ingeniería del software y un profesor especialista en la asignatura de Ingeniería
de Requisitos. Esta diversidad de perfiles permitió recoger opiniones desde distintos niveles
de experiencia, combinando la perspectiva de usuarios finales con la de expertos
académicos en el dominio.

Con el fin de cuantificar el nivel de acuerdo entre las evaluaciones emitidas por los
distintos anotadores, se calculó el alfa de Krippendorff en su variante ordinal, adecuada
para escalas como la utilizada en este estudio (1 a 10). Adicionalmente, para explorar la
relación entre las valoraciones otorgadas por distintos anotadores y evaluar si siguen
patrones similares en la ordenación de las salidas, se calculó también el coeficiente de
correlación de Spearman por pares. La combinación de ambas métricas proporciona una
visión más completa sobre la consistencia interna de la evaluación: mientras que
Krippendorff refleja el nivel de acuerdo exacto, Spearman revela si los anotadores tienden a
priorizar o penalizar los mismos modelos de manera coherente. Para más información sobre
estas métricas véase la Sección 2.6 y el Anexo B.

23

Capítulo 4
Resultados

Este capítulo recoge los resultados obtenidos tras aplicar las distintas configuraciones y
técnicas descritas en el capítulo anterior. Se presentan los resultados de los modelos sin
ajustar, los obtenidos tras el entrenamiento, y los derivados del formulario de validación, así
como el grado de acuerdo entre anotadores.

4.1.​ Resultados de los modelos sin ajustar

En esta sección se presentan los resultados obtenidos al aplicar diferentes tipos de
prompts sobre modelos de lenguaje de propósito general (ChatGPT y DeepSeek), así como
sobre modelos de HuggingFace sin ajustar, utilizando todas las descripciones explicadas en
la Sección 3.6 (13 de DaReC, 14 de exámenes y 7 de Google Play Store). Esto proporcionó
una referencia inicial para medir la mejora que aportan los modelos ajustados
posteriormente.

En el caso de ChatGPT y DeepSeek, se utilizaron múltiples variantes de prompting,
descritas en el Anexo A, incluyendo versiones simples, detalladas, con ejemplos (few-shot
prompting) y con definiciones de lo que son los requisitos. En el caso de los modelos de
HuggingFace sin ajustar (Meta-Llama 1B, 3B, 8B y Mistral), se evaluaron únicamente los
prompts simple y detallado. A continuación, la Tabla 4.1.1 resume los resultados más
representativos respecto a cobertura, claridad y detalle, que se han categorizado según los
umbrales explicados en la Sección 3.6.

Modelo Prompt Cobertura Claridad Detalle

ChatGPT Simple Muy baja Baja Bajo

ChatGPT Detallado Baja Alta Muy alto

ChatGPT Con ejemplo Muy baja Media Medio

ChatGPT
Con definición
de requisitos

Muy baja Baja Bajo

DeepSeek Simple Muy baja Media Medio

DeepSeek Detallado Baja Alta Muy alto

DeepSeek Con ejemplo Muy baja Alta Medio

DeepSeek
Con definición
de requisitos

Muy baja Baja Bajo

24

Meta-Llama 1B Detallado Muy baja Baja Medio

Meta-Llama 3B Detallado Muy baja Baja Alto

Meta-Llama 8B Detallado Muy baja Baja Medio

Mistral Detallado Muy baja Baja Medio

Tabla 4.1.1 Rendimiento de los modelos sin ajustar

Uno de los principales factores que ha condicionado los resultados ha sido el contenido y
longitud de las descripciones originales del sistema. En aquellos casos donde el sistema
estaba definido con escaso contexto, la cobertura fue especialmente baja, incluso con
prompts detallados. Por el contrario, sistemas más extensamente descritos permitieron
extraer un mayor número de requisitos incluso con prompts simples, aunque no siempre
coincidentes con los definidos originalmente en DaReC.

Respecto a los modelos de propósito general, ChatGPT y DeepSeek han generado
salidas similares. DeepSeek ha ofrecido salidas más estructuradas en algunos escenarios,
especialmente al utilizar prompts detallados, donde su claridad fue superior, pero en
términos de cobertura y nivel de detalle ambos modelos tuvieron un rendimiento similar:
generaron algunos requisitos no alineados con los de referencia, mostrando una tendencia
a “imaginar” funcionalidades no descritas explícitamente, sobre todo con prompts
detallados y respecto a los requisitos no funcionales debido a la falta de contexto explícito
en muchas descripciones. Además, fueron capaces de incluir subrequisitos y matices
adicionales cuando se emplearon prompts detallados pero se observó que, en algunos
casos, agruparon múltiples requisitos bajo un mismo encabezado, lo que dificultaba su
identificación individual. En cuanto a la numeración y organización, se detectaron diferencias
según el prompt. Los prompts simples y con definición de requisitos numeraban listas por
separado para RF y RNF, repitiendo identificadores mientras que los prompts detallados y
con ejemplos mejoraron la consistencia, generando identificadores únicos para cada
requisito (por ejemplo, RF1, NF1, etc.), especialmente en los modelos generalistas.

Los modelos open-source evaluados (LLaMA y Mistral) mostraron resultados limitados
en todas las métricas, incluso con prompts detallados. Si bien el nivel de detalle fue
aceptable en algunos casos, la estructura y cobertura fueron deficientes. En general, no
asignaron identificadores únicos a cada requisito y, en algunos casos, generaron listas
planas con afirmaciones demasiado genéricas. Además, la escala del modelo (1B, 3B, 8B)
no implicó mejoras sustanciales en esta fase, lo que sugiere que el modelo necesita un
ajuste fino específico para adaptarse a tareas especializadas como la generación de
requisitos.

Es importante destacar que la métrica de cobertura se evaluó en relación a los requisitos
existentes en el dataset DaReC como ground-truth. Bajo este criterio estricto, muchos
modelos no alcanzaron un buen rendimiento. Sin embargo, si no se tuviera en cuenta dicha
comparación directa, es decir, si se valoraran los requisitos generados únicamente por su
adecuación al dominio descrito, las salidas de los modelos podrían considerarse
razonablemente completas. Esto indica que los modelos, aunque no reproduzcan los

25

requisitos esperados, son capaces de generar descripciones funcionales coherentes, aunque
a menudo divergentes respecto al conjunto de referencia.

Por último, otro aspecto observado en los requisitos generados, tanto por modelos
ajustados como sin ajustar, fue la falta de una clasificación explícita según el grado de
obligatoriedad. Ninguno de los modelos aplicó una redacción diferenciada utilizando verbos
modales como “debe” (requisito obligatorio), “debería” (requisito deseable) o “podría”
(requisito opcional), lo cual es habitual en metodologías formales de especificación de
requisitos. Esta carencia puede afectar a la utilidad práctica de los requisitos generados en
entornos reales de desarrollo.

En resumen, en esta fase preliminar, los modelos generalistas (ChatGPT y DeepSeek)
ofrecieron un rendimiento superior al de los modelos open-source sin ajustar,
especialmente en claridad estructural y nivel de detalle, aunque todos mostraron
limitaciones importantes en cobertura y alineación con requisitos de referencia.

4.2.​ Resultados tras fine-tuning

En esta sección se presentan los resultados obtenidos tras aplicar técnicas de
fine-tuning sobre los modelos open-source Meta-Llama y Mistral, con el objetivo de
mejorar su rendimiento en la tarea de generación automática de requisitos. Esta evaluación
permite valorar en qué medida el entrenamiento específico con el dataset DaReC aporta
mejoras respecto a los modelos sin ajustar y cómo se comparan con modelos de propósito
general como ChatGPT o DeepSeek.

