
Trabajo Fin de Grado

Servicio avanzado de simulación de ciberataques y
respuesta con MITRE Caldera

Advanced cyberattack simulation and response
service with MITRE Caldera

Autor

Garikoitz Ramón Arellano Zub́ıa

Directores

Ibai Marcos Cincunegui

Ricardo Julio Rodŕıguez Fernández

Grado en Ingenieŕıa Informática

ESCUELA DE INGENIERÍA Y ARQUITECTURA
Julio 2025

AGRADECIMIENTOS

Amis padres por tener tanta paciencia conmigo y ayudarme a no darme por vencido.

A Ibai por ayudarme con el proyecto y las prácticas en la empresa.

A Ricardo por ayudarme con la memoria y la presentación.

A Amaya por animarme a seguir estudiando cuando estaba en la FP Superior.

I

II

RESUMEN

En la actualidad, la inteligencia artificial es cada vez más avanzada y usada por

los cibercriminales para realizar ataques a los diferentes entornos. Es por ello que las

auditoŕıas de seguridad son una tarea esencial para conocer el estado de protección

de los sistemas y aplicar las correspondientes correcciones. No obstante, las tareas

de auditoŕıa son complejas, costosas y lentas, lo que dificulta su realización. Este

trabajo tiene como objetivo crear un sistema para facilitar la ejecución y seguimiento

de auditoŕıas de seguridad que combine tareas automáticas y manuales, reduciendo la

carga del personal técnico. Para conseguir este objetivo, se ha optado por el desarrollo

de un sistema de simulación de ataques en tiempo real basado en MITRE Caldera, que

genere un informe tanto técnico como ejecutivo para proporcionar una visión del estado

de seguridad del sistema. Además, se han integrado procesos de planificación, ejecución

y respuesta, lo que permite detectar vulnerabilidades y establecer un seguimiento de

las mismas.

Palabras clave: Cibercriminales, inteligencia artificial, simulación de ataques,

MITRE Caldera

III

ABSTRACT

Currently, artificial intelligence is increasingly advanced and is used by

cybercriminals to carry out attacks on different environments. Therefore, security

audits are essential for determining the protection status of systems and applying

the corresponding corrections. However, audit tasks are complex, costly, and

time-consuming, making them difficult to perform. This work aims to create a system

to facilitate the execution and monitoring of security audits that combines automated

and manual tasks, reducing the burden on technical staff. To achieve this goal, we

have developed a real-time attack simulation system based on MITRE Caldera, which

generates both technical and executive reports to provide an overview of the system’s

security status. Additionally, planning, execution, and response processes have been

integrated, allowing for the detection and monitoring of vulnerabilities.

Key words: Artificial intelligence, cybersecurity, attack simulation, MITRE

Caldera

IV

Lista de figuras

2.1. Modelo de emulación de adversarios. Fuente: [1] 3

2.2. Cyber Kill Chain de Lockheed Martin. Fuente: [2] 5

3.1. Matriz Enterprise MITRE ATT&CK. Fuente [3] 8

3.2. Arquitectura MITRE Caldera . 9

4.1. Infraestructura del sistema . 15

5.1. Diagrama procedimiento de mejora continua 23

5.2. Diagrama de clases servicio Python . 24

5.3. Diagrama del flujo principal del servicio Python 25

5.4. Diagrama completo del sistema . 27

6.1. Agentes instalados en Caldera . 29

6.2. Ejemplo de programación en MITRE Caldera 30

6.3. Operación Test Discovery TFG . 31

6.4. Ejemplo de informe ejecutivo . 32

6.5. Ejemplo de informe técnico . 33

6.6. Ticket en Jira generado por el servicio Python 33

A.1. Diagrama de Gantt . 43

A.2. Categorización de clientes . 44

A.3. Categorización de riesgos . 44

V

VI

Lista de tablas

4.1. Requisitos para la elección del sistema operativo 16

4.2. Caracteŕısticas del servidor principal 16

5.1. Requisitos funcionales . 20

5.2. Requisitos no funcionales . 20

A.1. Distribución de horas por tarea . 43

VII

VIII

Índice

Lista de figuras V

Lista de tablas VII

1. Introducción 1

1.1. Motivación . 1

1.2. Objetivos . 1

1.3. Estructura de la memoria . 2

2. Estado del arte 3

3. Contexto 7

3.1. MITRE ATT&CK . 7

3.2. MITRE Caldera . 9

3.2.1. Agentes . 10

3.2.2. Habilidades . 10

3.2.3. Adversarios . 10

3.2.4. Operaciones . 10

4. Entorno de trabajo 13

4.1. Tecnoloǵıas utilizadas . 13

4.1.1. Asyncio y AioHTTP . 13

4.1.2. Confluence y Jira . 14

4.1.3. Docker . 14

4.1.4. Proxmox VE . 14

4.1.5. Crontab . 15

4.2. Configuración del entorno . 15

4.2.1. Sistema Operativo . 15

4.2.2. Despliegue de Caldera . 16

4.2.3. Entorno de programación del servicio 17

IX

5. Análisis, diseño e implementación 19

5.1. Análisis . 19

5.2. Diseño . 20

5.2.1. Diseño del flujo de ataque . 20

5.2.2. Diseño de la ejecución del servicio 22

5.3. Implementación . 23

5.4. Código fuente y repositorio público . 28

6. Caso de estudio 29

6.1. Configuración en Caldera . 30

6.2. Preparación del servicio Python . 31

6.3. Ejecución del sistema . 31

7. Conclusiones 35

7.1. Conclusiones generales . 35

7.2. Trabajo futuro . 36

Bibliograf́ıa 37

Anexos 40

A. 43

A.1. Tiempo invertido y diagrama de Gantt 43

A.2. Categorización de clientes . 44

A.3. Categorización de riesgos . 44

A.4. Traza del registro creado por el Servicio Python 45

X

Caṕıtulo 1

Introducción

1.1. Motivación

Actualmente, existe una gran variedad de herramientas que simplifican la realización

de ataques a entornos. Con la llegada de la inteligencia artificial (IA), estas herramientas

son cada vez más autónomas y potentes [4]. Por ejemplo, se ha registrado un aumento

del 38% en los ciberataques desde 2022. Este significativo aumento se relaciona

directamente con el uso y la evolución de la IA para crear malware más complejo

y usar nuevas técnicas de phishing más sofisticadas con las que pueden engañar al

usuario [5].

Este nuevo entorno requiere que los equipos de Seguridad Operacional (SOC)

se adapten, usando enfoques más eficientes y proactivos para defender sus

infraestructuras. Una de las tareas de ciberseguridad, como son las auditoŕıas, se ha

convertido en una herramienta esencial para identificar y resolver vulnerabilidades y

para garantizar el cumplimiento normativo [6].

Sin embargo, la realización de auditoŕıas periódicas es un proceso laborioso que

puede consumir una gran cantidad de recursos. Aqúı es donde herramientas como

MITRE Caldera [7] facilitan el trabajo del equipo SOC, ya que permiten la emulación

automática de ataques predefinidos e incluso de ataques diseñados por el propio SOC,

aumentando la eficiencia y optimizando el tiempo de los analistas.

1.2. Objetivos

Este trabajo tiene como objetivo principal fortalecer la resiliencia del SOC ante

un panorama de amenazas en constante evolución mediante la implementación de un

servicio avanzado de simulación de ciberataques. La finalidad de este servicio es facilitar

la tarea de realizar auditoŕıas a entornos, consumiendo la menor cantidad de recursos

posible y optimizando los procesos del equipo SOC.

1

Para lograr el objetivo, se han definido una serie de hitos a cumplir. En primer

lugar, investigar las distintas técnicas utilizadas por atacantes en entornos reales. El

siguiente paso es elaborar un entorno virtual controlado para la simulación de ataques.

A continuación, se debe realizar el estudio, análisis y despliegue de la herramienta

de simulación, con su correspondiente documentación. Después, hay que realizar la

simulación de ataques en el entorno desplegado en los pasos anteriores. La simulación de

ataques permite asentar los conocimientos anteriormente estudiados. El siguiente paso

es diseñar los procesos de simulación de ataques, de notificación y de respuesta. Tras

el diseño de los procesos, es necesaria su implementación. Por ello, los dos siguientes

pasos son la integración de la generación automática de informes técnicos y ejecutivos,

y la integración de un sistema de avisos automáticos para notificar al equipo técnico.

1.3. Estructura de la memoria

Este documento se encuentra dividido en seis caṕıtulos y un anexo. El Caṕıtulo 2

expone el estado del arte de la simulación de adversarios, aśı como conceptos esenciales

como la Cyber Kill Chain [2]. El Caṕıtulo 3 se centra en MITRE, dividiéndose en dos

secciones: una dedicada a la matriz MITRE ATT&CK y otra a la herramienta principal

utilizada en este proyecto, MITRE Caldera. El Caṕıtulo 4 describe las tecnoloǵıas

utilizadas y la configuración del entorno del proyecto. En el Caṕıtulo 5 se detalla la

base sobre la que se ha construido este trabajo, incluyendo la fase de diseño del sistema

global, los distintos flujos y la implementación. El Caṕıtulo 6 presenta un caso de uso, en

el que se programa una operación en Caldera y, tras su ejecución, el servicio desarrollado

en este TFG se encarga de generar el informe y los tickets correspondientes. Finalmente,

el Caṕıtulo 7 recoge las conclusiones y posibles trabajos futuros del proyecto.

