s Universidad
181 Zaragoza

1542

Trabajo Fin de Grado

Entrenamiento y Validacion de un Agente de Conduccion
Autonoma en un Entorno Simulado

Training and Validation of an Autonomous Driving
Agent in a Simulated Environment

Autor

Juan Valle Morenilla

Directores

Eduardo Montijano Munoz
Rubén Martinez Cantin

Escuela de Ingenieria y Arquitectura
2025

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Resumen

El objetivo de este Trabajo Final de Grado (TFG) es conseguir generar un modelo
para un vehiculo auténomo que sea capaz de completar un circuito de la manera mas
correcta y eficaz posible. Esto se ha logrado utilizando algoritmos de Aprendizaje por
Refuerzo (RL) que provee la libreria Stable Baselines3 para Python asi como Gymnasium
para crear un entorno valido a utilizar por el algoritmo de RL y otras que aportan utilidad
para calculos como pueden ser Numpy u OpenCv.

Asi se ha abordado el problema mediante la elaboracién de diversos entrenamientos
modificando la funcién de recompensa del algoritmo de RL y probando los resultados
obtenidos contrastandolos con las métricas que nos aporta Stable Baselines3 interpretables
mediante TensorBoard.

Cabe destacar que toda la plataforma desarrollada en el proyecto ha sido implemen-
tada integramente por el autor, tomando como base referencias y fragmentos de codigo
disponibles publicamente en distintas fuentes online, los cuales han sido adaptados y ex-
tendidos para cumplir con los objetivos especificos del trabajo.

Abstract

The objective of this Final Degree Project (TFG) is to generate a model for an au-
tonomous vehicle that is capable of completing a circuit as accurately and efficiently as
possible. This was achieved using Reinforcement Learning (RL) algorithms provided by
the Stable Baselines3 library for Python, as well as Gymnasium to create a valid environ-
ment for the RL algorithm, and other libraries that provide useful computational tools
such as Numpy or OpenCy.

The problem was addressed by creating various training sessions, modifying the reward
function of the RL algorithm, and testing the results against the metrics provided by
Stable Baselines3, which can be interpreted using TensorBoard.

It should be noted that the entire platform developed for this project was implemen-
ted entirely by the author, based on references and code fragments publicly available
from various online sources, which have been adapted and extended to meet the specific
objectives of the project.

IT

Agradecimientos

Quisiera expresar mi més sincero agradecimiento a mi familia, por su apoyo incon-
dicional durante todo este proceso. Su confianza, paciencia y animo constante han sido
fundamentales para que pudiera llevar a cabo este trabajo.

También quiero agradecer a mis profesores, y en especial a mis tutores de TFG, por
su dedicacién, orientacion y por compartir sus conocimientos a lo largo de mi formacion.
Sus guias han sido clave para enfocar correctamente este proyecto y superar los distintos
retos que han surgido durante su desarrollo.

A todos ellos, gracias por acompanarme en este camino.

IT1

Indice general

Resumen| I
[Abstract] I1
[Agradecimientos| 111
Indice general v
Indice de figuras| VII

indice de tablag IX

(1. Introduccionl 1
(1.1. Introduccion generall L 1
[1.2. Motivacidon y contexto| 2
[1.3. Objetivos vy alcance] 4
[1.4. Planificacion temporal y estructura del documento|.)

[2. Planteamiento del problema y fundamentos teéricos| 7
[2.1. Descripcion del problemal 0000 7
[2.2. Aprendizaje por Refuerzo (Reinforcement Learning) 9

[2.2.1. Proximal Policy Optimization (PPO)[. 11

IV

[2.2.2. Redes neuronales y redes convolucionales|

[2.3. Tecnologias y herramientas utilizadas| . . .

[2.3.1. Simulacion y robotica movil|

[2.3.2. Aprendizaje Automaticol

[3. Arquitectura y diseno del sistema|

[3.1. Flujo de datos entre ROS, Gazebo y el agente]

[3.2. Componentes principales del sistemal . . .

[3.2.3. Agente RL con Stable Baselinesd

[3.2.4. Integracion y diseno del entorno Gymnasium|.

[3.3. Diseno de la funcién de recompensa|

4. Experimentacién y resultados|

[4.1. Metodologia experimentall

[4.1.1. Circuitos empleados|

[4.1.2. Configuracion del agente e hiperparametros|

[4.2. Conjunto de experimentos|

[4.2.1. Estudio de ablacion de la funcién de recompensal.

[4.2.2. Capacidad de generalizacion|

[5. Conclusiones y lineas futuras|

[A. Anexos]

[A.1. Especificaciones del entorno de simulacion|

v

18

18

20

21

22

24

28

32

40

40

40

41

44

47

48

53

58

61

[A.2. Composicion del entorno y ejecucion| 61

[A.3. Arquitectura de la red neuronal|o 0L 62
[A.4. Infraestructura de referencia: AWS DeepRacer| 62
bliog 64

VI

Indice de figuras

[LI. Conduccién auténoma reall oL 3
[1.2. Esquema del sistema. o000)
[1.3. Cronograma de desarrollo del proyecto.|)
[2.1. Representacion del bucle de control|. 8
[2.2. Representacion grafica de lo que es una recompensa.|. 9
2.3. Modelo MDPJ 0 oo 10
2.4, Modelo PPO basadoen MDPJ 12
[2.5. Imagen explicativa de unared CNN.| 14
[3.1. Arquitectura general del sistema de RL en entorno simulado.| 20
[3.2. Arquitectura del nodo principal.|. o000 21
[3.3. Comparacion entre coche simulado y cochereal.| 23
[3.4. Comparacion entre pista simulada v pistareal.|. 23
[3.5. Simulacion en el entorno de Gazebolo 24
[3.6. Esquema de la arquitectura convolucional utilizada como politica en PPO.| 25
[3.7. Filtros y Feature Maps de la capa O.| 26
[3.8. Filtros y Feature Maps de la 2% capa.| 27
[3.9. Filtros y Feature Maps de la 4* capa.| 28
(3.10. Visualizacion del modelo de conduccion Ackermannl. 30