Para esta evaluación se utilizó el prompt simple y el detallado (el que ofreció mejores
resultados en la fase anterior) y se emplearon únicamente dos sistemas de DaReC: 2001 -
space fractions, no empleado para el entrenamiento, y un segundo sistema, empleado en el
entrenamiento, para contrastar el efecto de la adaptación. Aplicando los umbrales definidos
en la Sección 3.6 para cobertura, claridad y detalle, la Tabla 4.2.1 recoge los resultados
más representativos:

Modelo Prompt Cobertura Claridad Detalle

Meta-Llama 1B Simple Muy baja Baja Bajo

Meta-Llama 1B Detallado Muy baja Baja Medio

Meta-Llama 3B Simple Muy baja Baja Bajo

Meta-Llama 3B Detallado Muy baja Baja Medio

Mistral Detallado Muy baja Alta Alto

Tabla 4.2.1 Rendimiento de los modelos open-source tras fine-tuning

Los resultados muestran que el ajuste fino ha permitido ciertas mejoras, especialmente
en el modelo Mistral, que generó requisitos más estructurados, mejoró en la asignación de

26

identificadores únicos a cada requisito, y tuvo un mayor nivel de detalle en la redacción. Aun
así, la cobertura siguió siendo limitada, en gran medida debido a la brevedad o ambigüedad
de algunas descripciones presentes en el dataset DaReC. En este sentido, es importante
volver a destacar que la cobertura se evaluó comparando con los requisitos definidos en
dicho dataset como ground-truth, lo que implica un criterio muy estricto. Si se evaluaran
únicamente los requisitos generados por su coherencia con el dominio del sistema,
independientemente de su coincidencia exacta con los de DaReC, los resultados podrían
considerarse más satisfactorios.

En los modelos Meta-Llama (1B y 3B), en cambio, no se observaron mejoras notables, lo
que sugiere que el tamaño del modelo y su arquitectura podrían estar limitando su
capacidad para aprender patrones y generar salidas estructuradas incluso tras el
entrenamiento adicional. Además, durante la evaluación se detectó que estos modelos
tendían a repetir frases o entrar en bucles, lo cual afectó negativamente tanto a la claridad
como a la utilidad de las salidas.

Tanto en los modelos ajustados como en los no ajustados, se mantuvo la ausencia de
una clasificación por grado de obligatoriedad. Ninguno de ellos incorporó una redacción
diferenciada mediante verbos modales como “debe” (obligatorio), “debería” (deseable) o
“podría” (opcional), una práctica habitual en especificaciones formales de requisitos, como
se comentó anteriormente.

Dado que Mistral-7B fue el único modelo que demostró una mejora significativa en las
métricas evaluadas, fue el seleccionado como representante de los modelos fine-tuned
para la evaluación humana (véase Sección 3.7).

Para ofrecer una visión comparativa más clara, en la Figura 4.2.1 se muestra una gráfica
resumen que compara el rendimiento de los open-source antes y después del fine-tuning
de los modelos para cada una de las métricas evaluadas:

Figura 4.2.1 Comparativa del rendimiento de modelos open-source antes y después del

fine-tuning. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto).

27

Finalmente se incluye también en la Figura 4.2.2 una comparativa del rendimiento
observado en los modelos comerciales ChatGPT y DeepSeek y el modelo Mistral ajustado,
según la misma escala:

Figura 4.2.2 Comparativa del rendimiento de modelos open-source ajustados y modelos de

propósito general. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto).

Esta visualización permite observar cómo el ajuste fino ha tenido un impacto positivo en
la estructura y el detalle de los requisitos generados del modelo Mistral. No obstante, los
modelos ajustados aún no alcanzan el nivel de rendimiento global de los modelos de
propósito general como ChatGPT o DeepSeek.

4.3.​ Resultados del formulario de validación

Tras el análisis cuantitativo de las salidas generadas, tanto por modelos sin ajustar como
por modelos tras fine-tuning, se consideró fundamental complementar los resultados con
una evaluación subjetiva. Para ello, se diseñó un formulario de validación dirigido a
usuarios, cuyo objetivo era identificar qué modelo (independientemente de su arquitectura o
ajuste) generaba requisitos percibidos como más claros, completos y útiles desde una
perspectiva humana (véase Sección 3.7).

A partir de las puntuaciones obtenidas en todas las preguntas, se calcularon las medias
globales de cada salida, considerando todas las dimensiones evaluadas. Esto permite
establecer un ranking general de las salidas y, en consecuencia, de los modelos que las
generaron en función de la percepción por parte de los usuarios. En la Tabla 4.3.1 se
resumen estos resultados:

Salida Media global

Llama 8B (sin ajustar) 6,64

Mistral (ajustado) 6,43

ChatGPT 6,29

28

Mistral (sin ajustar) 5,82

Llama 1B (sin ajustar) 5,46

DaReC 5,43

DeepSeek 5,25

Tabla 4.3.1 Puntuación media global por modelo (escala de 1 a 10).

Como puede observarse, el modelo Llama 8B sin ajustar obtuvo la puntuación media
más alta, superando incluso a modelos ampliamente utilizados como ChatGPT. También
destaca el buen rendimiento del modelo Mistral tras el fine-tuning, que se situó como el
segundo modelo mejor valorado, por delante del resto de modelos sin ajustar e incluso del
modelo base DaReC. Este resultado refuerza la hipótesis de que el entrenamiento
específico con datos de requisitos puede mejorar significativamente la percepción subjetiva
de calidad de las salidas generadas.

Además del promedio global, se calcularon las medias por cada pregunta del formulario,
lo que permitió analizar el rendimiento de los modelos en aspectos concretos como
claridad, corrección gramatical, cobertura o ambigüedad, entre otros. La Figura 4.3.1
muestra las puntuaciones medias obtenidas por cada modelo en cada dimensión evaluada:

Figura 4.3.1 Puntuación media por pregunta y modelo

Los resultados muestran que el modelo Llama 8B sin ajustar, el mejor valorado en
términos generales, obtuvo puntuaciones especialmente altas en el etiquetado correcto de
RF/RNF, la precisión/ausencia de ambigüedad, la consistencia interna y la legibilidad. El
modelo Mistral ajustado fue también consistentemente bien valorado en la mayoría de
dimensiones, especialmente en gramática, estilo y ortografía, y en el nivel de detalle.

Por su parte, ChatGPT fue el modelo mejor puntuado en precisión y legibilidad, lo que
confirma su robustez como modelo de propósito general, si bien fue notablemente peor en
la diferenciación entre requisitos funcionales y no funcionales, una dimensión
especialmente relevante en este contexto. El modelo DeepSeek obtuvo puntuaciones
discretas y, en general, inferiores a las de los modelos más avanzados, lo que podría indicar
una menor adecuación de este modelo a la tarea específica de generación de requisitos.

29

En cuanto al modelo DaReC, que representa los requisitos originales del dataset, se
observó una buena puntuación en el etiquetado RF/RNF (6,25), lo que refleja su
consistencia estructural, pero una valoración general más baja (4,75), posiblemente debido
a una redacción menos clara o pulida que la de los modelos generativos actuales, más
centrados en la fluidez y comprensión del lenguaje natural.

Con el objetivo de analizar la fiabilidad de la validación subjetiva, se calcularon métricas
de consistencia interanotador. En particular, se utilizó el alfa de Krippendorff como medida
del grado de acuerdo entre los evaluadores, tanto de forma global como por cada una de
las preguntas del formulario.