Al final del documento se incluye el Anexo A, en el cual se encuentran, en primer

lugar, el diagrama de Gantt con las horas empleadas en el TFG y la distribución

de horas dedicadas a cada parte del trabajo. Después se encuentran las tablas de

categorización y de riesgos, diseñadas para guiar al equipo técnico, y un ejemplo de la

traza del registro generado en el Caṕıtulo 6.

2

Caṕıtulo 2

Estado del arte

En este caṕıtulo, se describe en qué consiste la técnica de simulación de adversarios

utilizada en este trabajo. Después, para una mayor comprensión, se explica el ciclo de

vida de un ciberataque utilizando como referencia la Cyber Kill Chain.

Como explicaron A. Applebaum y D. Miller en la conferencia de BlackHat de 2017

en su exposición acerca de MITRE Caldera [1], la emulación de adversarios es una

técnica que permite comprobar de una forma más realista nuestro entorno mediante la

incorporación de un “enemigo” más realista.

La simulación de adversarios es una técnica que lleva pocos años aplicándose en los

entornos empresariales. No obstante, se ha demostrado que este tipo de técnicas son

muy efectivas, puesto que permiten comprobar el estado del entorno frente a ataques

que ya se han realizado en otros entornos [8]. La Figura 2.1 muestra un breve esquema

que explica de forma gráfica los modelos de emulación de adversarios.

Figura 2.1: Modelo de emulación de adversarios. Fuente: [1]

Para comprender correctamente en qué consiste la simulación de ataques, primero

hay que tener claro qué es un ciberataque y qué partes tiene.

3

Un ciberataque es cualquier intento deliberado de robar, exponer, alterar,

deshabilitar o destruir datos, aplicaciones u otros activos mediante el acceso no

autorizado a una red, sistema informático o dispositivo digital [9]. Un ciberataque

tiene un ciclo de vida, también conocido como Cyber Kill Chain. Este ciclo describe

las fases de un ciberataque dirigido, desglosando cada etapa para que los defensores

puedan identificarlo y detenerlo [2]. Cyber Kill Chain describe estas siete etapas, que

se pueden observar en la Figura 2.2.

La primera fase es el reconocimiento, que se basa en la recopilación de información

por parte de los atacantes. Gracias a esta fase, el atacante obtiene información que

puede utilizar para encontrar brechas de seguridad o puntos de acceso por los que entrar

al sistema de la v́ıctima. La segunda fase es la preparación, donde el atacante elige una

o varias formas de intentar entrar al sistema de la v́ıctima, utilizando la información

obtenida de la fase anterior. Estas formas de intrusión en el sistema se denominan

vectores de ataque. La tercera fase es la distribución, donde una vez que el atacante ya

está dentro del sistema, puede distribuir los programas dañinos que tenga preparados.

Estos programas pueden ser programados para ejecutarse en una fecha determinada

o de forma inmediata o como respuesta a una acción espećıfica, como puede ser una

petición del atacante. La cuarta fase es la denominada explotación, donde una vez que

el atacante ya ha distribuido sus programas dañinos, comienza con la explotación del

sistema. La quinta fase se centra en la instalación de una puerta trasera en el sistema

para tener acceso siempre que quiera. De esta manera, el atacante podrá acceder a

los sistemas sin arriesgarse a ser detectado, comenzando un nuevo ataque. La sexta

fase, comando y control, consiste en que el atacante tome el control del sistema, con

el objetivo de instalar más programas dañinos o filtrar datos en un futuro. La séptima

y última fase son acciones sobre los objetivos, donde el atacante comienza a filtrar o

cifrar los datos de la v́ıctima o incluso hacer que su red no esté disponible. Las acciones

dependen de los objetivos del atacante.

4

Figura 2.2: Cyber Kill Chain de Lockheed Martin. Fuente: [2]

5

6

Caṕıtulo 3

Contexto

Este caṕıtulo se centra en introducir la herramienta MITRE Caldera. Para ello,

es necesario enmarcarla dentro del ecosistema MITRE, que es una organización

estadounidense sin ánimo de lucro que colabora con agencias gubernamentales en

sectores relacionados con la ciberseguridad, fundada en 1958. Primero, se ofrece una

explicación y un análisis del marco MITRE ATT&CK, ya que es una herramienta clave

para la simulación de ataques y constituye la base de MITRE Caldera. Por último, se

explica qué es MITRE Caldera, cómo funciona y cuáles son sus componentes.

3.1. MITRE ATT&CK

MITRE Corporation comenzó a desarrollar en 2013 el marco MITRE ATT&CK

y finalmente lo publicó en mayo de 2015. El objetivo de este marco es fortalecer los

pasos que se toman después de que una organización se ha visto comprometida [10].

Este marco se encuentra en constante expansión, lo que lo convierte en una gran

herramienta para averiguar vulnerabilidades en una arquitectura y determinar cuáles

corregir primero basándose en el riesgo de cada una.

MITRE ATT&CK organiza el conocimiento sobre tácticas y técnicas empleadas

por los atacantes en tres matrices principales. La primera es Enterprise ATT&CK,

enfocada en tácticas y técnicas aplicables a sistemas operativos como Linux, Windows

y macOS. La segunda es PRE-ATT&CK, que recoge las tácticas y técnicas utilizadas en

las fases previas a una intrusión, es decir, durante la planificación y el reconocimiento

de objetivos. Finalmente, la matriz Mobile ATT&CK se centra en aquellas tácticas y

técnicas dirigidas espećıficamente a dispositivos móviles.

Cada matriz ATT&CK genera un informe dividido en columnas, donde cada una

describe tácticas que pretende lograr el atacante. Por otro lado, están las técnicas, que

son los métodos utilizados para conseguir las tácticas. Para este proyecto, la matriz de

interés es la Enterprise ATT&CK, que se divide en 14 tácticas [11].

7

La primera táctica es reconocimiento, la cual se encarga de recopilar información

que pueda ser útil para poner en marcha acciones contra la v́ıctima. En segundo lugar

está el desarrollo de recursos, cuyo objetivo es desarrollar, comprar o robar recursos que

puedan ser útiles para ejecutar otras tácticas y cumplir con los objetivos del atacante.

El siguiente es el acceso inicial para infiltrarse en las redes corporativas. Una vez

infiltrado, la siguiente táctica es ejecución con el fin de ejecutar código dañino en la

red corporativa. Sin embargo, es necesario mantener esa posición dentro de los sistemas

y para ello se utilizan tácticas de persistencia. Posteriormente viene el escalamiento

de privilegios, que consiste en intentar conseguir un mayor nivel de permisos en

un sistema empresarial. La siguiente táctica es la evasión de defensa centrada en

desinstalar las soluciones de seguridad instaladas o en la ofuscación y cifrado de

ficheros ejecutables o scripts. La obtención o robo de nombres de usuario y contraseñas

se encuentra englobada en la táctica acceso a credenciales. El descubrimiento tiene

como objetivo conocer en profundidad el sistema y la red corporativa, lo cual permite

posteriormente realizar un movimiento lateral para explorar toda la red corporativa y

encontrar los objetivos. Una vez encontrados los objetivos, el atacante puede realizar

una recopilación para obtener datos que sean de interés. Todas las tácticas utilizadas

para intentar comunicarse y controlar los sistemas comprometidos en la infraestructura

se encuentran dentro de comando y control. Finalmente, el atacante puede realizar una

exfiltración para robar datos de los sistemas corporativos y/o un impacto para paralizar

la operatividad de la empresa.

La Figura 3.1 muestra un ejemplo de una de las matrices de MITRE. En este caso,

se muestra la matriz Enterprise ATT&CK, puesto que es la matriz que se va a utilizar

para el desarrollo de este proyecto, al ser la especializada en sistemas Windows, Linux

y macOS.

Figura 3.1: Matriz Enterprise MITRE ATT&CK. Fuente [3]

8

3.2. MITRE Caldera

El proyecto MITRE Caldera es una de las herramientas seleccionadas para cumplir

parte de los objetivos de este trabajo debido a que es una plataforma de simulación de

brechas y ataques de código abierto creada por MITRE Corporation, que permite a las

organizaciones emular de manera automática las tácticas, técnicas y procedimientos

(TTP) empleados por actores de amenazas persistentes avanzadas del mundo real. La

plataforma está diseñada con un enfoque modular, lo que facilita su personalización

para adaptarse a los requisitos espećıficos de una organización, según lo que se desee

ejecutar o simular.

MITRE Caldera viene preconfigurado con dos usuarios, el primero es el usuario red,

el cual proporciona la capacidad de poder ejecutar distintos tipos de TTPs extráıdos

directamente desde MITRE, de forma que se puede comprobar periódicamente si los

sistemas de protección están realmente funcionando o tienen algún tipo de brecha. Por

otro lado, existe el usuario blue, que ayuda al equipo de Blue Team (grupo encargado

de la defensa de la infraestructura de una organización) a estudiar el comportamiento

de los distintos tipos de TTPs para crear posteriormente alertas en el SIEM (Security

Information and Event Management ; en español, sistema de gestión de información y

eventos de seguridad. Es una solución que centraliza, correlaciona y analiza los registros

de eventos generados por los sistemas de una organización, con el objetivo de detectar

amenazas y generar alertas en tiempo real) y su correspondiente respuesta desde el

EDR (Endpoint Detection and Response; en español, detección y respuesta en punto

final. Es una solución diseñada para monitorizar, detectar y responder a amenazas en

dispositivos como ordenadores, servidores o portátiles, permitiendo ejecutar acciones

de forma automática en tiempo real). En la Figura 3.2 se muestra la arquitectura de

MITRE Caldera.