VII

[3.11. Representacion del ciclo de Proceso de Decision de Markov (MDP) aplicado |

al entorno DeepRacerEnv.|o 31

[3.12. Representacion grafica de la funcion de recompensa.| 33

[3.13. Visualizacion de los parametros de recompensa utilizados en el entorno |

DeepRacerEnv.o 35
[3.14. Trayectoria descrita por el vehiculo con la reward en el circuito base.| . . . 36
[3.15. Valores registrados durante diversos pasos del modelo entrenado final| . . . 37
[3.16. Recompensas en diversas situaciones.| 39
[4.1. Simulacion en gazebo de los mapas utilizados.| 41

[4.2. Tablas generadas por Stable Baselines3 visualizadas mediantes TensorBoard.| 43

[4.3. Tablas generadas por Stable Baselines3 visualizadas mediantes TensorBoard.| 44

[4.4. Evolucion de las acciones ejecutadas por el agente y la recompensa obtenida |

POr Paso.l. 46
[4.5. Trayectoria seguida por el agente durante un episodio de entrenamiento.. . 47
[4.6. 'Trayectorias de distintos modelos de ablacion.| 52
[4.7. Trayectorias generadas por el agente en distintos circuitos de prueba.| . . . 54

[4.8. "Trayectorias generadas por el agente en todos los circuitos en sentido inverso.| 56

[A.1. Esquema simplificado de la arquitectura de AWS DeepRacer.|. 63

VIII

Indice de tablas

[3.1. Comparacion de tiempos promedio entre busqueda por fuerza bruta y KDTree.| 32

[4.1. Resultados cuantitativos del estudio de ablacion de la funcién de recompensal 49

4.2. Resultados cuantitativos en otros circuitos con el modelo entrenado (todas |
las componentes activas)| 55

i4.3. Resultados cuantitativos en otros circuitos con el modelo entrenado (todas |
las componentes activas) L 57

IX

Capitulo 1

Introduccion

1.1. Introduccién general

En los ultimos anos, la conducciéon auténoma ha dejado de ser un concepto de ciencia
ficcién para convertirse en una realidad tecnologica en rapido desarrollo. Grandes em-
presas del sector del automévil y la tecnologia, como Tesla, Waymo o NVIDIA, han
invertido enormes recursos en sistemas capaces de permitir que un vehiculo se desplace
sin intervencion humana. Las noticias sobre coches que circulan solos por las calles de
ciudades como San Francisco, Phoenix o Roma han captado la atencion del piiblico
y alimentado un debate global sobre el futuro del transporte.

Un ejemplo reciente y especialmente ilustrativo es el caso de Tesla, que ha comenzado
a probar su sistema de conduccidén auténoma en entornos reales altamente desafiantes,
como el centro historico de Roma. Segun un reportaje publicado en junio de 2025 (El
Economista, 2025), el vehiculo fue capaz de circular sin intervencion humana por calles
estrechas, con trafico irregular, motocicletas impredecibles y peatones cruzando sin pre-
vio aviso. Este tipo de escenarios urbanos, caéticos y sin reglas estrictamente definidas,
representa uno de los mayores desafios para cualquier sistema de conducciéon auténoma.
Que este sistema sea capaz de navegar en tales condiciones refuerza la idea de que estamos
cada vez més cerca de una autonomia total en la conducciéon, pero también pone de relieve
la necesidad de modelos de comportamiento extremadamente robustos y adaptativos.

Pese a estos avances, la conducciéon autéonoma sigue siendo uno de los mayores retos
tecnologicos de nuestro tiempo. Lograr que un vehiculo sea capaz de moverse de forma
segura y eficiente en entornos complejos requiere que “vea” su entorno, entienda lo que
sucede, tome decisiones rapidas y correctas, y actiie con precision. Para ello, es necesario
combinar dreas como la inteligencia artificial, la vision por computador, la robética, y la
simulacion.

https://www.eleconomista.es/motor/noticias/13411620/06/25/tesla-pone-a-prueba-su-conduccion-autonoma-en-el-caos-romano-asi-navega-su-fsd-por-el-centro-de-roma.html
https://www.eleconomista.es/motor/noticias/13411620/06/25/tesla-pone-a-prueba-su-conduccion-autonoma-en-el-caos-romano-asi-navega-su-fsd-por-el-centro-de-roma.html

Actualmente, uno de los enfoques méas prometedores para entrenar vehiculos autéonomos
es el Aprendizaje por Refuerzo (Reinforcement Learning, RL)[T]. Este método permite
que un sistema aprenda mediante la experiencia: igual que un ser humano o un animal, el
agente prueba distintas acciones, observa sus consecuencias, y ajusta su comportamiento
en funciéon de recompensas o penalizaciones que recibe.

En este contexto, existen plataformas comerciales que permiten experimentar con RL
aplicado a la conduccion auténoma. Una de las més conocidas es AWS DeepRacer|[2],
una iniciativa de Amazon que proporciona un entorno virtual y fisico para entrenar
coches auténomos en la nube. Aunque ofrece una introduccion accesible a estos conceptos,
presenta limitaciones como el uso exclusivo de servicios en la nube, el alto coste econdémico
y la baja capacidad de personalizacion.

Frente a esto, surge la oportunidad de construir una alternativa completamente local y
abierta, que permita no solo replicar, sino también mejorar algunos aspectos de estas pla-
taformas comerciales. Aqui es donde se enmarca el presente Trabajo de Fin de Grado
(TFG), que tiene como objetivo desarrollar desde cero un sistema de conducciéon auténo-
ma simulado basado en aprendizaje por refuerzo, utilizando tnicamente herramientas de
c6digo abierto y ejecutandose de forma local.