En la Tabla 4.3.2 se presentan los valores del alfa obtenidos para cada una de las
dimensiones evaluadas:

Dimensión evaluada Alfa de Krippendorff

Etiquetado RF/RNF -0,165

Precisión / ausencia de ambigüedad -0,141

Gramática, estilo y ortografía -0,146

Legibilidad (claridad e interpretación) -0,171

Consistencia interna -0,156

Nivel de detalle -0,213

Valoración general -0,150

Media global -0,163

Tabla 4.3.2 Alfa de Krippendorff por dimensión

Como puede observarse, todos los valores obtenidos fueron negativos, lo cual indica que
el nivel de acuerdo entre los anotadores fue incluso inferior al que se esperaría por azar.
Este resultado sugiere una notable disparidad en la manera en que los distintos
participantes interpretaron y evaluaron las salidas generadas por los modelos. Este
desacuerdo puede deberse a factores como la subjetividad inherente a cada dimensión
evaluada, diferencias de criterio personales, la falta de una guía de evaluación común y
detallada o la diferencia en la formación o experiencia entre los participantes.

Por otro lado, de los siete criterios evaluados, el de gramática, estilo y ortografía y el de
precisión / ausencia de ambigüedad mostraron el menor desacuerdo entre anotadores,
mientras que el de nivel de detalle y legibilidad registraron el mayor, lo que indica que los
juicios puramente lingüísticos son más uniformes que los basados en criterios
interpretativos.

Con el fin de complementar el análisis de la fiabilidad interanotador, se calcularon
también los coeficientes de correlación de Spearman entre los rankings otorgados por cada

30

pareja de evaluadores (Tabla 4.3.3). Esta medida permite cuantificar el grado de relación
monotónica entre los juicios de los distintos participantes, evaluando si tienden a coincidir
en su ordenación relativa de las salidas generadas, aunque no necesariamente en los
valores absolutos asignados.

Par de anotadores Correlación de Spearman

Anotador 1 - Anotador 2 -0,185

Anotador 1 - Anotador 3 0,436

Anotador 1 - Anotador 4 -0,714

Anotador 2 - Anotador 3 0,585

Anotador 2 - Anotador 4 0,482

Anotador 3 - Anotador 4 0,200

Media global 0,134

Tabla 4.3.3 Correlación de Spearman entre anotadores

Como puede observarse, los coeficientes obtenidos son muy variables. Algunos pares de
evaluadores muestran una correlación moderadamente positiva (por ejemplo, Anotador 2 -
Anotador 3 con ρ = 0,585), lo que sugiere cierta coherencia en la forma de valorar las
respuestas. Sin embargo, en otros casos, como Anotador 1 - Anotador 4 (ρ = -0,714), se
observa una fuerte correlación negativa, lo que indica que las respuestas mejor valoradas
por un anotador fueron sistemáticamente peor valoradas por el otro.

En conjunto, los resultados obtenidos mediante la correlación de Spearman refuerzan lo
ya apuntado por el alfa de Krippendorff, es decir, existe una alta variabilidad en las
valoraciones individuales, lo que refleja la dificultad de alcanzar un consenso claro en la
evaluación subjetiva de requisitos generados automáticamente.

31

Capítulo 5
Discusión y conclusiones

Este capítulo integra el análisis crítico de los resultados obtenidos con las conclusiones
finales del trabajo. En primer lugar, se interpretan los datos generados durante la
experimentación, destacando las tendencias observadas y contrastándolas con los
objetivos iniciales del proyecto. A continuación, se discuten las principales limitaciones
técnicas y metodológicas del estudio, así como el impacto potencial de las técnicas
aplicadas en la reducción de errores y ambigüedades durante la generación de requisitos.
Finalmente, se evalúa el grado de cumplimiento de los objetivos planteados, se sintetizan
las conclusiones más relevantes y se proponen posibles líneas de mejora y futuras
investigaciones que podrían ampliar el alcance y la aplicabilidad de este enfoque.

5.1.​ Interpretación de resultados

Los resultados obtenidos en el presente trabajo permiten extraer patrones relevantes
sobre el comportamiento y las limitaciones de los distintos modelos de lenguaje aplicados a
la generación automática de requisitos.

Los modelos de propósito general (ChatGPT y DeepSeek) ofrecieron una cobertura
reducida respecto a los requisitos originales del dataset DaReC, extrayendo solo los RF
más evidentes, independientemente del estilo de prompt empleado. Sin embargo, sus
salidas fueron más estructuradas, claras y detalladas que las de los modelos open-source
sin ajustar, especialmente cuando se emplearon prompts detallados. Este comportamiento
puede atribuirse en parte al tamaño y la escala de los modelos de propósito general
(disponen de decenas o cientos de miles de millones de parámetros frente a las 1–8 B de
los modelos open-source), así como a técnicas avanzadas como el instruction tuning y el
RLHF, que aportan una mayor capacidad para organizar y enriquecer las respuestas aun sin
entrenamiento específico en el dominio.

Por su parte, los modelos open-source de Hugging Face (Meta-Llama 1B/3B/8B y
Mistral) sin ajustar mostraron un rendimiento inferior: claridad estructural pobre, listas
planas sin numeración única y detalle escaso. Tras aplicar fine-tuning con LoRA y
cuantización 4-bit, únicamente el modelo Mistral mejoró en la claridad y detalle de los
requisitos, aunque sin incrementar la cobertura. En cambio, las variantes LLaMA 1B y 3B
apenas experimentaron cambios, lo que sugiere que debido a su menor tamaño requieren
un volumen de datos mayor o ajustes más intensivos para lograr una adaptación eficaz al
dominio de DaReC.

El buen desempeño del modelo Mistral ajustado, especialmente en cuanto a claridad,
estructura y nivel de detalle, motivó su selección para el formulario de validación. Su
capacidad para generar secciones RF/RNF numeradas de forma consistente y enriquecerlas

32

con ejemplos y casos de uso coincidió con la percepción de mayor calidad por parte de los
anotadores.

La baja cobertura general observada se atribuye en gran parte a la ambigüedad y
brevedad de muchas descripciones de DaReC. Enunciados muy cortos no proporcionan
contexto suficiente para extraer todos los requisitos y, en consecuencia, todos los sistemas
fallaron al intentar cubrir el conjunto de referencia completo. Esto pone de manifiesto que,
más allá de la potencia del modelo, el diseño del prompt y la riqueza del input son
determinantes para maximizar la cobertura de requisitos.

La evaluación humana confirmó que los modelos open-source de gran tamaño
(Llama-8B y Mistral-7B) lideran la percepción general de calidad, junto con ChatGPT.
Además, estos modelos mantienen perfiles elevados y relativamente planos a lo largo de
los siete criterios, mientras que modelos como DeepSeek y DaReC presentan descensos
pronunciados en aspectos como detalle y consistencia. Por otra parte, Mistral ajustado
alcanza picos destacados en gramática, legibilidad y detalle, confirmando la eficacia del
fine-tuning aplicado.

Para cuantificar la consistencia de estas valoraciones, se calculó el alfa de Krippendorff
por cada criterio (Tabla 4.3.2). Los valores negativos (entre –0,213 y –0,141) obtenidos en
todos los casos indican que el acuerdo entre anotadores quedó por debajo del nivel
aleatorio esperado, reflejando la alta subjetividad y la falta de una guía de evaluación
homogénea. Esta baja fiabilidad sugiere que cada evaluador interpretó de forma distinta los
criterios, especialmente en el nivel de detalle (α = –0,213) y legibilidad (α = –0,171). Este
análisis por criterio sugiere que, aunque el acuerdo general es bajo, existe mayor fiabilidad
en los criterios técnicos, mientras que criterios más interpretativos requieren pautas de
evaluación más precisas para reducir la variabilidad entre anotadores.

Complementariamente, el coeficiente de Spearman entre pares de anotadores (Tabla
4.3.3) ofrece una visión del grado de concordancia en los rankings de modelos. Con una
media global de ρ = 0,134, el acuerdo es muy bajo. Solo el par de anotadores 2–3 mostró
correlación moderada (ρ = 0,585). La gran variabilidad refuerza la conclusión de que las
valoraciones son altamente personales y difíciles de alinear.