Figura 3.2: Arquitectura MITRE Caldera

9

3.2.1. Agentes

Un Agente es un programa escrito en un lenguaje de programación que ejecuta

instrucciones de un adversario en los sistemas comprometidos. Normalmente, estos

equipos se comunican mediante protocolos como HTTP. Además, el agente es el

encargado de generar el beaconing (comportamiento de red en el que un dispositivo o

sistema env́ıa señales o mensajes de forma periódica a otros sistemas) al C2 (Command

and Control ; en español, comando y control. En el contexto de MITRE Caldera es un

mecanismo utilizado para coordinar los agentes desplegados desde un servidor central)

de forma regular para preguntar si hay nuevas instrucciones que ejecutar. Los agentes

instalados aparecerán en la interfaz gráfica del sistema en el apartado Agents. Los

agentes pueden ser agrupados en grupos personalizados.

3.2.2. Habilidades

Una habilidad es un conjunto espećıfico de instrucciones que un agente debe

ejecutar en una máquina. En otras palabras, es una implementación espećıfica

de una técnica/táctica ATT&CK. Las habilidades pueden incluir comandos, la

plataforma/ejecutor en la cual tienen que ejecutarse (por ejemplo, Windows /

Powershell), payloads y referencias a módulos de parseo de Caldera.

3.2.3. Adversarios

Un adversario es un grupo de habilidades que representan TTPs disponibles.

Los perfiles de adversarios se utilizan cuando se está ejecutando una operación para

especificar qué habilidades tienen que ejecutarse.

3.2.4. Operaciones

Las operaciones ejecutan habilidades en grupos de agentes. Como se ha comentado

anteriormente, la forma de seleccionar qué habilidades se quieren ejecutar es creando

un perfil de adversario.

Para seleccionar el orden en el que se tienen que ejecutar las habilidades, MITRE

Caldera dispone del elemento planificador, el cual especifica en qué orden se van a

ejecutar las habilidades. Por defecto, Caldera viene con tres planificadores.

El primero es Atomic, el cual ejecuta las habilidades en el orden atómico en el que

están definidas en el perfil de adversario. El segundo es Batch, que ejecuta todas las

habilidades del perfil a la vez, y por último está Buckets, que ejecuta las habilidades

del perfil agrupadas por la táctica ATT&CK.

10

Cuando una habilidad se está ejecutando en una operación, se genera un enlace (un

enlace es la tarea que el agente debe realizar, por ejemplo, “ejecutar comando whoami”)

por cada agente, siempre y cuando se cumplan tres requisitos. Primero, que todos los

enlaces asociados a hechos (pieza de información generada durante la ejecución de una

operación, representa un dato aprendido o adquirido por el sistema mediante una acción

de un agente) y los hechos requeridos (condiciones que una habilidad debe cumplir

para ejecutarse) hayan sido cumplidos, es decir, para generar un enlace la habilidad

debe haber obtenido la información requerida por la siguiente o siguientes habilidades

dentro del perfil de adversario. También hay que asegurarse de que el agente tiene un

ejecutor compatible, es decir, que la habilidad debe ser compatible con el ejecutor del

agente. Si la habilidad está configurada para ejecutarse en un sistema Windows, pero

el agente solo tiene un ejecutor para Linux, no se generará el enlace. Por último, hay

que tener en cuenta que un agente no ejecutará la misma habilidad más de una vez, a

menos que la habilidad esté marcada como repeteable. Por defecto, esta configuración

está deshabilitada para evitar que se realicen acciones redundantes, a menos que sea

expĺıcitamente necesario.

Los hechos son piezas de información o datos que el sistema recopila, almacena y

utiliza para tomar decisiones durante una operación. Estos hechos representan detalles

espećıficos sobre el entorno, como nombres de usuario, direcciones IP, nombres de

archivos, claves de registro, o cualquier otro dato relevante que pueda ser útil para

ejecutar habilidades o tomar decisiones tácticas. Además, los comandos de los enlaces

pueden ser ofuscados para evitar ser detectados por los antivirus.

11

12

Caṕıtulo 4

Entorno de trabajo

Este caṕıtulo tiene como objetivo presentar el entorno de trabajo en el cual se ha

llevado a cabo el desarrollo del sistema. Para ello, primero se presentan las principales

herramientas utilizadas en el sistema. Después, se procede con la configuración del

entorno, donde se explican los requisitos del sistema operativo en el que se van a

ejecutar las herramientas, cómo se ha realizado el despliegue de Caldera y cómo se ha

preparado el entorno de programación del servicio.

4.1. Tecnoloǵıas utilizadas

Esta sección se centra en la explicación de las principales tecnoloǵıas utilizadas en

este proyecto.

4.1.1. Asyncio y AioHTTP

Tradicionalmente, las solicitudes a una API web que se realizan de forma secuencial

suelen producir cuellos de botella debido a que en cada petición hay que esperar a que

finalice la anterior, ralentizando toda la ejecución del programa. Para solucionar este

problema existen dos alternativas. Por un lado, la programación paralela, utilizando

diferentes hilos para realizar el trabajo, y por otro lado, la programación concurrente,

la cual nos permite ejecutar varias tareas al mismo tiempo, compartiendo recursos en

un solo hilo, optimizando las tareas que implican esperas largas.

En el caso de este proyecto, la programación concurrente encaja mejor, debido a que

permite optimizar el tiempo ejecutando las llamadas a la API de forma aśıncrona sin

necesidad de tener que utilizar múltiples hilos y evitando problemas de sincronización

de los datos con exclusión mutua. Además, el uso de la biblioteca Asyncio [12] resulta

muy cómodo para programadores con experiencia previa con JavaScript, ya que utiliza

una sintaxis muy similar para la creación de tareas aśıncronas. Asyncio permite realizar

tareas de forma concurrente, pero para realizar peticiones HTTP de forma aśıncrona

13

hay que hacer uso de la libreŕıa AIOHTTP [13].

4.1.2. Confluence y Jira

Confluence [14] es una plataforma en la nube de colaboración y trabajo en equipo,

desarrollada por Atlassian. Esta herramienta permite a los usuarios crear, organizar y

compartir información en un espacio centralizado. Los usuarios pueden editar en tiempo

real y comentar las páginas. Estas páginas se almacenan en espacios de trabajo para una

mayor organización. Estos espacios pueden ser públicos y privados, es decir, el usuario

es quien determina la visibilidad del espacio. Por otro lado, Confluence dispone de una

gran variedad de integraciones con aplicaciones de terceros que permiten la creación de

plantillas personalizadas o diagramas UML. Por otra parte, Jira [15] es una herramienta

en la nube creada por Atlassian, orientada a la gestión ágil de proyectos, que permite

la creación y seguimiento de tickets para una organización óptima del trabajo.

Tanto Confluence como Jira disponen de una API para poder interactuar con sus

servicios y crear automatizaciones.

4.1.3. Docker

Docker es una plataforma de software con la que se puede crear, probar e

implementar aplicaciones de forma rápida y sencilla. Esta herramienta empaqueta

el software en lo denominado contenedor, que incluye bibliotecas, herramientas del

sistema, código y todo lo necesario para que la aplicación pueda ejecutarse de manera

independiente.

La ventaja que proporciona Docker es la abstracción del sistema operativo en el

que se ejecuta la aplicación. Debido a la virtualización que realiza, permite al usuario

ejecutar la misma aplicación en distintos sistemas operativos sin preocuparse de las

dependencias de cada uno.

4.1.4. Proxmox VE

Proxmox VE [16] es una plataforma de código abierto de virtualización que

permite a los usuarios crear y gestionar tanto máquinas virtuales como contenedores y

almacenamiento definido por software.

Se ha elegido esta herramienta como entorno de virtualización porque es el utilizado

en la empresa donde se desarrolla el sistema. No obstante, una de las ventajas que

proporciona Proxmox es la facilidad de crear máquinas virtuales, gracias a su interfaz

web, la cual es muy intuitiva y completa. Es por ello que, pese a poder utilizar cualquier

14

otra plataforma de virtualización, el uso de Proxmox ha ayudado en gran medida,

agilizando la creación de máquinas virtuales.

4.1.5. Crontab

Crontab es una herramienta de los sistemas basados en Unix con la cual se pueden

programar tareas de una forma muy sencilla. Esta herramienta facilita al usuario

la ejecución programada de scripts o la ejecución de comandos. Su configuración

está basada en un fichero, que normalmente se encuentra localizado en la ruta

/etc/crontab. Para configurar la ejecución de una tarea, existe una serie de reglas

para especificar cuándo se debe ejecutar la tarea [17].

4.2. Configuración del entorno

En la Figura 4.1 se muestra el esquema de la infraestructura final del entorno. La

infraestructura está compuesta por la red corporativa de la empresa y las redes de los

clientes (en la Figura 4.1 solo se muestra la red de un cliente por simplificación). La

red corporativa dispone de un Proxmox (véase la Sección 4.1.4). Este Proxmox aloja

dos máquinas virtuales, una para el servidor Caldera y otra para el servicio Python

de generación de informes y notificaciones. Como se ha explicado en la Sección 3.2

el agente de MITRE Caldera funciona en Windows, Linux y macOS, es por ello que

los equipos de los clientes pueden ser de cualquiera de estos tres tipos de sistemas

operativos.