En este proyecto, un coche virtual aprende a conducir por si mismo dentro de un
entorno simulado. A través de una camara virtual, el vehiculo percibe el entorno como
si estuviera en el mundo real, y debe decidir como actuar en cada momento sin recibir
instrucciones directas. El modelo se entrena repitiendo acciones, observando el resultado,
y ajustando su comportamiento en funcién de una funcién de recompensa definida.

Mas alla de construir un sistema funcional, este trabajo busca entender en profundidad
como funcionan estos sistemas, enfrentarse a sus principales dificultades y sentar las bases
para futuras extensiones, como el uso de sensores mas complejos o la transferencia a
vehiculos reales.

1.2. Motivacién y contexto

La conduccién auténoma representa uno de los desafios més interesantes y completos
que pueden abordarse desde la inteligencia artificial y la robdtica. Su resoluciéon exige una
comprension profunda de algoritmos, estructuras de software, modelado fisico y estrategias
de aprendizaje, lo que convierte este tipo de proyecto en una excelente oportunidad para
consolidar conocimientos y desarrollar nuevas habilidades. Un ejemplo de un sistema real
de conducciéon auténoma puede verse en la Figura (1.1}

Figura 1.1: La imagen muestra un ejemplo de vehiculo real equipado con sensores para
navegacion auténoma, como camaras, LIDAR y radares. Este tipo de hardware permite
al coche percibir su entorno en tiempo real.

Ademas, el Aprendizaje por Refuerzo (Reinforcement Learning) se ha posicionado co-
mo una de las técnicas més prometedoras para abordar tareas donde la soluciéon 6ptima no
se puede programar explicitamente, sino que debe ser descubierta mediante la interaccion
del agente con su entorno. La idea de que un sistema pueda aprender de su experiencia,
mejorar con el tiempo y adaptarse a nuevas situaciones resulta muy interesante desde el
punto de vista cientifico y ofrece un enorme potencial de aplicacién en roboética, video-
juegos, automatizacion industrial y mas.

Uno de los referentes mas conocidos en este campo es la plataforma AWS DeepRacer,
que ofrece un entorno virtual para entrenar coches auténomos mediante RL. Sin embargo,
tras explorar su funcionamiento, se identificaron una serie de limitaciones importantes:
dependencia obligatoria de servicios en la nube, escasa capacidad de personalizacion, uso
de codigo cerrado y un coste econdémico considerable para el entrenamiento y despliegue
de modelos. Estas barreras hacen que el acceso a la experimentacion avanzada quede
restringido a usuarios con recursos econdémicos o institucionales elevados.

Surge asi la motivacion por disenar y construir una alternativa completamente local,
accesible y abierta. El objetivo es replicar (y en algunos aspectos superar) el enfoque de
plataformas comerciales, pero utilizando exclusivamente herramientas de cédigo abierto
como ROS, Gazebo, Gymnasium y Stable Baselines3. Esto no solo elimina costes, sino
que abre la puerta a una personalizacion total del entorno, la arquitectura del agente y
la funcién de recompensa, lo cual resulta esencial en un proyecto académico orientado al
aprendizaje y la investigacion.

Desde una perspectiva formativa, el proyecto también tiene una fuerte carga motiva-
cional: implica aprender a configurar entornos simulados complejos, modelar vehiculos,
integrar sensores virtuales, aplicar algoritmos de RL y analizar los resultados para mejo-
rar el sistema iterativamente. La implementacion completa del sistema desde cero obliga a
enfrentarse con numerosos retos técnicos, lo que convierte el proyecto en una experiencia
intensa pero enriquecedora de aprendizaje auténomo y resoluciéon de problemas reales.

Finalmente, el enfoque adoptado también responde a una vision a largo plazo: crear
una base solida sobre la cual se puedan desarrollar futuros trabajos, ya sea extendiendo la
plataforma para trabajar con vehiculos reales, explorando otros algoritmos de aprendizaje
o introduciendo nuevos sensores y escenarios. Este TFG pretende asi ser mas que un
trabajo puntual: una contribucién inicial a una linea de trabajo abierta, accesible y con
amplio margen de desarrollo.

1.3. Objetivos y alcance

Objetivos

El principal objetivo de este proyecto es desarrollar un modelo de aprendizaje por
refuerzo capaz de controlar un vehiculo simulado de forma auténoma, aprendiendo a re-
correr un circuito con un trazado determinado. Para ello, se incluye también como parte
fundamental del trabajo la construcciéon del entorno simulado, utilizando herramientas
ampliamente adoptadas en el desarrollo de sistemas roboéticos, como ROS y Gazebo. Mas
alla de lograr buenos resultados en ese entorno especifico, se busca que el modelo adquie-
ra cierta capacidad de generalizacion, permitiendo su transferencia a circuitos similares
con un rendimiento comparable sin necesidad de reentrenamiento desde cero. Ademas, el
proyecto tiene como objetivo complementar la formacion técnica mediante el analisis y
aplicacion de técnicas avanzadas de aprendizaje por refuerzo, prestando especial atencion
a la experimentacion con distintas configuraciones de entornos, funciones de recompensa
y algoritmos de entrenamiento.

Alcance

El alcance del trabajo se ha delimitado a la implementaciéon completa de una pla-
taforma de conduccién autéonoma simulada, utilizando exclusivamente recursos locales y
herramientas de codigo abierto. Esto incluye:

= La configuracion del entorno de simulaciéon con Gazebo.
» El desarrollo de un modelo de vehiculo personalizado y sus sensores.

» La integracion de este entorno con un wrapper compatible con Gymnasium.

= Kl diseno de una funcion de recompensa adecuada para guiar el comportamiento del
agente.

= El entrenamiento del modelo mediante Aprendizaje por Refuerzo y su posterior
evaluacion en distintas condiciones.