En resumen, estos análisis indican que, aunque ciertos modelos destacan de forma
consistente (Llama-8B y Mistral fine-tuned), la fiabilidad de la evaluación subjetiva es baja.
Para futuros estudios, sería recomendable ampliar la muestra de evaluadores, estandarizar
las pautas de anotación y explorar métricas de acuerdo alternativas (por ejemplo, ICC) o
agrupar criterios para mejorar la consistencia interanotador.

5.2.​ Limitaciones del estudio

El presente estudio presenta una serie de limitaciones que deben ser tenidas en cuenta
al interpretar sus resultados. En primer lugar, el dataset empleado en el fine-tuning se
construyó únicamente a partir de 49 descripciones, una muestra que aunque suficiente para
prototipos exploratorios, resulta reducida para entrenar y evaluar modelos de gran escala
de forma robusta. Por esta misma limitación del número de sistemas con requisitos ya
formulados, se empleó una única descripción como conjunto de validación para evaluar el

33

entrenamiento, lo que no permite valorar completamente la adaptabilidad del modelo a
dominios variados o a sistemas con características muy distintas.

Por otro lado, el número de evaluadores participantes fue reducido (sólo 4), con perfiles
diversos (distintos niveles de formación, experiencia y familiaridad con la ingeniería de
requisitos) y no contaban con una guía de evaluación formal, lo que puede haber
contribuido a la variabilidad observada en las puntuaciones asignadas y limita la
generalización de las conclusiones extraídas. Asimismo, el proceso de evaluación se centró
exclusivamente en la percepción subjetiva de las salidas generadas, sin considerar el
impacto que estas podrían tener en fases posteriores del ciclo de vida del software, como el
diseño, la implementación o las pruebas.

Por último, las técnicas de optimización de memoria (cuantización en 4 bits y LoRA)
fueron imprescindibles, pero también introdujeron degradaciones en el entrenamiento y la
coherencia de las salidas. Asimismo, la imposibilidad de entrenar variantes de mayor
tamaño o explorar más configuraciones de hiperparámetros restringe la exhaustividad del
análisis.

En conjunto, estas limitaciones sugieren que, para avanzar hacia una solución
industrialmente viable, sería necesario ampliar y diversificar el dataset, mejorar la fiabilidad
de la evaluación humana, explorar métricas automáticas, probar arquitecturas de mayor
escala y perfeccionar las estrategias de prompting y fine-tuning.

5.3.​ Impacto en la reducción de errores y ambigüedades

Uno de los objetivos principales del presente trabajo era explorar el potencial de los
modelos de lenguaje para contribuir a la reducción de errores y ambigüedades en la fase de
generación de requisitos.

Gracias al prompt detallado y al fine-tuning, Mistral-7B y Llama-8B producen listas de
requisitos correctamente agrupados en funcionales y no funcionales, con numeración única
y consistente (por ejemplo, RF1, RNF1…). Este formato estandarizado disminuye la
probabilidad de omisiones o duplicaciones y facilita la revisión por parte de analistas
humanos.

Aunque los modelos aún no realizan una clasificación por grado de obligatoriedad en su
redacción, los modelos fine-tuned generan descripciones gramaticalmente correctas y usan
terminología precisa, reduciendo ambigüedades asociadas a verbos modales imprecisos.
Estos modelos consiguieron la mayor puntuación (6,5) de entre todos los modelos
evaluados en la categoría de gramática y estilo.

Por otro lado, el prompt detallado induce la generación de supuestos explícitos, así como
ejemplos de uso o flujos de interacción. Al anticipar posibles casos límite, estos detalles
minimizan malentendidos o errores en etapas posteriores de diseño e implementación.

En conjunto, estos avances automatizan tareas de redacción que suelen estar sujetas a
errores humanos (olvidos, inconsistencias de estilo, ambigüedades de lenguaje natural) y
proporcionan un punto de partida estructurado y completo. Aunque aún es necesaria la
supervisión de analistas de requisitos para validar y ajustar el resultado final, los modelos

34

fine-tuned ofrecen un impacto tangible en la eficiencia y calidad de la fase de
especificación, reduciendo tanto la tasa de errores como la ambigüedad inherente a la
documentación de requisitos.

5.4.​ Cumplimiento de objetivos

El propósito principal de este TFG era poner a prueba el potencial de los LLMs para
asistir y automatizar la redacción de requisitos de software. Los resultados obtenidos
demuestran que, con un diseño de prompt apropiado y técnicas de fine-tuning específicas,
los modelos de lenguaje pueden ofrecer un apoyo real y significativo al proceso
tradicionalmente manual de elaboración de requisitos.

Respecto a los objetivos más específicos, se han explorado distintos LLMs como GPT,
LLaMA, DeepSeek y Mistral para realizar pruebas de generación de requisitos con
diferentes prompts y descripciones, así como para aplicar técnicas fine-tuning (LoRA junto
con cuantización en 4 bits). Además, se experimentó con diferentes configuraciones e
hiperparámetros (épocas, repetition_penalty), lo que permitió seleccionar las combinaciones
óptimas para cada modelo, destacando la importancia de adaptar tanto los datos de
entrada como los parámetros de generación.

ChatGPT y DeepSeek proporcionaron un baseline sólido en claridad y detalle, mientras
que las variantes de LLaMA y Mistral requirieron ajuste fino para acercarse a ese nivel de
calidad. Esta comparación permitió identificar que los servicios web destacan de salida,
pero que un modelo open-source como Mistral-7B, tras LoRA y cuantización, podría
alcanzar su desempeño en criterios clave.

Los capítulos 3 y 4 reflejan la metodología de evaluación comparativa llevada a cabo,
abarcando desde la generación de requisitos hasta su valoración por cuatro anotadores en
siete criterios, proporcionando así un diagnóstico exhaustivo de cada sistema.

Finalmente, en este capítulo 5 se recoge la reflexión sobre la utilidad práctica de los
LLMs y las posibles líneas futuras. Si bien la revisión humana experta sigue siendo
necesaria, los modelos afinados pueden reducir drásticamente las ambigüedades y errores
en la fase de redacción de requisitos, liberando a los analistas para tareas de mayor valor
añadido.

5.5.​ Líneas de investigación y mejoras futuras

Los resultados obtenidos en este trabajo abren diversas vías para continuar investigando
y mejorar la aplicación de técnicas de inteligencia artificial en la generación automática de
requisitos en el desarrollo de software. Algunas líneas de investigación y mejoras futuras
relevantes son las siguientes:

●​ Ampliación y diversificación del dataset: La calidad y generalización de los
modelos ajustados se ven limitadas por el tamaño y la diversidad del conjunto de
datos disponible. En futuros trabajos, sería recomendable recopilar y anotar un
mayor volumen de descripciones de sistemas junto con sus requisitos, incluyendo

35

distintos dominios y niveles de complejidad, para mejorar la robustez y capacidad de
generalización del modelo.

●​ Exploración de técnicas avanzadas de ajuste fino: Aunque en este proyecto se ha
utilizado LoRA y cuantización en 4 bits para optimizar el entrenamiento, existen
otras técnicas como el RLFH que podrían mejorar la alineación de los modelos con
las expectativas reales de los usuarios y la calidad de los requisitos generados.

●​ Mejora en la generación y evaluación de prompts: La calidad de las respuestas
generadas está altamente condicionada por el diseño de los prompts por lo que en
investigaciones futuras, se podrían implementar técnicas automáticas o
semi-automáticas para la optimización de prompts, así como explorar métodos de
evaluación más objetivos y automatizados que complementen la validación
subjetiva.

●​ Estudio de métricas de evaluación y acuerdos entre anotadores: Dada la baja
consistencia observada en la validación subjetiva, es necesario investigar métodos
más robustos para evaluar la calidad de los requisitos generados, así como
estrategias para mejorar la concordancia entre evaluadores, incluyendo formación o
guías más detalladas.