Figura 4.1: Infraestructura del sistema

4.2.1. Sistema Operativo

Para la elección del sistema operativo se tuvieron en cuenta tres requisitos, los cuales

se especifican en la Tabla 4.1. El primer requisito es el tipo de sistema operativo que

MITRE Caldera especifica que hay que utilizar. El segundo es la experiencia previa de

15

la empresa, es decir, con qué sistema operativo ha trabajado la empresa. Finalmente, el

último está relacionado con el servicio Python desarrollado y explicado posteriormente.

Requisito Sistema Operativo

MITRE Caldera Linux y macOS
Experiencia previa
de la empresa

Ubuntu Server

Servicio Python Preferiblemente Linux

Tabla 4.1: Requisitos para la elección del sistema operativo

Debido a la experiencia y uso de la empresa, el cumplimiento de los tres requisitos

anteriormente mencionados y la estabilidad y comunidad que tiene detrás, se optó por

instalar la distribución Ubuntu Server 24.04.2 LTS con las caracteŕısticas mencionadas

en la Tabla 4.2.

Herramienta Sistema
Operativo

Memoria RAM Almacenamiento Núcleos

MITRE
Caldera

Ubuntu
Server 24.04.2
LTS

16GB 64GB 6

Servicio
Python

Ubuntu
Server 24.04.2
LTS

8GB 32GB 6

Tabla 4.2: Caracteŕısticas del servidor principal

4.2.2. Despliegue de Caldera

Para realizar el despliegue de Caldera se hizo uso de su documentación oficial [7],

en la cual se explica que existen dos modos de instalación de la herramienta. El primer

modo es mediante Docker Compose, el cual automatiza y simplifica el despliegue de la

herramienta, teniendo que solo ejecutar un único comando. El otro modo es mediante

la instalación manual de las bibliotecas de Python, JavaScript y Go.

Tras probar en el laboratorio los dos tipos de instalación, se llegó a la conclusión

de que se utilizaŕıa el segundo modo de instalación (instalación manual), debido a que

el primer modo teńıa problemas activos con Docker [18] que provocaban dificultades a

la hora de actualizar la herramienta.

Para seguir el segundo modo de instalación, primero es necesario instalar Python

3.8 o superior con pip3, NodeJS v16 o superior, GoLang 1.17 o superior, aśı como

todos los requisitos adicionales.

16

Una vez desplegado el servidor Caldera, hay que dirigirse al navegador web y entrar

en http://IP Caldera:8888 y entrar con el usuario red o blue. La contraseña de ambos

usuarios se crea en el momento en que se construye el servidor, por lo que hay que

dirigirse a caldera/conf/local.yml donde se encuentran las contraseñas de ambos

usuarios. Además, se ha creado un servicio en Linux para el despliegue automático

de Caldera tras un reinicio del sistema, de esta forma el servicio estará disponible

tras un reinicio sin necesidad de que un técnico tenga que intervenir. El código para

generar el servicio está disponible en el repositorio GitHub asociado al proyecto (véase

la Sección 5.4).

4.2.3. Entorno de programación del servicio

Para la programación del servicio Python se ha optado por el desarrollo de un

contenedor DevContainer de Docker, disponible en el repositorio GitHub asociado al

proyecto (véase la Sección 5.4), para evitar problemas de compatibilidad con el sistema

operativo y con dependencias de bibliotecas.

Por último, para llevar un correcto control de versiones se ha utilizado la

herramienta GitLab.

17

18

Caṕıtulo 5

Análisis, diseño e implementación

En este caṕıtulo se abordan cuestiones esenciales relacionadas con el análisis, diseño

e implementación del proyecto. En primer lugar, se expone el análisis realizado para

determinar aspectos clave del proyecto, como los requisitos y su alcance. A continuación,

se describe el diseño del proyecto, centrándose en sus dos componentes principales.

Finalmente, se presenta la implementación, explicando cómo se ha llevado a cabo.

5.1. Análisis

En esta fase de análisis se ha llevado a cabo la identificación de los requisitos que

el sistema debe cumplir. Para ello, se ha realizado un análisis del entorno presente en

la empresa, teniendo en cuenta los métodos y los recursos tecnológicos, humanos y

temporales disponibles. Además, para llevar a cabo la priorización de requisitos, se ha

utilizado la metodoloǵıa MoSCoW [19], la cual ayuda a clasificar los requisitos según

su prioridad.

La metodoloǵıa MoSCoW se divide en cuatro tipos de prioridades según la criticidad

del requisito. El primero es M (Must), que hace referencia a que el requisito debe estar

obligatoriamente. El segundo es S (Should), que indica que es un requisito que debeŕıa

estar implementado. La C (Could) es para aquellos requisitos que no son importantes y,

por lo tanto, no es obligatorio que se cumplan, pero que śı podŕıan estar, añadiendo más

valor. Finalmente, W (Would) sirve para aquellos requisitos que no son importantes

ahora mismo y que se pueden implementar en un futuro.

Tras realizar el análisis anteriormente comentado, se han obtenido dos tablas. En

cada una de ellas se describen los requisitos que se deben cumplir. Cada requisito

está asociado a una prioridad siguiendo la metodoloǵıa MoSCoW. En la Tabla 5.1 se

pueden observar los requisitos funcionales del sistema, que describen lo que el sistema

debe hacer, definiendo las funciones y procesos que debe realizar el sistema. En la

Tabla 5.2 se encuentran los requisitos no funcionales del sistema, que describen cómo

19

debe comportarse, qué atributos de calidad debe cumplir y qué restricciones técnicas

pueden existir.

Requisito Prioridad

Simulación de ataques basada en TTPs M
Personalización del perfil de adversario y del flujo de ataque M
Agrupación de equipos por cliente M
Generación de informes ejecutivos y técnicos de cada operación M
Generación de tareas en ITSM M
Notificación ante fallo del servicio de generación de informes S
Planificación de operaciones a modo scheduler S
Personalización de la ejecución de TTPs en clientes mediante
una lista de autorización

C

Tabla 5.1: Requisitos funcionales

Requisito Prioridad

Puesta en marcha automática del servicio de simulación de
adversarios ante un reinicio del sistema

M

El sistema debe ser escalable y fácil de mantener M
El sistema debe ser fácil de desplegar en cualquier entorno Linux M
El sistema debe ser compatible con Jira y Confluence M

Tabla 5.2: Requisitos no funcionales

5.2. Diseño

El diseño de este proyecto se divide en 2 partes: una parte centrada en el

procedimiento que se debe llevar a cabo a la hora de realizar el ataque, y otra parte

centrada en la ejecución que se debe llevar a cabo para realizar dicho ataque. Ambas

se explican a continuación.

5.2.1. Diseño del flujo de ataque

Como se ha comentado anteriormente, un ataque cibernético se divide en siete

pasos (véase la Sección 2). Sin embargo, cada ataque debe diseñarse espećıficamente

en función del objetivo o grupo de objetivos que se quiera alcanzar. Por este motivo,

esta sección se centra en definir unos criterios comunes que deben seguirse a la hora de

planificar un ataque utilizando MITRE Caldera.

El flujo de ataque no es una secuencia predefinida válida para todos los clientes.

Es el equipo técnico quien debe definir qué acciones desea ejecutar, basándose en los

20

objetivos particulares de cada operación. Para facilitar la elaboración de estos flujos,

se han diseñado unas tablas de apoyo que permiten al equipo técnico tomar decisiones

informadas sobre cómo proceder.

Espećıficamente, se han desarrollado dos tablas. Por un lado, se encuentra la tabla

de Categorización de Clientes (véase la Figura A.2, en el Apéndice A.2), con la cual el

equipo puede identificar los activos principales, el tipo de cliente, su nivel de riesgo y

las amenazas más comunes. Por otro lado, está la tabla de Categorización de Riesgos

(véase la Figura A.3, en el Apéndice A.3), que permite definir el nivel de riesgo, las

tácticas ATT&CK más comunes, ejemplos en Caldera y la frecuencia con la que debeŕıa

comprobarse el estado del entorno.

Además, se debe realizar una selección adecuada de los equipos en los que se

ejecutarán las operaciones. En base a la experiencia transmitida por la empresa, se

ha determinado que lo ideal es seleccionar tres objetivos. Algunos ejemplos podŕıan

ser:

1. Usuario fuera de la infraestructura con acceso a la red pública. Por ejemplo, un

usuario que está conectado a la red Wifi.

Criterio de ataque:

Fase 1. Descubrimiento de Red

Fase 2. Acceso inicial

Fase 3. Movimiento lateral

Fase 4. Escalada de privilegios

Fase 5. Exfiltración de datos

2. Usuario dentro de la infraestructura pero con limitación de permisos. Por ejemplo,

un trabajador del departamento de Marketing.

Criterio de ataque:

Fase 1. Descubrimiento de Red

Fase 2. Movimiento lateral

Fase 3. Escalada de privilegios

Fase 4. Exfiltración de datos

3. Usuario dentro de la infraestructura pero con permisos elevados. Un ejemplo seŕıa

el administrador de sistemas de la empresa.