El sistema ha sido desarrollado integramente desde cero, utilizando tnicamente libre-
rias de proposito general. Aunque la implementaciéon fisica en un vehiculo real queda

4

fuera del alcance de este TFG, se plantea como una posible linea futura. Este trabajo se
enmarca en un proyecto mas ambicioso financiado por la Catedra Mobility City, en
colaboraciéon con la Universidad de Zaragoza, orientado a fomentar la innovacién en
el ambito de la movilidad inteligente. La Figura [1.2| muestra un esquema general del
sistema desarrollado, con sus principales componentes.

Gazebo

>

(XX} N
~ STABLE
cee R O S 0 1 BASELINES3

Figura 1.2: Este esquema ilustra los componentes principales del sistema desarrollado,
incluyendo el entorno de simulacion (Gazebo), el entorno (Gymnasium) y el agente de RL
(Stable Baselines3).

1.4. Planificacién temporal y estructura del documento

Cronograma

A lo largo del desarrollo del proyecto, se ha seguido una planificaciéon estructurada por
fases, que ha permitido abordar de forma progresiva y ordenada cada una de las etapas
necesarias para alcanzar los objetivos. La Figura resume las fases principales del
proyecto y el periodo estimado de trabajo para cada una de ellas, desde la fase inicial de
analisis hasta la evaluacion de resultados y redaccion final.

oct 24 |nov 25| dic 24 |ene 25| feb 25 [mar 25| abr 25 | ma 25| jun 25

Analisis de AWS DeepRacer y definicion del entomo local

Estudio inicial sobre RL y conduccion auténoma

Configuracién de Gazebo y ROS

Desarrollo del entomo Gym personalizado

Implementacion de la funcion de recompensa

Entrenamiento del modelo y ajustes de parametros

Evaluacion de resultados y redaccion del documento

Figura 1.3: Las fases se organizan en funcion del tiempo utilizado para cada etapa, faci-
litando el seguimiento y control del progreso.

Estructura del documento

La memoria se estructura en cuatro capitulos principales. En el Capitulo 2, se des-
cribe de forma técnica el problema a resolver, detallando el comportamiento esperado del
sistema y las restricciones que condicionan la solucién. El Capitulo 3 presenta el marco
tedrico necesario para comprender el desarrollo del proyecto, incluyendo los fundamentos
del Aprendizaje por Refuerzo, la simulacién en robotica y las tecnologias utilizadas, como
Gazebo, ROS y el algoritmo PPO. En el Capitulo 4, se expone la arquitectura del siste-
ma desarrollado, abarcando desde la creacion del entorno simulado hasta la integracion de
los distintos modulos, incluyendo la definicion de la funcién de recompensa y la logica de
entrenamiento. Finalmente, el Capitulo 5 recoge los resultados obtenidos tras el proceso
de entrenamiento, analizando el rendimiento del modelo en distintos escenarios de prueba
y comentando posibles mejoras o extensiones futuras.

Capitulo 2

Planteamiento del problema y
fundamentos tebricos

2.1. Descripcion del problema

El presente proyecto se enmarca en el desarrollo de un sistema de conduccion auténoma
en un entorno simulado, donde un vehiculo debe recorrer un circuito cerrado de forma
eficiente y segura, sin intervenciéon humana directa. El sistema se basa exclusivamente en
la percepcion visual obtenida a través de una camara frontal montada sobre el vehiculo,
lo que implica que toda la toma de decisiones debe derivarse de la informacién contenida
en las imagenes.

El escenario de trabajo consiste en una pista o circuito previamente definido, un vehicu-
lo con capacidad de movimiento en un plano bidimensional y un entorno simulado que
permite controlar y monitorizar todas las interacciones. El vehiculo opera en un bucle
cerrado de control, en el que recibe observaciones del entorno (en forma de imégenes),
procesa esa informacion y determina la accion méas adecuada (como acelerar, frenar o
girar) y la ejecuta en el entorno. Este ciclo (representado en la Figura se repite de
forma continua durante el entrenamiento y la evaluacion del sistema.

?

Observacion Agente
| tomad | >
magen ’oma aporla Analiza y actua
camara
Entorno
«—

La accién se ejecuta y se
simula el coche

Figura 2.1: Este diagrama muestra el ciclo cerrado de control del vehiculo auténomo. El
agente recibe una imagen del entorno, procesa esta informaciéon para decidir una accion
y la ejecuta, lo que genera una nueva observacion que reinicia el ciclo.

Desde una perspectiva de inteligencia artificial, este problema se aborda mediante
técnicas de Aprendizaje por Refuerzo. En este paradigma, un agente aprende a tomar
decisiones 6ptimas a partir de la interacciéon repetida con un entorno, guiado por una
senal de recompensa que evalia la calidad de sus acciones. En lugar de proporcionarle
instrucciones explicitas, se deja que el agente explore, falle, y gradualmente aprenda a
comportarse de forma deseable a partir de la retroalimentacién que recibe.

En este caso, el agente no tiene acceso a mapas, coordenadas ni informacion estructura-
da sobre el circuito. Su tnica fuente de informacion es la imagen capturada por la cdmara,
lo que convierte el problema en un desafio de percepcién y control basado en vision. A
partir de esta entrada visual, el agente debe inferir en tiempo real como moverse por el
circuito sin salirse del trazado, evitando colisiones y manteniendo un avance constante.

Un aspecto clave del problema es la necesidad de generalizacion. Aunque el entrena-
miento se realiza en un circuito concreto, el objetivo no es que el vehiculo memorice una
secuencia fija de acciones para ese trazado, sino que desarrolle un comportamiento robus-
to que pueda transferirse a circuitos similares no vistos. Esto implica que el agente debe
aprender patrones generales de navegacion basados en la percepcion visual, en lugar de
estrategias especificas dependientes del entorno de entrenamiento.