●​ Pruebas en infraestructuras de mayor capacidad computacional: Experimentar con
modelos de mayor tamaño en clústeres equipados con GPUs de gran memoria
eliminaría las restricciones de batch size, longitud de contexto y necesidad de
cuantización extrema. Esto viabilizaría explorar ajustes de hiperparámetros más
agresivos, contextos más largos y múltiples épocas sin recurrir a compresión.

●​ Fine-tuning de modelos comerciales de gran escala: Obtener acceso a APIs o
licencias para afinar modelos como GPT-4 con técnicas de LoRA o PEFT adaptadas
a su infraestructura permitiría combinar su amplia preformación con un ajuste
preciso al dominio de la ingeniería de requisitos. Esta línea evaluaría si los LLMs
líderes, ya entrenados con RLHF, pueden mejorar aún más su rendimiento en tareas
especializadas.

●​ Clasificación de grado de obligatoriedad: Incorporar un módulo de post-proceso o
un prompt dinámico que distinga requisitos “debe” (obligatorios), “debería”
(recomendables) y “podría” (opcionales) enriquecería la semántica de las
especificaciones, alineándose con metodologías formales y reduciendo
ambigüedades sobre prioridades.

●​ Generación automática de casos de uso e historias de usuario: Extender la
capacidad de los modelos para que, a partir de cada requisito generado, produzcan
automáticamente casos de uso detallados o historias de usuario con roles, acciones
y criterios de aceptación facilitaría la transición desde la especificación hasta el
diseño y desarrollo, promoviendo una documentación más completa y útil para los
equipos de desarrollo y stakeholders.

36

Estas líneas futuras permitirán profundizar en la integración de técnicas de inteligencia
artificial en el desarrollo del software, aumentando su automatización, precisión y
aplicabilidad en entornos reales.

37

Bibliografía

[1] Chowdhary, K., and Chowdhary, K. R. (2020). Natural language processing.
Fundamentals of artificial intelligence, 603-649.

[2] Nuseibeh, B., and Easterbrook, S. (2000, May). Requirements engineering: a roadmap. In
Proceedings of the Conference on the Future of Software Engineering (pp. 35-46).

[3] 'Alvy, Á. I. (2014, June 4). El error de software que convirtió un lanzamiento espacial en
carísimos fuegos artificiales. RTVE.es. Disponible en:
https://www.rtve.es/noticias/20140604/error-software-convirtio-lanzamiento-espacial-cari
simos-fuegos-artificiales/948262.shtml

[4] Martínez, O. G. E., Reyes, S. V., and González, A. M. (2021). Use of natural language
processing techniques for software requirements detection. South Florida Journal of
Development, 2(5), 7323-7335. Available from:
https://ojs.southfloridapublishing.com/ojs/index.php/jdev/article/download/911/788/2595

[5] Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M., Chioasca, E.-V., and
Batista-Navarro, R. T. (2021). Natural Language Processing for Requirements Engineering:
A Systematic Mapping Study. ACM Computing Surveys , 54(3), 1–41. Article 55. Available
from: https://doi.org/10.1145/3444689

[6] Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., ... and Xie, X. (2024). A survey on
evaluation of large language models. ACM transactions on intelligent systems and
technology, 15(3), 1-45.

[7] Brown, T. B., et al. (2020). Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33, 1877–1901.

[8] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... and Jegou, H.
(2023). LLaMA: Open and Efficient Foundation Language Models. arXiv preprint
arXiv:2302.13971.

[9] DeepSeek-AI, Xiao Bi,et al.. (2024). DeepSeek LLM: Scaling Open-Source Language
Models with Longtermism. arXiv. Available from: https://arxiv.org/abs/2401.02954

[10] Bergmann D. What is fine-tuning? IBM Think [Internet]. Available from:
https://www.ibm.com/think/topics/fine-tuning

[11] University Data Resource Centre, University of Lucknow. Available from:
https://udrc.lkouniv.ac.in/Content/DepartmentContent/SM_6b8ee085-2d45-4a29-9c72-5e
6c1d6d8551_34.pdf

[12] J. Cambria y B. White, “Jumping NLP Curves: A Review of Natural Language Processing
Research,” IEEE Computational Intelligence Magazine, vol. 9, no. 2, pp. 48–57, May 2014.

38

http://rtve.es
https://www.rtve.es/noticias/20140604/error-software-convirtio-lanzamiento-espacial-carisimos-fuegos-artificiales/948262.shtml
https://www.rtve.es/noticias/20140604/error-software-convirtio-lanzamiento-espacial-carisimos-fuegos-artificiales/948262.shtml
https://ojs.southfloridapublishing.com/ojs/index.php/jdev/article/download/911/788/2595
https://doi.org/10.1145/3444689
https://arxiv.org/abs/2401.02954
https://www.ibm.com/think/topics/fine-tuning
https://udrc.lkouniv.ac.in/Content/DepartmentContent/SM_6b8ee085-2d45-4a29-9c72-5e6c1d6d8551_34.pdf
https://udrc.lkouniv.ac.in/Content/DepartmentContent/SM_6b8ee085-2d45-4a29-9c72-5e6c1d6d8551_34.pdf

[13] GeeksforGeeks. (2025, May 1). Phases of Natural Language Processing (NLP).
GeeksforGeeks. Available from:
https://www.geeksforgeeks.org/machine-learning/phases-of-natural-language-processing-
nlp/

[14] Khan, M.A., Aydemir, F.B., Oriol, M. (2025) 8th International Workshop on Natural
Language Processing for Requirements Engineering (NLP4RE’25). Barcelona, Spain, April
7-11

[15] Chowdhery, A., et al.. (2022). PaLM: Scaling language modeling with Pathways.
Journal of Machine Learning Research, 24(240), 1–113.

[16] Priyanshu, A., Maurya, Y., and Hong, Z. (2024). AI governance and accountability: An
analysis of Anthropic's Claude. arXiv. Available from: https://arxiv.org/abs/2407.01557

[17] Moulton, B. (2024, 14 de septiembre). Mistral Large 2: French open source model
newcomer leading AI innovation, surpassing Llama3.1. Medium. Available from:
https://beckmoulton.medium.com/mistral-large-2-french-open-source-model-newcomer-le
ading-ai-innovation-surpassing-llama3-1-78d99f45414a

[18] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30. Available from:
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Pap
er.pdf

[19] IBM. (n.d.). What are Large Language Models (LLMs)? IBM Think. Available from:
https://www.ibm.com/think/topics/large-language-models

[20] Cloudflare. (n.d.). What is a large language model? Available from:
https://www.cloudflare.com/es-es/learning/ai/what-is-large-language-model/

[21] J. P. Hutchison, “Language Model Perplexity and Overfit,” J. Comput. Linguist., 2012.

[22] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... and Liu, P. J.
(2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
Journal of Machine Learning Research, 21(140), 1–67.

[23] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... and
Zettlemoyer, L. (2020). BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. ACL 2020.

[24] Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. (2019, April 21).
BERTScore: Evaluating Text Generation with BERT. arXiv.org. Available from:
https://arxiv.org/abs/1904.09675

[25] Howard, J., and Ruder, S. (2018). Universal Language Model Fine-tuning for Text
Classification. ACL 2018.

39

https://www.geeksforgeeks.org/machine-learning/phases-of-natural-language-processing-nlp/
https://www.geeksforgeeks.org/machine-learning/phases-of-natural-language-processing-nlp/
https://arxiv.org/abs/2407.01557
https://beckmoulton.medium.com/mistral-large-2-french-open-source-model-newcomer-leading-ai-innovation-surpassing-llama3-1-78d99f45414a
https://beckmoulton.medium.com/mistral-large-2-french-open-source-model-newcomer-leading-ai-innovation-surpassing-llama3-1-78d99f45414a
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.ibm.com/think/topics/large-language-models
https://www.cloudflare.com/es-es/learning/ai/what-is-large-language-model/
https://arxiv.org/abs/1904.09675

[26] Devlin, J., Chang, M. W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. NAACL-HLT 2019.