Criterio de ataque:

21

Fase 1. Descubrimiento de Red

Fase 2. Persistencia

Fase 3. Impacto

Fase 4. Exfiltración de datos

5.2.2. Diseño de la ejecución del servicio

El servicio Python se ha diseñado para reducir al máximo los recursos humanos

necesarios para la ejecución completa del sistema. De esta manera, el servicio se encarga

de recolectar las últimas operaciones ejecutadas utilizando la API de Caldera y de

generar un informe técnico y ejecutivo por cada una de ellas, además de crear un ticket

en Jira por cada acción que se ejecute con éxito. Sin embargo, este planteamiento puede

generar ciertos problemas, como la sobrecarga de tickets por acciones triviales. Esto

se debe a que, para ejecutar correctamente las operaciones, Caldera necesita realizar

acciones orientadas a la obtención de información, como identificar el usuario actual,

listar los procesos en ejecución u obtener el contenido del fichero /etc/shadow. Es

evidente que algunas de estas tareas no debeŕıan generar un ticket ni aparecer en el

informe ejecutivo como una acción insegura.

Para resolver este problema, se han estudiado varias opciones. La primera consiste

en eliminar aquellas acciones consideradas triviales, de modo que no se ejecuten y no

generen ruido. No obstante, esta opción presenta varios inconvenientes. El primero es el

riesgo de una ejecución incorrecta de las operaciones, ya que muchas de estas acciones se

realizan con el objetivo de recopilar información necesaria para la ejecución de acciones

posteriores dentro de la misma operación. Otro problema es que no todos los entornos

son iguales, por lo que pueden existir casos en los que acciones aparentemente triviales,

como obtener el contenido del fichero /etc/shadow, representen una vulnerabilidad

real.

La segunda opción es utilizar una lista de autorización personalizable para cada

cliente. Esta aproximación es más realista y escalable, ya que permite ejecutar la

operación de forma normal y, posteriormente, al momento de generar el informe y

los tickets, consultar la lista de autorización. Este enfoque permite personalizar para

cada cliente qué acciones deben considerarse en el informe y cuáles no, evitando aśı

la sobrecarga del equipo con tickets de falsos positivos. Debido a la forma de trabajo

de la empresa, se ha optado por utilizar un repositorio de GitLab para gestionar estas

listas blancas.

Este enfoque se basa en la idea de la mejora continua del sistema; es decir, al

principio, durante las primeras ejecuciones del sistema, se generarán tickets con falsos

22

positivos, pero con el tiempo y tras sucesivas operaciones y refinamientos, solo se

generarán tickets para aquellas acciones cuyo resultado represente un problema real

de seguridad.

En la Figura 5.1 se muestra el diagrama completo del proceso de mejora continua

con el servicio Python.

Figura 5.1: Diagrama procedimiento de mejora continua

5.3. Implementación

Para la implementación del sistema completo se han utilizado las tecnoloǵıas

comentadas en la Sección 4.1. Para conectar todas estas tecnoloǵıas, se ha utilizado un

23

servicio Python. Pese a que a primera vista puede parecer que el núcleo del sistema es

MITRE Caldera, el componente encargado de conectar todo y automatizar el trabajo

del equipo técnico es dicho servicio Python.

Para relacionar todos los componentes y crear un flujo de ejecución completo, se

han utilizado las API de los distintos softwares, como por ejemplo Caldera, Jira o

Confluence. Para la comunicación del servicio con estas tecnoloǵıas, se ha utilizado la

libreŕıa AIOHTTP para realizar las peticiones HTTP y Asyncio para implementar la

concurrencia, mejorando aśı su eficiencia.

En la Figura 5.2 se muestra el diagrama de clases UML del servicio Python.

Este servicio consta de nueve clases principales en las cuales cada una tiene una

responsabilidad espećıfica. La clase Main es la clase principal que se encarga de

orquestar todo el servicio. También está la clase Operation que se encarga de obtener

la información de las operaciones ejecutadas en MITRE Caldera. La clase JiraReport

es la encargada de crear los tickets en el sistema Jira por cada habilidad en estado

exitoso dentro de una operación. CreatePage es la clase utilizada para crear la página

con el reporte en Confluence. La extracción de información y creación del reporte se

realiza en la clase CreateReport con la ayuda de GenerateHtml, que se encarga de crear

el código html. Además, el reporte cuenta con gráficas creadas por la clase Statistics.

+__main__() : void
-extract_data(inform : dict, event_logs : list, report_html : CreateReport, whiteList : WhiteList) : dict
-create_tickets(relevant_data : dict, whiteList : WhiteList, jira : JiraReport) : void
-create_page(confluence_space_id : string, confluence_father_id : string, title : string, relevant_data : dict, report_html : CreateReport, page : CreatePage) : void

Main

-__url : string
-__email : string
-__token : string
-__project : string
-__issue_type : string
-auth : BasicAuth

+__init__() : void
+create_tickets(data : dict, white_list : WhiteList) : void
-__create(title : string, data : dict) : dict

JiraReport

-__url : string
-__auth : BasicAuth
-__html_content : string

+__init__(url : string, email : string, token : string) : void
+setHtmlContent(html_content : string) : void
+create(space_id : string, title : string, parent_id : strin...

CreatePage

-__token : string
-__url : string
-__zip_filename : string
-__output_dir : string
-__name_dir : string

+__init__() : void
+initialize() : bool
+download_whitelists() : void
+is_in_whitelist(ability_id : string, group : string) : bool
-__download_zip() : void
-__extract_zip() : void

WhiteList

-__report : dict
-__event_logs : dict
-__whitelist : WhiteList
-__html : GenerateHtml

+__init__(report : dict = None, event_logs : dict = None) : void
+extract_relevant_data(white_list : WhiteList) : dict
+create_report(data : dict) : string
-__extract_relevant_data(white_list : WhiteList) : dict
-__set_status(ability_id : string, group : string, status : int, white_list : WhiteList) : string
-__extract_output(pid : string) : string

CreateReport

-__report_data : dict
-__stats : Statistics

+__init__(report_data : dict = None) : void
+create_html() : string

GenerateHtml
-__data : dict

+__init__(report_data : None) : void
+setData(report_data : dict) : void
+calculate_statistics() : dict
+generate_pie_chart(success_rate : float) : string
+generate_host_chart(host_stats : string) : string

Statistics

-__endpoint : string

+__init__(server : string, api_key : string) : void
+getEndpoint() : string
+get_inform(operationId : string) : dict
+get_event_logs(operationId : string) : dict
+get_new_id_operations() : list
+delete_operation(operationId : string) : bool
+get_last_24_hours_new_id_operations() : dict
-__get_operation_results(typeOfResult : string, operationId : string) : dict
-__get_new_operations() : list

Operat ion

-__server : string
-__api_key : string

+__init__(server : string, api_key : string)
+getUrl() : string
+getHeaders() : string

CalderaApi aiohttp
BasicAuth ClientSession

Jinja2

Template

matploitl ib

pyp lo t

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

Figura 5.2: Diagrama de clases servicio Python

24

En la Figura 5.3 se muestra el diagrama UML del flujo principal del servicio Python,

el cual comienza instanciando los objetos necesarios y obteniendo los ID de las nuevas

operaciones disponibles en MITRE Caldera. A continuación, por cada ID, se extrae

la información relevante de la operación. Para ello, primero se recupera el reporte y

el registro de eventos generado por MITRE Caldera, con el fin de obtener los datos

necesarios.

Una vez extráıda la información, se comprueba el número de clientes a los que ha

afectado la operación. En caso de ser uno, se establece el t́ıtulo correspondiente; en

caso de ser más de uno, se agrupan los nombres de los clientes y se define un t́ıtulo

conjunto. Finalmente, se crean los tickets en Jira, la página en Confluence y se elimina

la operación del servidor MITRE Caldera.

Instanciar Objeto WhiteList

Iniciálizar WhiteList

Instanciar Objeto CreateReport

Instanciar Objeto CreatePage

Instanciar Objeto Operation

Obtener id de las nuevas
operaciones

Instanciar Objeto Jira

Obtener informe de la
operación con ID = <ID>

Obtener log de eventos de la
operacion con ID = <ID>

Establecer reporte en el Objeto
CreateReport

Extraer la información
relevante

Agrupar nombre de los clientes

Establecer titulo

Crear reporte HTML

Crear los tickets en Jira
Crear la página Confluence

con el informe
Eliminar la operación con ID =

< I D >

Establecer log de eventos en el
Objeto CreateReport

¿Todos los IDs procesados?

¿La operación afecta a un solo cliente?

Si

Si

No

No

Figura 5.3: Diagrama del flujo principal del servicio Python

Por otro lado, para garantizar la persistencia del agente de Caldera en los distintos

equipos de los clientes, se han desarrollado scripts espećıficos. En el caso de sistemas

Windows, se ha implementado un script en PowerShell que simula que el ejecutable del

agente es un servicio del sistema, además de crear una regla en el firewall interno que

permite la comunicación con el servidor de Caldera. Para sistemas Linux y macOS, se

ha optado por un script en Bash que ejecuta el agente como un servicio del sistema.

Ambos scripts se encuentran disponibles en el repositorio GitHub asociado al proyecto.

Asimismo, aunque no forma parte directamente del sistema principal, éste está

preparado para integrarse con servicios de monitorización. Esto permite que la empresa

supervise el estado del servidor donde se ejecuta el servicio Python y reciba alertas en

caso de fallos. Para ello, el servicio genera archivos de registro en cada ejecución,

los cuales se almacenan en un volumen compartido de Docker. Esto garantiza la

25

persistencia de los registros incluso tras eliminar el contenedor, ya que el servicio Python

se ejecuta en un contenedor ef́ımero que se destruye una vez finalizado el proceso.