La complejidad del problema también radica en su naturaleza continua y en tiempo
real: las acciones del agente deben calcularse rapidamente, y las decisiones deben adaptarse
dindmicamente a la escena percibida en cada instante. Ademas, el diseno de la funcion de
recompensa, que guia el aprendizaje del agente, debe ser lo suficientemente informativa

como para promover un comportamiento eficiente, pero también general para evitar el
sobreajuste a situaciones especificas.

2.2. Aprendizaje por Refuerzo (Reinforcement Learning)

El Aprendizaje por Refuerzo [I] es una rama del aprendizaje automatico en la que
un agente aprende a interactuar con un entorno mediante la experimentacion y la re-
troalimentaciéon en forma de recompensas. A diferencia del aprendizaje supervisado, en
el RL no se proporcionan pares de entrada y salida deseada, sino que el agente debe
descubrir qué acciones maximizan su recompensa acumulada a lo largo del tiempo. La
Figura muestra de forma esquematica el funcionamiento bésico de la recompensa,
donde se premia hacer las cosas bien y se castiga hacerlas mal, en este caso meter o no la
pelota.

Figura 2.2: Ejemplo visual sencillo que muestra la funciéon de recompensa en RL: se premia
al agente por lograr un objetivo (meter la pelota: +10) y se penaliza por fallar (no meter
la pelota: -10), fomentando el aprendizaje mediante ensayo y error.

Un entorno de RL se formaliza como un Proceso de Decision de Markov (MDP)(I],
definido por el cuarteto (S, A, P, R), donde:

= S: conjunto de estados posibles del entorno.

= A: conjunto de acciones que el agente puede ejecutar.

= P: funcién de transicion de estados, que define la probabilidad de pasar de un estado
a otro tras ejecutar una accion.

P(sp1 | ag, 5¢)

» R: funcion de recompensa que asigna un valor (numérico) a cada transicion estado-
accion-estado.

R(St, Gy, 3t+1)

La Figura representa graficamente un modelo tipico de Proceso de Decision de
Markov (MDP), donde se visualizan los elementos clave del entorno y la interaccion del
agente con el mismo.

Agent

state reward

action
S; R, A,
| Rt+1 ([
—E‘—. .
< Environment |[€¢—
i \

Figura 2.3: Diagrama del Proceso de Decisiéon de Markov, que ilustra la interacciéon entre
estados, acciones y recompensas.

El objetivo del agente es aprender una politica 7(a|s) que maximice la recompensa
acumulada a largo plazo, formalizada como

E

Z ’}/tR(Sb StJrl)])
t=0

donde v € [0, 1] es el factor de descuento que pondera la importancia de las recompensas
futuras.

Este paradigma ha demostrado ser especialmente eficaz en tareas como juegos, control
robotico, navegacion autonoma o estrategias de trading.

Para implementar y optimizar el comportamiento del agente en un entorno de Apren-
dizaje por Refuerzo, se emplean ciertos componentes fundamentales que definen su estra-
tegia de actuacion y su capacidad de evaluacion. Entre estos, se encuentran la politica,

10

que guia la toma de decisiones del agente, y la funcién de valor, que permite estimar la
calidad de los estados segtn la recompensa esperada. Ambos elementos son especialmente
relevantes en enfoques basados en el método actor-critico. Una vez procesada la entrada
por las capas convolucionales y completamente conectadas de la red neuronal, el modelo
genera dos salidas principales: la politica y el valor del estado. A continuacion, se detalla
el proposito y funcionamiento de cada una:

» Politica: La politica, denotada como m(s), es una funciéon que toma como entrada
un estado del entorno y devuelve una distribucion de probabilidad sobre las posibles
acciones. En este caso, dado que el espacio de acciéon es continuo (compuesto por un
angulo y una velocidad), la politica no devuelve directamente una accion, sino los
parametros de una distribuciéon gaussiana multivariante: las medias y desviaciones
estandar correspondientes a cada dimension de la accién. Durante la ejecucion, se
muestrea una acciéon de esa distribucion. Este componente corresponde al actor
dentro del paradigma actor-critico, y su objetivo es aprender a seleccionar acciones
que maximicen la recompensa esperada.

» Valor: El valor del estado, representado como V'(s), es una funcién que estima el
valor esperado de recompensas futuras que puede obtenerse a partir de un estado,
siguiendo la politica actual. Este valor es un tnico ntimero escalar y corresponde
al critico en el enfoque actor-critico. Su funcion principal dentro de PPO es servir
como una referencia para calcular la ventaja (advantage function), la cual indica
cuanto mejor o peor fue una accién respecto a lo que se esperaba en ese estado.
Es decir, permite predecir las recompensas futuras sin tener que simular todos los
estados futuros, utilizando V' (s;) y la recompensa ry4.

2.2.1. Proximal Policy Optimization (PPO)

PPO es un algoritmo de aprendizaje por refuerzo [3|] que se basa en la optimizacion
directa de politicas, y es ampliamente utilizado por su estabilidad y eficiencia en entornos
continuos. Se basa en la idea de optimizar una politica estocéstica sin que los cambios
entre actualizaciones consecutivas sean demasiado grandes. En este caso, la red neuronal
recibe como input la observacion del entorno, que suele ser una imagen o un conjunto
de imagenes (por ejemplo, frames de un juego o cdmaras en un entorno de conduccion
auténoma).

En la Figura se ilustra el esquema general del algoritmo PPO dentro del marco
Actor-Critic. En este enfoque, el agente esta compuesto por dos componentes principales:
el actor, que representa la politica 7 y se encarga de seleccionar acciones dadas las obser-
vaciones del entorno, y el critic, que estima el valor del estado (o la ventaja) y proporciona
una senal que guia la mejora de la politica. Ambos médulos interactiian con el entorno:
el actor genera acciones que afectan al entorno, y el critico evalia las consecuencias de
dichas acciones para actualizar la politica de forma mas estable.