[27] Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., ... and Le, Q. (2022).
Finetuned Language Models Are Zero-Shot Learners. ICML 2022.

[28] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... and Christiano,
P. (2022). Training language models to follow instructions with human feedback. NeurIPS
2022.

[29] Hugging Face (2023). PEFT: Parameter-Efficient Fine-Tuning. Available from:
https://huggingface.co/blog/peft

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a Method
for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational Linguistics. Available from:
https://aclanthology.org/P02-1040.pdf

[31] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In
Text Summarization Branches Out, pages 74–81, Barcelona, Spain. Association for
Computational Linguistics. Available from: https://aclanthology.org/W04-1013.pdf

[32] K. Krippendorff, Content Analysis: An Introduction to Its Methodology, 3rd ed. Sage,
2013.

[33] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1), 37–46. Available from:
https://doi.org/10.1177/001316446002000104

[34] Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Available
from: Psychological Bulletin, 76(5), 378–382. Available from:
https://doi.org/10.1037/h0031619

[35] Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability.
Psychological Bulletin. Available from:
https://www.researchgate.net/file.PostFileLoader.html?id=573b2e9af7b67e2efd6743c6&a
ssetKey=AS:362744118300682@1463496346017

[36] Spearman, C. (1904). The Proof and Measurement of Association Between Two
Things. The American Journal of Psychology, 15(1), 72–101.

[37] EAE Barcelona. La importancia de los prompts en el uso de la IA. n.d. Available from:
https://www.eaebarcelona.com/es/blog/que-son-los-prompts-y-su-importancia

[38] diegomurciamart/DaReC. (n.d.). GitHub. Available from:
https://github.com/diegomurciamart/DaReC

40

https://huggingface.co/blog/peft
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/W04-1013.pdf
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1037/h0031619
https://www.researchgate.net/file.PostFileLoader.html?id=573b2e9af7b67e2efd6743c6&assetKey=AS:362744118300682@1463496346017
https://www.researchgate.net/file.PostFileLoader.html?id=573b2e9af7b67e2efd6743c6&assetKey=AS:362744118300682@1463496346017
https://www.eaebarcelona.com/es/blog/que-son-los-prompts-y-su-importancia
https://github.com/diegomurciamart/DaReC

[39] Méndez G. IEEE 830: Recommended Practice for Software Requirements
Specifications. Universidad Complutense de Madrid; n.d. Available from:
https://www.fdi.ucm.es/profesor/gmendez/docs/is0809/ieee830.pdf

[40] OpenAI. ChatGPT: Overview. n.d. Available from:
https://openai.com/es-ES/chatgpt/overview/

[41] OpenAI. GPT-4o Mini: Advancing cost-efficient intelligence. n.d. Available from:
https://openai.com/es-ES/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

[42] Brown T, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language Models
are Few-Shot Learners. arXiv preprint arXiv:2005.14165; 2020. Available from:
https://arxiv.org/pdf/2005.14165

[43] Deepseek AI. deepseek-ai. n.d. Available from: https://huggingface.co/deepseek-ai

[44] Deepseek AI. DeepSeek-R1-Distill-Llama-8B. n.d. Available from:
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

[45] Meta. Llama-3.2-1B-Instruct. n.d. Available from:
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

[46] Meta. Llama-3.2-3B-Instruct. n.d. Available from:
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct

[47] Meta. Llama-3.1-8B-Instruct. n.d. Available from:
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

[48] Mistral AI. Mistral-7B-Instruct-v0.3. n.d. Available from:
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

[49] José Antonio Gutierrez (Guti). Servidor de prácticas hendrix. Departamento de
Informática e Ingeniería de Sistemas, Universidad de Zaragoza; n.d. Available from:
https://diis.unizar.es/WebEst/hendrix/

41

https://www.fdi.ucm.es/profesor/gmendez/docs/is0809/ieee830.pdf
https://openai.com/es-ES/chatgpt/overview/
https://openai.com/es-ES/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://arxiv.org/pdf/2005.14165
https://huggingface.co/deepseek-ai
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://diis.unizar.es/WebEst/hendrix/

Acrónimos

API Application Programming Interface

GPT Generative Pre-trained Transformer

IA Inteligencia Artificial

IR Ingeniería de Requisitos

LLaMA Large Language Model Meta AI

LLM Large Language Models (Modelos de Lenguaje a Gran Escala)

LoRA Low-Rank Adaptation

NLP Natural Language Processing (Procesamiento del Lenguaje Natural)

PEFT Parameter-Efficient Fine-Tuning

RF Requisito Funcional

RLFH
Reinforcement Learning from Human Feedback (Aprendizaje por refuerzo
con retroalimentación humana)

RNF Requisito No Funcional

42

Índice de figuras

Figura 4.2.1 Comparativa del rendimiento de modelos open-source antes y después del
fine-tuning. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto)................................26

Figura 4.2.2 Comparativa del rendimiento de modelos open-source ajustados y modelos de
propósito general. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto)...................27

Figura 4.3.1 Puntuación media por pregunta y modelo...28

43

Índice de tablas

Tabla 3.5.1 Técnicas de optimización empleadas por cada modelo.. 19

Tabla 3.6.1 Criterios de evaluación y umbrales cualitativos.. 20

Tabla 4.1.1 Rendimiento de los modelos sin ajustar.. 24

Tabla 4.2.1 Rendimiento de los modelos open-source tras fine-tuning...................................... 25

Tabla 4.3.1 Puntuación media global por modelo (escala de 1 a 10)... 28

Tabla 4.3.2 Alfa de Krippendorff por dimensión.. 29

Tabla 4.3.3 Correlación de Spearman entre anotadores... 30

Tabla A.8.1 Resumen de las variantes de prompts evaluadas..47

44

Anexos

45

Anexo A

Prompts utilizados para la generación automática
de requisitos

A.1 Prompt directo (castellano)

Prompt simple en español, sin ejemplos previos.

Extrae los requisitos funcionales y no funcionales del siguiente sistema.

<descripción del sistema>

A.2 Prompt directo (inglés)

Prompt equivalente al A.1, pero en inglés.

Extract the functional and non-functional requirements from the following system.

<descripción del sistema>

A.3 Prompt directo (inglés) con definición de términos

Prompt en inglés que solicita requisitos funcionales y no funcionales, con una breve
definición de ambos tipos antes de formular la instrucción principal.

Functional requirements are the requirements that the end user specifically demands as basic
facilities that the system should offer. All these functionalities need to be necessarily
incorporated into the system as a part of the contract. Non-functional requirements are the
quality constraints that the system must satisfy according to the project contract. The priority
or extent to which these factors are implemented varies from one project to another.
Now, based on this description, extract the functional and non-functional requirements from
the following system.

<descripción del sistema>

A.4 Prompt contextualizado con ejemplo (few-shot, inglés)

Prompt que incluye un ejemplo previo de cómo estructurar los requisitos (técnica few-shot).

46

Here is an example of extracted requirements from another system and its description:

Description:
<descripción del sistema>

Requirements:
<requisitos funcionales y no funcionales del sistema>

A.5 Prompt con system message (instrucciones detalladas, inglés)

Instrucción que podría usarse como system prompt (en entornos con roles diferenciados).
Define expectativas de formato, estilo y precisión, con énfasis en la claridad y testabilidad.