Como se ha mencionado anteriormente, el servicio Python está preparado para

recolectar información y generar informes y tickets sobre operaciones que hayan sido

ejecutadas de forma simultánea en distintos clientes. Por ejemplo, es posible ejecutar

el perfil de adversario 1 en cliente1 y cliente2 al mismo tiempo. No obstante, por

convención interna, cada operación debe realizarse sobre un único cliente. A pesar de

ello, el servicio se ha diseñado para soportar este tipo de escenarios sin comprometer

su funcionamiento. En estos casos, simplemente se genera un informe grupal en el que

se incluyen todos los clientes afectados.

Por motivos de eficiencia, se ha implementado la eliminación automática de las

operaciones en MITRE Caldera tras la generación de los informes y la creación de

los tickets correspondientes. Esta medida se debe a que MITRE Caldera almacena

las operaciones en memoria RAM y no en disco, lo que podŕıa provocar un uso

innecesario de recursos si no se eliminan las operaciones procesadas. Para implementar

esta funcionalidad, se ha hecho uso de la API de Caldera.

En la Figura 5.4 se presenta un diagrama que ilustra el funcionamiento completo

del sistema, desde la selección y programación de operaciones por parte del equipo

técnico, hasta la ejecución en Caldera y la posterior generación de informes y tickets

para su análisis y resolución.

26

Figura 5.4: Diagrama completo del sistema

27

5.4. Código fuente y repositorio público

Todo el código desarrollado en este trabajo se encuentra disponible públicamente

en el siguiente repositorio de GitHub:

https://github.com/Garicore01/MITRE-Caldera-Atlassian-Reporting-

Integration.git

Este repositorio ha sido publicado bajo la licencia GNU General Public License

v3.0 (GPLv3)1. Esta licencia permite la modificación o redistribución del código,

conservando los mismos derechos para todos los usuarios.

1La licencia GPLv3 garantiza que los usuarios pueden ejecutar, estudiar, compartir y modificar el
software, siempre que las versiones derivadas mantengan la misma licencia.

28

https://github.com/Garicore01/MITRE-Caldera-Atlassian-Reporting-Integration.git
https://github.com/Garicore01/MITRE-Caldera-Atlassian-Reporting-Integration.git

Caṕıtulo 6

Caso de estudio

En este caṕıtulo se expone una demostración del funcionamiento del sistema en la

que se va a ejecutar una operación en un cliente que tiene dos equipos y una habilidad

en su lista de autorización. El objetivo es mostrar el funcionamiento de la parte más

autónoma del sistema: (a) la ejecución de operaciones programadas; y (b) su recolección

y evaluación con la lista de autorización para la posterior creación de informes y tickets.

Para ahorrar tiempo, la prueba comienza con un cliente en el que ya se han establecido

los objetivos e instalado los agentes en dos equipos, uno Windows y otro Linux. En la

Figura 6.1 se muestran los agentes disponibles en Caldera. Se puede observar que están

los dos equipos Windows y Linux del client2 y otros dos equipos más. El primero es

un ejemplo de eliminación del agente desde Caldera y el segundo es un equipo de otro

cliente, en este caso red.

Figura 6.1: Agentes instalados en Caldera

29

6.1. Configuración en Caldera

Primero, hay que programar el programador de tareas para ejecutar el perfil de

adversario seleccionado con la frecuencia acordada en los objetivos; en este caso, todos

los lunes a las 2:00 a.m. Segundo, es importante seleccionar el cliente en el cual queremos

que se ejecute la operación; en este caso, es client2. Por convención, se ha establecido

en la empresa que cada operación debe hacer referencia a un único cliente. El siguiente

paso es seleccionar el enlace asociado a hechos, en caso de que el perfil de adversario

necesite información adicional para ejecutarse correctamente, como, por ejemplo, la

dirección IP del controlador de dominio. El planificador por defecto es atomic, el cual

ejecuta cada acción de la operación en orden secuencial. Por último, MITRE Caldera

permite ofuscar comandos para intentar engañar y evadir los antivirus y es importante

seleccionar la opción Auto close operation, ya que, si no se selecciona, MITRE Caldera

no finalizará la operación automáticamente, incluso aunque esta no tenga nada más

para ejecutar.

En la Figura 6.2 se muestra la configuración utilizada para programar la operación

descrita anteriormente.

Figura 6.2: Ejemplo de programación en MITRE Caldera

30

6.2. Preparación del servicio Python

El servicio Python está programado con la herramienta cron para ejecutarse cada

d́ıa a las 4:00 a.m. Esta hora ha sido seleccionada por la empresa, ya que presenta muy

poca actividad.

A las 4:00 a.m., el servicio Python se ejecutará en un contenedor Docker, de forma

que primero se creará el contenedor y, posteriormente, se lanzará un contenedor de

un solo uso; es decir, que al finalizar su ejecución, el contenedor se eliminará. Tras

la ejecución del servicio, este habrá generado un archivo de registro en un volumen

compartido, por lo que es persistente al borrado del contenedor. En caso de que algo

falle, se verá reflejado en el archivo de registro, de forma que herramientas como, por

ejemplo, los SIEM puedan capturar ese error y notificarlo al equipo técnico.

6.3. Ejecución del sistema

Llegada la hora de ejecución programada en MITRE Caldera, se ejecutará la

operación, dejando un registro que puede ser consultado desde la interfaz gráfica, como

se muestra en la Figura 6.3.

Figura 6.3: Operación Test Discovery TFG

Tras finalizar la ejecución de la operación, el sistema esperará a que se ejecute

el servicio Python a las 4:00 a.m. Una vez llegada esa hora, el servicio recopila la

información de las operaciones disponibles en MITRE Caldera y comienza con el

procesamiento individual de cada una de ellas.

Primero, se extrae la información relevante, estableciendo un estado en función de

si la acción ha sido exitosa o no, y si dicha acción aparece en la lista de autorización

31

del cliente, en cuyo caso se le asigna el estado omitido. Después, se crean los gráficos

para la parte del informe ejecutivo y el contenido HTML con el informe completo. El

siguiente paso es la creación de tickets en Jira por cada acción en estado exitoso. Una

vez creados los tickets, se procede a la subida del informe a Confluence y, una vez

finalizada esta acción, se elimina la operación del servidor MITRE Caldera.

A continuación se muestra un ejemplo del informe generado por el servicio Python.

La Figura 6.4 muestra la sección ejecutiva del informe. Esta sección se denomina

“ejecutiva” porque no incluye datos técnicos, sino únicamente información visual y

fácil de interpretar para una persona no técnica, como puede ser un cliente. El color

rojo representa que la operación ha logrado ejecutar todas las acciones que se hab́ıan

configurado, lo cual, en principio, es un indicio de una mala configuración de seguridad

informática (es decir, se han encontrado vulnerabilidades).

Figura 6.4: Ejemplo de informe ejecutivo

Por otro lado, la Figura 6.5 muestra el informe técnico, diseñado para ser léıdo

por el equipo técnico encargado de la seguridad del cliente examinado. Este informe

proporciona la información necesaria para que dicho equipo pueda analizar qué se ha

ejecutado, con qué intención y cuál ha sido el resultado de cada acción.

Además, la Figura 6.6 muestra cómo es un ticket de Jira generado por el servicio

Python. El ticket se compone de una breve descripción informando que se ha encontrado

una vulnerabilidad y una tabla con los campos esenciales, como por ejemplo, el nombre

del cliente, la máquina, el nombre de la acción ejecutada, su ID en Caldera, su

descripción, el comando que se ha ejecutado en texto plano y la salida recibida.

32

Figura 6.5: Ejemplo de informe técnico

Figura 6.6: Ticket en Jira generado por el servicio Python

Por último, el equipo técnico es quien debe revisar los tickets y el informe, y decidir

si alguna de las acciones es permisible. En caso de serlo, deberán copiar el ID del ticket

y añadirlo a la lista de autorización del cliente. En caso contrario, deberán llevar a

cabo las medidas pertinentes para solucionar la vulnerabilidad detectada.

De esta forma, un equipo técnico es capaz de realizar una auditoŕıa a un entorno,

consumiendo menos recursos y teniendo mayor capacidad para realizar otro tipo de

33

tareas.

34

Caṕıtulo 7

Conclusiones

Este caṕıtulo tiene como objetivo exponer las conclusiones generales obtenidas

tras la realización del proyecto, aśı como explicar qué posibles mejoras se podŕıan

implementar en el futuro.

7.1. Conclusiones generales

En un entorno en el que los ciberataques están impulsados por la IA las

organizaciones deben adaptarse y adoptar enfoques más automatizados y eficientes

para la realización de auditoŕıas, reduciendo la cantidad de recursos y optimizando los

procesos internos.

El trabajo realizado ha conseguido cumplir con el objetivo planteado al iniciar

este proyecto, desarrollar un sistema que permita a un SOC automatizar las tareas

de realización de auditoŕıas a clientes. El sistema desarrollado se encarga de ejecutar

operaciones y generar tanto los informes como los tickets asociados a cada una de ellas.

Desde una perspectiva tanto técnica como empresarial, la solución es escalable

vertical y horizontalmente, lo que permite aumentar el número de clientes y operaciones

sin afectar significativamente al rendimiento. Aunque existe una dependencia con las

herramientas internas de la empresa como Jira o Confluence, la adaptación a otros

sistemas ITSM (Information Technology Service Management ; en español, sistema de

gestión de servicios informáticos. Estos sistemas diseñados para gestionar los servicios

informáticos de una organización) seŕıa sencilla, bastando con modificar algunos

componentes concretos del servicio Python.