11

| Action

State__,
: ENVIRONMENT

Actor @
-

Adv = Discounted
¥ Rewards - V(s)

V(S)E ' Reward

®

Figura 2.4: Esquema del algoritmo Proximal Policy Optimization (PPO) dentro del marco
Actor-Critic. El actor genera acciones a partir de observaciones del entorno, mientras que
el critico evalta el valor de los estados para guiar la actualizacion estable de la politica.

Una de las claves del funcionamiento de PPO es el uso de funciones de valor que
permiten mejorar la politica de forma maéas eficiente. En particular, el critico estima la
funcion de valor V™ (s), que representa la recompensa esperada futura al estar en el estado s
y seguir la politica actual 7. También puede estimarse la funcién de accion-valor Q7 (s, a),
que refleja la recompensa esperada al tomar la acciéon a en el estado s, seguida de la
politica 7. A partir de estas, se define la funcion ventaja A™(s,a) = Q7(s,a) — V7™ (s), que
indica si una accién es mejor o peor que la media de la politica.

Para estimar esta ventaja de manera eficiente, PPO emplea Generalized Advantage
Estimation (GAE) [4], que permite un balance controlado entre sesgo y varianza. El
célculo se realiza como una suma ponderada de las diferencias temporales.

Una vez estimadas las ventajas, PPO actualiza la politica utilizando un objetivo que
restringe cuédnto puede cambiar esta entre iteraciones. La idea es evitar actualizaciones
demasiado agresivas que puedan degradar el rendimiento. Para ello, se introduce un ratio
de probabilidad entre la politica nueva y la anterior:

WQ(Gt|8t)
Tho1a (atlst) .

r(0) =

Una forma tedricamente més adecuada de limitar el cambio entre politicas es penalizar

12

explicitamente la divergencia KIJT| entre la politica nueva y la antigua. Esta penalizacién
puede expresarse como

LEE() = By [ri(0) A = BKL[Ta(- | 50) | mol- | 50)]]

donde [controla el peso de la penalizacion. Sin embargo, en la practica, el algoritmo
PPO suele utilizar una alternativa mas simple pero efectiva: la técnica de clipping, que
evita que el ratio 7,(f) se aleje demasiado de 1. Esta aproximacion funciona como una
forma practica de limitar el cambio de politica sin necesidad de calcular explicitamente la
divergencia KL, y se ha observado que produce mejores resultados empiricos en muchos
casos [3]. El objetivo de clipping se define como

LCLIP(Q) =E, [ml’n (rt(e)/it, clip(ry(0),1 — e, 1 + G)Atﬂ)

Ambas formulaciones, con penalizacion KL o con clipping, buscan el mismo fin: evitar
que la nueva politica se desvie excesivamente de la anterior. De hecho, el clipping puede
interpretarse como una aproximacion practica de una region de confianza sobre la politica,
inspirada en el concepto de trust region de métodos como TRPO (Trust Region Policy
Optimization). PPO implementa este principio de forma eficiente, evitando la complejidad
computacional de TRPO, pero conservando gran parte de sus beneficios en cuanto a
estabilidad y convergencia.

2.2.2. Redes neuronales y redes convolucionales

Las redes neuronales artificiales (ANN, por sus siglas en inglés) son modelos
computacionales inspirados en el funcionamiento del cerebro humano. Estan compues-
tas por un conjunto de nodos llamados neuronas, organizadas en capas, que procesan
informacion mediante operaciones matematicas. Cada neurona recibe entradas, las pon-
dera a través de pesos, aplica una funcién de activacion no lineal, y produce una salida
que puede alimentar a otras neuronas. Esta arquitectura permite a las redes aprender re-
presentaciones complejas de los datos a partir de ejemplos, lo que las hace especialmente
utiles en tareas como clasificacion, regresion, reconocimiento de patrones y control.

Una red neuronal tipica se organiza en tres tipos de capas:

» Capa de entrada: recibe los datos iniciales (por ejemplo, pixeles de una imagen).

= Capas ocultas: procesan la informacién internamente mediante transformaciones
no lineales.

La divergencia de Kullback-Leibler (KL) mide la diferencia entre dos distribuciones de probabilidad.
En este contexto, cuantifica cudnto ha cambiado la politica nueva respecto a la anterior. Una divergencia
KL pequena indica que ambas politicas son similares.

13

» Capa de salida: genera el resultado final (por ejemplo, una accién, una etiqueta o
una prediccion).

El aprendizaje de la red consiste en ajustar los pesos internos mediante un proceso
llamado retropropagacion (backpropagation), que minimiza una funciéon de pérdida en
funcion del error cometido.

Redes neuronales convolucionales (CNN)

Las redes neuronales convolucionales (CNN, por sus siglas en inglés) son una
clase especializada de redes neuronales disenadas especificamente para procesar datos con
una estructura de tipo espacial, como las imagenes. A diferencia de las redes neuronales
totalmente conectadas, las CNN aprovechan la estructura local de los datos mediante
la operaciéon de convolucion, lo que les permite extraer automaticamente caracteristicas
relevantes como bordes, formas o texturas.

En la Figura se puede observar la arquitectura tipica de una red CNN en la
que una imagen de entrada pasa por una serie de capas convolucionales, de activaciéon y
de agrupamiento, lo que permite extraer representaciones jerarquicas de caracteristicas.
Estas se procesan posteriormente en capas totalmente conectadas para realizar la tarea
final (por ejemplo, clasificacién o estimacion de valores).

Input Output
Pooling Pooling Pooling .=
K | Convolution Convolution Convolution > Activation
erng +ReLU +ReLU +ReLU Flatten Function
Layer
Fully
+——— FeatureMaps ————————» L Connected |
Layer
Feature Extraction Classification Probabilistic

Distribution

Figura 2.5: Arquitectura tipica de una red neuronal convolucional (CNN).

Una CNN esta compuesta tipicamente por los siguientes bloques:

» Capas convolucionales: aplican filtros (también llamados kernels) que recorren la
imagen detectando patrones locales. Cada filtro genera un mapa de activacion que
representa la presencia de una caracteristica especifica.