I'll give you a system message to use through all the conversation:

You are an assistant tasked with taking the client proposals and producing a structured set of
functional and non-functional requirements. Specifically:
Include all explicitly stated requirements in the provided references.
Infer any implicit requirements that are suggested by context but not stated outright.
Write no vague or overly generic statements. Each requirement must be specific and
testable—avoid phrases like “the system should be user friendly.”
Group each requirement as functional or non-functional under clearly named sections, and
label them with a unique identifier (for example, “F1, F2, …” for functional requirements and
“NF1, NF2, …” for non-functional requirements).
Make sure the final set of requirements has enough detail to guide a development team in
understanding and potentially implementing them.
Your output must be well-organized, clear, and sufficiently detailed to convey exactly what
the system needs to do (functional) and what constraints or qualities the system must meet
(non-functional).

<descripción del sistema>

A.6 Prompt detallado (castellano)

Prompt en español que solicita una interpretación precisa, asumiendo y concretando
ambigüedades potenciales, con orientación a implementación.

Dada la siguiente descripcion de un sistema, dime con todo detalle y sin ambiguedades ni
vaguedades lo que deberia de saber alguien que fuera a implementar dicho sistema. Si es
necesario, asume como quieras dando ejemplos concretos, las dudas que podrian surgir como
por ejemplo, cuando haya algo sobre tiempos pero no se especifique cuanto concretamente,
cuando hay condiciones pero no esten expresamente cuales, temas de conexiones entre
dispositivos, etc. Presenta la información en formato de requisitos funcionales y no
funcionales.

<descripción del sistema>

47

A.7 Prompt detallado (inglés)

Prompt equivalente al A.6, pero en inglés.

Given the following system description, tell me in full detail and without ambiguities or
vagueness everything that someone implementing the system should know. If necessary,
make assumptions as you see fit, providing concrete examples for any potential doubts that
may arise—for instance, when there are references to time without specific durations, when
conditions are mentioned but not explicitly defined, or when dealing with device connections,
etc. Present the information in the form of functional and non-functional requirements.

<descripción del sistema>

A.8 Resumen de variantes evaluadas

Código Idioma Estilo

A.1 ES Directo

A.2 EN Directo

A.3 EN Directo con definiciones

A.4 EN Few-short (con ejemplos)

A.5 EN System prompt

A.6 ES Detallado

A.7 EN Detallado

Tabla A.8.1 Resumen de las variantes de prompts evaluadas

48

Anexo B

Métodos de evaluación

B.1 Evaluación automática

Las métricas automáticas permiten medir rápidamente similitudes cuantitativas entre las
salidas del modelo y unos textos de referencia (ground-truth), pero no capturan aspectos
de claridad, consistencia interna o adecuación al dominio. Algunas de las métricas más
comunes son:

●​ Perplejidad (Perplexity): Mide la capacidad del modelo para predecir la siguiente
palabra en una secuencia. Cuanto menor sea la perplejidad, mejor se ajusta el
modelo al texto de referencia [21].

●​ BLEU (Bilingual Evaluation Understudy): Mide la coincidencia de n-gramas entre la
salida y una o varias referencias, penalizando la longitud excesiva [30].

●​ ROUGE (Recall-Oriented Understudy for Gisting Evaluation): Conjunto de
métricas centradas en recuperación de n-gramas y subsecuencias. ROUGE-N evalúa
n-gramas y ROUGE-L emplea la longitud de la subsecuencia más larga común [31].

●​ BERTScore: Mide la similitud semántica token-a-token usando embeddings de
BERT, calculando precisión, recall y F1 sobre vectores de alto nivel [24].

B.2 Evaluación humana

La evaluación por anotadores expertos es esencial cuando la generación de texto debe
responder a criterios complejos de dominio, usabilidad o interpretación. Suele implicar:

1.​ Definición de criterios: Se establecen dimensiones tales como corrección semántica
(adecuación al contenido de referencia), coherencia y consistencia (sin
contradicciones ni repeticiones), claridad y legibilidad (gramática, estilo) o
completitud y nivel de detalle.

2.​ Escalas de valoración: Sistemas ordinales (por ejemplo, 1–5 o 1–10) o categóricos
(malo/regular/bueno/excelente).

3.​ Protocolo de anotación: Guías claras para los evaluadores, ejemplos calibrados y
sesiones de entrenamiento para mitigar sesgos.

4.​ Muestreo de salidas: Evaluación de un subconjunto representativo para comparar
mejoras.

49

B.3 Medidas de acuerdo interanotador

La fiabilidad de la evaluación humana depende de la consistencia entre evaluadores.
Existen varias métricas que varían en la escala de valoración (nominal vs. ordinal vs.
continuo) y el número de anotadores:

●​ Alfa de Krippendorff: Mide el acuerdo en datos nominales, ordinales o de
intervalos, y tolera valores faltantes. Se basa en discrepancias observadas vs.
esperadas por azar [32].

●​ Kappa de Cohen: Para dos anotadores, ajusta el porcentaje de acuerdo por el azar
[33].

●​ Kappa de Fleiss: Generaliza el kappa de Cohen a más de dos anotadores, evaluando
la proporción de acuerdo mayor que el azar [34].

●​ Coeficiente de correlación intraclase (ICC): Útil para datos numéricos continuos o
intervalos, mide la consistencia de valoraciones individuales respecto a la varianza
total [35].

●​ Coeficiente de correlación de Spearman: Mide la fuerza y dirección de la asociación
entre dos variables ordinales, basándose en los rangos en lugar de los valores
absolutos [36].

En este trabajo se emplean únicamente el alfa de Krippendorff y coeficiente de
correlación de Spearman.

B.3.1 Alfa de Krippendorff

El alfa de Krippendorff (𝛼) es una medida robusta de acuerdo interanotador que se
adapta a distintos niveles de medición (nominal, ordinal, de intervalo o de razón) y permite
valores faltantes y múltiples evaluadores. Se define como:

donde Do es la discrepancia observada, es decir, el grado medio de desacuerdo real entre
los anotadores y De es la discrepancia esperada por azar, es decir, la discrepancia que se
esperaría si los anotadores asignaran las puntuaciones aleatoriamente siguiendo la misma
distribución.

La discrepancia observada Do se define como:

50

donde oij es la proporción de veces que dos anotadores asignaron respectivamente las
categorías vi y vj al mismo ítem y N es el número total de comparaciones realizadas.

La discrepancia esperada De se calcula como:

donde pi y pj son las proporciones marginales de aparición de las categorías vi y vj.

Tanto Do como De se calculan a partir de una función de distancia 𝛿 entre las categorías.
En el caso de escalas ordinales (como la empleada en este estudio, del 1 al 10), se usa
típicamente la distancia cuadrática:

Finalmente, el valor de 𝛼 se interpreta de la siguiente forma:

●​ 𝛼 = 1: acuerdo perfecto

●​ 𝛼 = 0: acuerdo igual al azar

●​ 𝛼 < 0: desacuerdo sistemático

B.3.2 Coeficiente de correlación de Spearman

Como complemento, se utilizó el coeficiente de correlación de Spearman (𝜌) para
estudiar el grado de similitud entre los rankings de puntuaciones asignados por pares de
anotadores. Este coeficiente mide si dos evaluadores tienden a ordenar los modelos de
forma similar, aunque usen escalas distintas, y se define como:

donde di es la diferencia entre los rangos de un ítem i para dos anotadores y n es el
número de ítems evaluados. Un valor de 𝜌 próximo a 1 indica una alta concordancia en el
orden relativo asignado a los modelos mientras que valores cercanos a 0 indican
ordenación no relacionada y negativos indican ordenaciones inversas.