Una de las ventajas que ofrece este sistema es su independencia del entorno del

cliente, lo cual facilita considerablemente su despliegue y ejecución. En entornos que ya

utilizan Jira y Confluence, se puede afirmar que el sistema no requiere cambios para ser

implementado en otra organización, independientemente del entorno de virtualización.

35

7.2. Trabajo futuro

El sistema genera un informe con una parte ejecutiva y una parte técnica. Del

mismo modo, seŕıa muy interesante añadir IA para la generación de descripciones

personalizadas basadas en el historial de operaciones ejecutadas en ese cliente. Esta

descripción estaŕıa destinada tanto a la sección ejecutiva como a la técnica del informe,

de forma que explique qué se ha ejecutado en la operación, qué resultados se han

obtenido y cuál es el estado actual del cliente en comparación con estados anteriormente

registrados.

36

Bibliograf́ıa

[1] Andy Applebaum Doug Miller. CALDERA, Automating Adversary Emulation.

https://www.blackhat.com/docs/eu-17/materials/eu-17-Miller-CALDERA-

Automating-Adversary-Emulation.pdf.

[2] Michael J. Cloppert Eric M. Hutchins and Ph.D Rohan M. Amin.

Intelligence-Driven Computer Network Defense Informed by Analysis of

Adversary Campaigns and Intrusion Kill Chains. https://www.lockheedmartin.

com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-

Intel-Driven-Defense.pdf.

[3] MITRE Corporation. MITRE ATT&CK Framework. https://attack.mitre.

org.

[4] Krishnashree Achuthan, Sasangan Ramanathan, Sethuraman Srinivas, and Raghu

Raman. Advancing cybersecurity and privacy with artificial intelligence: current

trends and future research directions. Frontiers in Big Data, 7, 2024. https:

//www.frontiersin.org/articles/10.3389/fdata.2024.1497535/full.

[5] Alvaro Garrido. El impacto de la inteligencia artificial en la ciberseguridad.

https://observatoriociber.org/el-impacto-de-la-inteligencia-

artificial-en-la-ciberseguridad/?utm_source=chatgpt.com.

[6] Diego A. Arcentales Fernández and Xiomara Caycedo Casas. Auditoŕıa

informática: un enfoque efectivo. Dominio de las Ciencias, 2017. https:

//dialnet.unirioja.es/servlet/articulo?codigo=6102836.

[7] MITRE Caldera Documentation. https://caldera.readthedocs.io/en/

latest/.

[8] TNECOM Canarias. Preparación para Incidentes Reales: La Importancia de las

Simulaciones de Ataques. https://www.tnecomcanarias.es/blog/preparacin-

para-incidentes-reales-la-importancia-de-las-simulaciones-de-

ataques.

37

https://www.blackhat.com/docs/eu-17/materials/eu-17-Miller-CALDERA-Automating-Adversary-Emulation.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Miller-CALDERA-Automating-Adversary-Emulation.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf
https://attack.mitre.org
https://attack.mitre.org
https://www.frontiersin.org/articles/10.3389/fdata.2024.1497535/full
https://www.frontiersin.org/articles/10.3389/fdata.2024.1497535/full
https://observatoriociber.org/el-impacto-de-la-inteligencia-artificial-en-la-ciberseguridad/?utm_source=chatgpt.com
https://observatoriociber.org/el-impacto-de-la-inteligencia-artificial-en-la-ciberseguridad/?utm_source=chatgpt.com
https://dialnet.unirioja.es/servlet/articulo?codigo=6102836
https://dialnet.unirioja.es/servlet/articulo?codigo=6102836
https://caldera.readthedocs.io/en/latest/
https://caldera.readthedocs.io/en/latest/
https://www.tnecomcanarias.es/blog/preparación-para-incidentes-reales-la-importancia-de-las-simulaciones-de-ataques
https://www.tnecomcanarias.es/blog/preparación-para-incidentes-reales-la-importancia-de-las-simulaciones-de-ataques
https://www.tnecomcanarias.es/blog/preparación-para-incidentes-reales-la-importancia-de-las-simulaciones-de-ataques

[9] IBM. ¿Qué es un ciberataque? https://www.ibm.com/es-es/topics/cyber-

attack.

[10] Fortinet. ¿Qué es el marco MITRE ATT&CK ? https://www.fortinet.com/

lat/resources/cyberglossary/mitre-attck.

[11] Ciber 4 All Team. MITRE ATTCK: ¿Qué tácticas y técnicas emplean los

ciberdelincuentes?, 2023. https://www.tarlogic.com/es/blog/mitre-attck/.

[12] Documentación Asyncio. https://docs.python.org/es/3/library/asyncio.

html.

[13] Documentación AIOHTTP. https://docs.aiohttp.org/en/stable/client_

quickstart.html.

[14] Documentación Confluence. https://www.atlassian.com/es/software/

confluence/resources/guides/get-started/overview#hosting-options.

[15] Documentación Jira. https://www.atlassian.com/es/software/jira/

guides/getting-started/introduction#what-is-jira-software.

[16] Proxmox. https://isnum.com/glosario-ciberseguridad/proxmox/.

[17] Michael A. Schwarz. Linux Job Scheduling. Linux Journal, 2000. https://www.

linuxjournal.com/article/4087.

[18] notmarshmllow. Installation Errors via Docker. https://github.com/mitre/

caldera/issues/3137.

[19] Iker Landajuela. Técnica de priorización MOSCOW. https://soka.gitlab.io/

blog/post/2019-06-05-tecnicas-metodologias-priorizacion/.

[20] BBVA. La IA en los dos lados de la ciberseguridad: aliada y amenaza en el mundo

digital, 2024. https://www.bbva.com/es/innovacion/la-ia-en-los-dos-

lados-de-la-ciberseguridad-aliada-y-amenaza-en-el-mundo-digital/.

[21] TECNOZERO. Cortex XDR Palo Alto. https://www.tecnozero.com/palo-

alto-networks/cortex/#:~:text=Cortex%20XDR%20es,los%20usuarios%20y%

20activos%20digitales.

[22] BlackMantiSecurity. Gúıa Básica de Adversary Emulation con Caldera Mitre.

https://www.linkedin.com/pulse/gua-bsica-de-adversary-emulation-

con-caldera-mitre-qthrf/.

38

https://www.ibm.com/es-es/topics/cyber-attack
https://www.ibm.com/es-es/topics/cyber-attack
https://www.fortinet.com/lat/resources/cyberglossary/mitre-attck
https://www.fortinet.com/lat/resources/cyberglossary/mitre-attck
https://www.tarlogic.com/es/blog/mitre-attck/
https://docs.python.org/es/3/library/asyncio.html
https://docs.python.org/es/3/library/asyncio.html
https://docs.aiohttp.org/en/stable/client_quickstart.html
https://docs.aiohttp.org/en/stable/client_quickstart.html
https://www.atlassian.com/es/software/confluence/resources/guides/get-started/overview#hosting-options
https://www.atlassian.com/es/software/confluence/resources/guides/get-started/overview#hosting-options
https://www.atlassian.com/es/software/jira/guides/getting-started/introduction#what-is-jira-software
https://www.atlassian.com/es/software/jira/guides/getting-started/introduction#what-is-jira-software
https://isnum.com/glosario-ciberseguridad/proxmox/
https://www.linuxjournal.com/article/4087
https://www.linuxjournal.com/article/4087
https://github.com/mitre/caldera/issues/3137
https://github.com/mitre/caldera/issues/3137
https://soka.gitlab.io/blog/post/2019-06-05-tecnicas-metodologias-priorizacion/
https://soka.gitlab.io/blog/post/2019-06-05-tecnicas-metodologias-priorizacion/
https://www.bbva.com/es/innovacion/la-ia-en-los-dos-lados-de-la-ciberseguridad-aliada-y-amenaza-en-el-mundo-digital/
https://www.bbva.com/es/innovacion/la-ia-en-los-dos-lados-de-la-ciberseguridad-aliada-y-amenaza-en-el-mundo-digital/
https://www.tecnozero.com/palo-alto-networks/cortex/#:~:text=Cortex®%20XDR™%20es,los%20usuarios%20y%20activos%20digitales.
https://www.tecnozero.com/palo-alto-networks/cortex/#:~:text=Cortex®%20XDR™%20es,los%20usuarios%20y%20activos%20digitales.
https://www.tecnozero.com/palo-alto-networks/cortex/#:~:text=Cortex®%20XDR™%20es,los%20usuarios%20y%20activos%20digitales.
https://www.linkedin.com/pulse/guía-básica-de-adversary-emulation-con-caldera-mitre-qthrf/
https://www.linkedin.com/pulse/guía-básica-de-adversary-emulation-con-caldera-mitre-qthrf/

[23] Arlethv. Arquitectura Docker, 2024. https://forum.huawei.com/enterprise/

intl/es/thread/arquitectura-docker/807247511067901952?blogId=

807247511067901952.

[24] Eva Dafne Alcala Lopez. Emulación de técnicas ofensivas con Mitre Caldera.

Trabajo fin de grado, Universidad Politécnica de Valencia, 2022. https://riunet.

upv.es/entities/publication/7db1a673-afc8-4768-a3a6-cdf6e229e668.