14

» Capas de activacion: aplican funciones no lineales como ReLU (Rectified Linear
Unit) para introducir no linealidad en el modelo.

» Capas de agrupamiento (pooling): reducen la dimensionalidad de los mapas de
activacion, manteniendo las caracteristicas mas importantes y reduciendo el costo
computacional.

» Capas completamente conectadas (fully connected): combinan la informacion
extraida en las capas anteriores para producir una salida final, como una clasificacién
0 una accion.

El principal beneficio de las CNN frente a las redes densas tradicionales es su capaci-
dad para captar relaciones espaciales jerarquicas en los datos visuales, con una eficiencia
computacional significativamente mayor. Gracias a su arquitectura compartida, las CNN
requieren menos parametros, son menos propensas al sobreajuste y funcionan mejor en
tareas de percepcion visual, como reconocimiento de objetos, deteccion de obstaculos o
conduccién autéonoma basada en imagenes.

En resumen, las redes convolucionales constituyen una herramienta fundamental para
abordar problemas donde la entrada del sistema es una imagen o secuencia visual. Su ca-
pacidad para aprender representaciones espaciales complejas las convierte en una eleccion
natural en el campo del Aprendizaje por Refuerzo basado en visién, donde el agente debe
interpretar visualmente su entorno para tomar decisiones en tiempo real.

2.3. Tecnologias y herramientas utilizadas

En este proyecto se ha hecho uso de diversas tecnologias y herramientas que permiten
el desarrollo, entrenamiento y evaluacién de un agente de Aprendizaje por Refuerzo en
un entorno de simulaciéon de roboética movil. Estas tecnologias abarcan desde simuladores
fisicos hasta librerias especializadas en aprendizaje automatico y visualizacion de métricas.

El objetivo de esta seccion es describir cada una de estas herramientas y explicar como
se integran entre si para formar un sistema funcional. Esta combinaciéon de herramien-
tas permite crear una infraestructura modular y reproducible, adecuada para investigar
soluciones de conduccion auténoma mediante técnicas modernas de RL.

2.3.1. Simulacién y roboética mévil

La conducciéon auténoma es una aplicaciéon compleja de la robodtica moévil, ya que re-
quiere percibir el entorno, tomar decisiones en tiempo real y ejecutar acciones precisas.
Para probar algoritmos sin depender de hardware fisico, se recurre a entornos de simula-
cion realistas.

15

ROS (Robot Operating System)

Robot Operating System (ROS) [5] es un conjunto de herramientas, bibliotecas y
convenciones disenadas para simplificar el desarrollo de software para sistemas roboticos.
Aunque no es un sistema operativo en el sentido tradicional, ROS proporciona servicios
similares, como abstraccion de hardware, control de dispositivos, paso de mensajes entre
procesos y gestion de paquetes.

ROS se basa en una arquitectura distribuida en nodos, donde cada nodo realiza una
funcion especifica (por ejemplo, adquisicion de sensores, control de movimiento o planifi-
cacion). Estos nodos se comunican entre si mediante topicos, servicios y acciones, lo que
facilita la creacion de sistemas modulares, escalables y reutilizables. ROS es ampliamente
utilizado tanto en la academia como en la industria por su flexibilidad, compatibilidad
con numerosos lenguajes de programacion (como Python y C++) y su gran ecosistema
de paquetes comunitarios.

Gazebo

Gazebo [0] es un simulador 3D de cédigo abierto que permite crear entornos virtuales
realistas para pruebas de algoritmos de roboética sin necesidad de hardware fisico. Propor-
ciona una simulacion precisa de dindmicas fisicas (colisiones, friccion, gravedad), sensores
(camaras, LIDAR, IMU) y actuadores, lo que lo convierte en una herramienta poderosa
para el desarrollo y validacion de sistemas auténomos.

El simulador permite definir modelos complejos de robots y mundos mediante archivos
de configuracion y scripts, y ofrece interfaces de integracion con otros marcos de software,
como ROS. Gracias a su motor fisico, Gazebo permite ejecutar simulaciones en tiem-
po real o aceleradas, proporcionando una plataforma segura, repetible y escalable para
experimentacion en robotica mévil, manipulaciéon y vehiculos auténomos.

2.3.2. Aprendizaje Automatico

El desarrollo del sistema de Aprendizaje por Refuerzo en este proyecto se ha apoyado
en un conjunto de librerias especializadas que permiten tanto la definicién de entornos de
simulaciéon como la implementacion, entrenamiento y anélisis de algoritmos de RL.

Stable Baselines3 y PyTorch

Stable Baselines3 [7] es una implementacion de algoritmos de RL basada en PyTorch
[8], que ofrece modelos robustos y reproducibles. Se eligié por su integracion con Gy-

16

mnasium, su rendimiento en GPU y por incluir gran variedad de algoritmos, entre los
que destaca PPO, y arquitecturas de redes neuronales, como CNN, gestion de rollouts’] y
protocolos de evaluacion.

Gymnasium y entornos personalizados

Gymnasium es una biblioteca ampliamente utilizada en el campo del Aprendizaje por
Refuerzo [9], que proporciona una interfaz estandarizada para la creacion, uso y evaluacion
de entornos. Esta interfaz se basa en tres funciones principales:

= reset(): reinicia el entorno y devuelve el estado inicial del agente.

» step(action): ejecuta una accién en el entorno y devuelve una tupla con el nuevo
estado, la recompensa obtenida, una senal booleana de finalizacién por una accién
del robot, como salir de la pista o terminar una vuelta (done), y otra de truncamiento
para acciones externas al robot, como la expiracion de un timer (truncated), asi
como informacion adicional en un diccionario opcional (info).

» render (): permite visualizar el entorno, ya sea en modo grafico o como texto, de-
pendiendo de la implementacion.