51

Anexo C

Detalle de los modelos de lenguaje utilizados

C.1 GPT-4o Mini

El modelo GPT-4o Mini se empleó a través de ChatGPT, el cual está desarrollado por
OpenAI y es un servicio de modelo de lenguaje alojado en la nube que proporciona acceso a
variantes de la familia GPT (Generative Pre-Trained Transformer) mediante interfaz web o
API de pago [40]. No se pudo hacer fine-tuning de ninguno de los modelos de OpenAI ya
que para ello se necesita acceso a la API, que es de pago y excede los recursos
presupuestarios disponibles para este trabajo. Por esta razón, se utilizó la versión gratuita
de ChatGPT, accesible en https://chatgpt.com/, únicamente para inferencia.

No obstante, las pruebas de inferencia con ChatGPT se realizaron en marzo de 2025,
fecha en que la versión gratuita aún no había sido actualizada a GPT-4o y continuaba
ejecutando un modelo intermedio denominado GPT-4o Mini [41]. Las consultas siguieron
los diseños de prompt del Anexo A para explorar la capacidad del modelo de producir
requisitos funcionales y no funcionales a partir de descripciones de sistemas.

Respecto a su arquitectura, los modelos GPT están basado en una arquitectura
Transformer de decodificador, entrenada en dos fases:

●​ Preentrenamiento autoregresivo con aprendizaje auto-supervisado (predicción del
siguiente token).

●​ Fine-tuning instruccional, donde el modelo se entrena mediante instruction tuning y
posteriormente se aplica aprendizaje por refuerzo con retroalimentación humana
(RLHF) para alinear las salidas con preferencias humanas.

Internamente, mantiene miles de millones de parámetros distribuidos en múltiples capas
de atención multi-cabeza, alimentadas por embeddings posicionales y normalizaciones
residuales [42].

La elección de este modelo se debe a que ChatGPT es uno de los LLMs más conocidos y
avanzados, además de que ha sido entrenado para generar salidas adaptadas al usuario.

C.2 DeepSeek-R1

DeepSeek Chat, desarrollado por DeepSeek AI, es un servicio de modelo de lenguaje
que proporciona acceso gratuito a través de su web oficial https://chat.deepseek.com/ al
modelo DeepSeek-R1 [44]. Aunque hay disponibles modelos de DeepSeek AI en Hugging
Face [43], estos no fueron empleados para fine-tuning ya que al generar texto, el modelo
genera razonamientos y explicaciones intermedias (“chain-of-thought”) que hace que se

52

https://chatgpt.com/
https://chat.deepseek.com/

consuman muchos más tokens por petición. Se utilizó DeepSeek Chat a través de su web
únicamente para inferencia y las consultas siguieron los diseños de prompt del Anexo A.

El modelo DeepSeek-R1 [44] se basa en una versión destilada de LLaMA-8B (un
Transformer de decodificador) y aplica técnicas de knowledge distillation para conservar la
calidad de generación de un modelo de gran tamaño, reduciendo al mismo tiempo sus
requisitos computacionales. Conserva capas de atención multi-cabeza, feed-forward y
positional encodings propios de LLaMA, pero reduce el número total de tokens procesados
gracias a la destilación.

C.3 Meta-Llama 3 Instruct

La serie de modelos Meta-Llama 3 Instruct son modelos open-source desarrollados por
Meta AI, basados en la tercera generación de la familia LLaMA (Large Language Model
Meta AI) y disponibles a través de la plataforma Hugging Face. Los modelos empleados en
este trabajo fueron las versiones de 1.24 mil millones, 3.21 mil millones y 8.03 mil millones
de parámetros, disponibles respectivamente en los repositorios:

●​ meta-llama/Meta-Llama-3.2-1B-Instruct [45]

●​ meta-llama/Meta-Llama-3.2-3B-Instruct [46]

●​ meta-llama/Meta-Llama-3.1-8B-Instruct [47]

Todos ellos están basados en arquitectura Transformer de decodificador con múltiples
capas de atención multi-cabeza, normalización y capas feed-forward y añaden un paso de
instruction tuning tras el preentrenamiento inicial para seguir instrucciones en lenguaje
natural. Su inclusión en el estudio responde a su disponibilidad libre, su compatibilidad con
entornos de entrenamiento locales y su adecuación a tareas de NLP centradas en extracción
o generación de información estructurada, por lo que se emplearon tanto en la fase de
fine-tuning como en inferencia.

C.4 Mistral 7B Instruct

El modelo mistralai/Mistral-7B-Instruct-v0.3 [48] es un modelo de lenguaje open-source
de 7.25 mil millones de parámetros desarrollado por Mistral AI y disponible a través de la
plataforma Hugging Face. Está basado en la arquitectura Transformer de decodificador y
también se le aplica instruction tuning para optimizarlo en la comprensión de instrucciones
complejas. Al igual que los modelos Meta-Llama 3 Instruct, este modelo se empleó tanto
para inferencia como para fine-tuning.

53

	Trabajo Fin de Grado
	Aplicación de técnicas de Inteligencia Artificial para optimizar la generación de requisitos en el desarrollo de software
	Application of Artificial Intelligence techniques to optimize requirements generation in software development
	AGRADECIMIENTOS
	RESUMEN
	ABSTRACT
	Tabla de contenidos
	Capítulo 1
	Introducción
	1.1.​Contexto y motivación
	1.2.​Planteamiento del problema
	1.3.​Objetivos
	1.4.​Fases del proyecto
	1.5.​Estructura de la memoria

	Capítulo 2
	Estado del arte y fundamentos teóricos
	2.1.​La ingeniería de requisitos en el desarrollo de software
	2.2.​Procesamiento del lenguaje natural y su aplicación a la ingeniería de requisitos
	2.3.​Modelos de lenguaje de gran escala (LLMs)
	2.4.​Arquitectura Transformer
	2.5.​Técnicas de ajuste fino
	2.6.​Métodos de evaluación de salidas generadas

	Capítulo 3
	Metodología e implementación
	3.1.​Diseño de prompts
	3.2.​Fuentes de datos
	3.3.​Conjunto de datos (dataset)
	3.4.​Modelos de lenguaje utilizados
	3.5.​Entrenamiento (fine-tuning)
	Tabla 3.5.1 Técnicas de optimización empleadas por cada modelo

	3.6.​Inferencia
	Tabla 3.6.1 Criterios de evaluación y umbrales cualitativos

	3.7.​Validación

	Capítulo 4
	Resultados
	4.1.​Resultados de los modelos sin ajustar
	Tabla 4.1.1 Rendimiento de los modelos sin ajustar

	4.2.​Resultados tras fine-tuning
	Tabla 4.2.1 Rendimiento de los modelos open-source tras fine-tuning
	Figura 4.2.1 Comparativa del rendimiento de modelos open-source antes y después del fine-tuning. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto).
	Figura 4.2.2 Comparativa del rendimiento de modelos open-source ajustados y modelos de propósito general. Escala: 1 (muy bajo), 2 (bajo), 3 (medio), 4 (alto), 5 (muy alto).

	4.3.​Resultados del formulario de validación
	Tabla 4.3.1 Puntuación media global por modelo (escala de 1 a 10).
	Figura 4.3.1 Puntuación media por pregunta y modelo
	Tabla 4.3.2 Alfa de Krippendorff por dimensión
	Tabla 4.3.3 Correlación de Spearman entre anotadores
	

	Capítulo 5
	Discusión y conclusiones
	5.1.​Interpretación de resultados
	5.2.​Limitaciones del estudio
	5.3.​Impacto en la reducción de errores y ambigüedades
	5.4.​Cumplimiento de objetivos
	5.5.​Líneas de investigación y mejoras futuras

	Bibliografía
	Acrónimos
	Índice de figuras
	Índice de tablas
	
	
	Anexos
	
	Anexo A
	Prompts utilizados para la generación automática de requisitos
	Tabla A.8.1 Resumen de las variantes de prompts evaluadas

	Anexo B
	Métodos de evaluación
	Anexo C
	Detalle de los modelos de lenguaje utilizados