39

https://forum.huawei.com/enterprise/intl/es/thread/arquitectura-docker/807247511067901952?blogId=807247511067901952
https://forum.huawei.com/enterprise/intl/es/thread/arquitectura-docker/807247511067901952?blogId=807247511067901952
https://forum.huawei.com/enterprise/intl/es/thread/arquitectura-docker/807247511067901952?blogId=807247511067901952
https://riunet.upv.es/entities/publication/7db1a673-afc8-4768-a3a6-cdf6e229e668
https://riunet.upv.es/entities/publication/7db1a673-afc8-4768-a3a6-cdf6e229e668

40

Anexos

41

Anexos A

A.1. Tiempo invertido y diagrama de Gantt

La Tabla A.1 muestra las horas invertidas en cada tarea del proyecto. Por otro

lado, la Figura A.1 muestra el diagrama de Gantt con la división del trabajo. Primero

se comienza con una etapa de investigación acerca de la simulación de ataques y

la herramienta MITRE Caldera. Después comienza la etapa de diseño, centrada en

diseñar el sistema. Seguidamente, comienza la etapa de implementación del sistema.

Finalmente, la etapa de memoria está centrada en realizar la memoria del trabajo.

Tarea Horas

Investigación y realización de
pruebas

30

Diseño 20
Implementación 180
Memoria 85

Total 315

Tabla A.1: Distribución de horas por tarea

Figura A.1: Diagrama de Gantt

43

A.2. Categorización de clientes

Figura A.2: Categorización de clientes

A.3. Categorización de riesgos

Figura A.3: Categorización de riesgos

44

A.4. Traza del registro creado por el Servicio

Python

2025 -05 -21 07:36:38 ,682 - test_report - INFO - Starting test report execution

2025 -05 -21 07:36:38 ,683 - test_report - INFO - Initializing WhiteList class

2025 -05 -21 07:36:38 ,684 - test_report - INFO - WhiteList initialized successfully

2025 -05 -21 07:36:38 ,685 - test_report - INFO - Initializing report creation

2025 -05 -21 07:36:38 ,685 - test_report - INFO - Starting whitelist download process

2025 -05 -21 07:36:38 ,685 - test_report - INFO - Starting whitelist repository download

2025 -05 -21 07:36:39 ,270 - test_report - INFO - Whitelist repository downloaded successfully to whitelist_repo.zip

2025 -05 -21 07:36:39 ,271 - test_report - INFO - Extracting whitelist repository to repository

2025 -05 -21 07:36:39 ,275 - test_report - INFO - Whitelist repository extracted successfully

2025 -05 -21 07:36:39 ,275 - test_report - INFO - Whitelist download process completed successfully

2025 -05 -21 07:36:39 ,275 - test_report - INFO - Whitelists downloaded successfully

2025 -05 -21 07:36:39 ,275 - test_report - INFO - Initializing CreateReport class

2025 -05 -21 07:36:39 ,276 - test_report - INFO - Initializing WhiteList class

2025 -05 -21 07:36:39 ,278 - test_report - INFO - WhiteList initialized successfully

2025 -05 -21 07:36:39 ,278 - test_report - INFO - CreateReport initialized successfully

2025 -05 -21 07:36:39 ,279 - test_report - INFO - Initializing CreatePage class

2025 -05 -21 07:36:39 ,279 - test_report - INFO - CreatePage initialized successfully

2025 -05 -21 07:36:39 ,279 - test_report - INFO - Initializing Operation class

2025 -05 -21 07:36:39 ,279 - test_report - INFO - Operation endpoint set to: /operations

2025 -05 -21 07:36:39 ,327 - test_report - INFO - Successfully retrieved 1 operations

2025 -05 -21 07:36:39 ,328 - test_report - INFO - Initializing JiraReport class

2025 -05 -21 07:36:39 ,328 - test_report - INFO - JiraReport initialized successfully

2025 -05 -21 07:36:39 ,329 - test_report - INFO - Processing operation: Test Discovery TFG

(ID: b090d8e0 -e437 -4b1b -b3fc -b379b986cd58)

2025 -05 -21 07:36:39 ,329 - test_report - INFO - Requesting operation report for ID:

b090d8e0 -e437 -4b1b -b3fc -b379b986cd58

2025 -05 -21 07:36:39 ,406 - test_report - INFO - Successfully retrieved report for operation

b090d8e0 -e437 -4b1b -b3fc -b379b986cd58

2025 -05 -21 07:36:39 ,407 - test_report - INFO - Requesting event logs for operation ID:

b090d8e0 -e437 -4b1b -b3fc -b379b986cd58

2025 -05 -21 07:36:39 ,416 - test_report - INFO - Successfully retrieved event logs for operation

b090d8e0 -e437 -4b1b -b3fc -b379b986cd58

2025 -05 -21 07:36:39 ,416 - test_report - INFO - Setting new report data

2025 -05 -21 07:36:39 ,417 - test_report - INFO - Report data updated successfully

2025 -05 -21 07:36:39 ,417 - test_report - INFO - Setting new event logs

2025 -05 -21 07:36:39 ,417 - test_report - INFO - Event logs updated successfully

2025 -05 -21 07:36:39 ,417 - test_report - INFO - Extracting relevant data from report

2025 -05 -21 07:36:39 ,417 - test_report - INFO - Setting status of the step

2025 -05 -21 07:36:39 ,418 - test_report - INFO - Ability c0da588f -79f0 -4263 -8998 -7496 b1a40596 is in whitelist for

group client2

2025 -05 -21 07:36:39 ,418 - test_report - INFO - Setting status of the step

2025 -05 -21 07:36:39 ,419 - test_report - INFO - Setting status of the step

2025 -05 -21 07:36:39 ,419 - test_report - INFO - Ability c0da588f -79f0 -4263 -8998 -7496 b1a40596 is in whitelist for

group client2

2025 -05 -21 07:36:39 ,420 - test_report - INFO - Setting status of the step

2025 -05 -21 07:36:39 ,420 - test_report - INFO - Data extraction completed successfully

2025 -05 -21 07:36:39 ,420 - test_report - INFO - Operation group: client2

2025 -05 -21 07:36:39 ,420 - test_report - INFO - Starting tickets creation

2025 -05 -21 07:36:39 ,421 - test_report - INFO - Starting ticket creation for title: TFG Gari -Pruebas -Vulnerabilidad

Identify local

users encontrada en client2

2025 -05 -21 07:36:39 ,421 - test_report - INFO - Creating Jira ticket with title: TFG Gari -Pruebas -Vulnerabilidad

Identify local

users encontrada en client2

2025 -05 -21 07:36:45 ,756 - test_report - INFO - Jira ticket created successfully: WODNLGSEC -37863

2025 -05 -21 07:36:45 ,758 - test_report - INFO - Starting ticket creation for title: TFG Gari -Pruebas -Vulnerabilidad

Find local users

encontrada en client2

2025 -05 -21 07:36:45 ,759 - test_report - INFO - Creating Jira ticket with title: TFG Gari -Pruebas -Vulnerabilidad

Find local users

encontrada en client2

2025 -05 -21 07:36:47 ,210 - test_report - INFO - Jira ticket created successfully: WODNLGSEC -37864

2025 -05 -21 07:36:47 ,211 - test_report - INFO - Ticket creation process completed

2025 -05 -21 07:36:48 ,031 - test_report - INFO - Creating new page with title: Caldera Report client2 - Test Discovery

TFG - 21 -05 -2025

2025 -05 -21 07:36:48 ,658 - test_report - INFO - Page ’Caldera Report client2 - Test Discovery TFG - 21-05-2025’

created successfully

2025 -05 -21 07:36:49 ,346 - test_report - INFO - Confluence page created for operation Test Discovery TFG

2025 -05 -21 07:36:49 ,347 - test_report - INFO - Starting to delete operation Test Discovery TFG

(ID: b090d8e0 -e437 -4b1b -b3fc -b379b986cd58)

2025 -05 -21 07:36:49 ,356 - test_report - INFO - Successfully deleted operation b090d8e0 -e437 -4b1b -b3fc -b379b986cd58

2025 -05 -21 07:36:49 ,357 - test_report - INFO - Operation Test Discovery TFG (ID: b090d8e0 -e437 -4b1b -b3fc -b379b986cd

58) deleted

successfully in Caldera

2025 -05 -21 07:36:49 ,357 - test_report - INFO - Test report execution completed successfully

45

	Lista de figuras
	Lista de tablas
	Introducción
	Motivación
	Objetivos
	Estructura de la memoria

	Estado del arte
	Contexto
	MITRE ATT&CK
	MITRE Caldera
	Agentes
	Habilidades
	Adversarios
	Operaciones

	Entorno de trabajo
	Tecnologías utilizadas
	Asyncio y AioHTTP
	Confluence y Jira
	Docker
	Proxmox VE
	Crontab

	Configuración del entorno
	Sistema Operativo
	Despliegue de Caldera
	Entorno de programación del servicio

	Análisis, diseño e implementación
	Análisis
	Diseño
	Diseño del flujo de ataque
	Diseño de la ejecución del servicio

	Implementación
	Código fuente y repositorio público

	Caso de estudio
	Configuración en Caldera
	Preparación del servicio Python
	Ejecución del sistema

	Conclusiones
	Conclusiones generales
	Trabajo futuro

	Bibliografía
	Anexos
	
	Tiempo invertido y diagrama de Gantt
	Categorización de clientes
	Categorización de riesgos
	Traza del registro creado por el Servicio Python