Para este trabajo se ha desarrollado un entorno personalizado compatible con la API
de Gymnasium, que actiia como puente entre el simulador y el agente de aprendizaje por
refuerzo. El entorno implementa todas las funciones necesarias para integrarse con Stable
Baselines3 y muchas otra librerias de RL, facilitando la interacciéon entre el agente y el
entorno simulado.

Gracias a esta integracion, es posible entrenar agentes de RL utilizando bibliotecas
como Stable Baselines3, garantizando compatibilidad, modularidad y reproducibilidad
en los experimentos.

TensorBoard

TensorBoard es una herramienta de visualizaciéon desarrollada por Google como parte
del ecosistema de TensorFlow, que permite inspeccionar en tiempo real el comportamiento
de modelos de aprendizaje automético durante el entrenamiento. Entre sus funcionalidades
més destacadas se encuentra la representacion gréfica de métricas como la funcion de
pérdida, las recompensas acumuladas, la evolucion de los parametros del modelo, asi
como histogramas, distribuciones y comparativas entre sesiones de entrenamiento.

2Un rollout es una secuencia de pasos (estado, accion, recompensa) generada al interactuar con el
entorno usando la politica actual del agente, y que se utiliza para actualizar dicha politica.

17

Capitulo 3

Arquitectura y diseno del sistema

El sistema desarrollado para este proyecto se compone de varios médulos que interac-
tiuan de forma coordinada para permitir el entrenamiento y evaluaciéon de un agente de
control autéonomo. La arquitectura se ha disenado siguiendo un enfoque modular, permi-
tiendo flexibilidad, reutilizaciéon de componentes y facilidad en la depuracion y analisis.

3.1. Flujo de datos entre ROS, Gazebo y el agente

El sistema de conducciéon auténoma propuesto integra diversos componentes que se
comunican entre si de manera sincronizada para permitir el entrenamiento y evaluacion
del agente inteligente. El flujo de datos sigue una arquitectura ciclica y coordinada, donde
cada médulo cumple una funcién especifica dentro del lazo de control. A continuacion, se
detalla el flujo completo de informacion:

1. Simulacién en Gazebo: El simulador Gazebo representa el entorno fisico virtual
en el que opera el vehiculo auténomo. Este entorno incluye el modelo dinamico del
coche, las caracteristicas del terreno (carretera, bordes, curvas) y la cimara montada
en el vehiculo. En cada ciclo de simulacién, Gazebo genera una imagen desde la
camara frontal del coche, que simula una camara RGB. Esta imagen representa la
percepcion visual del entorno en tiempo real.

2. Transmision mediante ROS: El sistema operativo robdtico (ROS) acttia como
middleware y se encarga de la comunicacion entre Gazebo y los componentes de alto
nivel. ROS publica las imagenes de la cAmara como mensajes en un topico especifico.

3. Preprocesamiento en el entorno Gym: El entorno de entrenamiento, imple-
mentado mediante la interfaz Gym, actiia como un contenedor que abstrae las in-
teracciones entre el agente y el entorno simulado. Este entorno recibe las imagenes
desde ROS y las presenta al agente como una observacion.

18

4. Inferencia del agente: El agente, basado en Aprendizaje por Refuerzo Profundo
(PPO), procesa la observacion y determina la mejor accion posible en funcion de su
politica actual. Esta accion consiste en comandos de velocidad y angulo de giro. La
accion se codifica como un mensaje ROS y se publica en el tépico correspondiente,
para ser interpretada por el simulador.

5. Aplicacion de la accidon en Gazebo: ROS reenvia el mensaje de accion al simula-
dor Gazebo, donde se aplica directamente al modelo del vehiculo. Como resultado,
el coche actualiza su posicion, orientacion y estado dindmico dentro del entorno
simulado. Esta interaccién permite cerrar el bucle de control en tiempo casi real,
simulando la ejecucion fisica de la accién en el mundo real.

6. Calculo de recompensa y retroalimentacién: El entorno Gym, en conjunto
con los datos ofrecidos por ROS, calcula una funcién de recompensa basada en la
nueva observacion del estado del vehiculo. Esta recompensa refleja qué tan buena
fue la accién ejecutada segiin criterios definidos previamente. Luego, esta senal de
recompensa se utiliza para actualizar la politica del agente y se inicia un nuevo ciclo
de interaccion.

Este flujo de datos en bucle permite que el agente aprenda de la experiencia, ajustando
su comportamiento con cada iteracion. La arquitectura modular basada en ROS facilita
ademas la integracion de nuevos sensores o el intercambio de componentes (como cambiar
el simulador o modificar la red neuronal) sin necesidad de rediseniar el sistema completo.

La Figura (3.1 muestra la arquitectura general del sistema desarrollado para entre-
nar el agente de Aprendizaje por Refuerzo en el entorno simulado. En ella se visualizan
los principales componentes: el simulador Gazebo, el middleware ROS que gestiona la
comunicacion entre nodos, el entorno Gym personalizado y el agente PPO implementa-
do con Stable Baselines3. Esta estructura modular permite una integracion fluida entre
simulacion, percepcion, entrenamiento y evaluacion del modelo.

19

Manda
una
accion
Recompensa \ 2
Agente RL y Entorno de
) observacion Gymnasium P
Politica entrenable
(mediante PPO) Interfaz RL
Observacion
step() reset() | (imagenes de
v v la cdmara)
Gazebo Simulacién ROS
< fisica
Simulador 3D (robot, Middleware de < »
camara y circuito) comunicacién ~ | Observacion
(imagenes de
la camara)

Figura 3.1: Diagrama que muestra la interaccion modular entre el simulador Gazebo,
el middleware ROS, el entorno Gym personalizado y el agente PPO. Este flujo ciclico
permite el entrenamiento y evaluacion del agente de control auténomo basado en iméagenes
captadas en tiempo real.

3.2. Componentes principales del sistema
A grandes rasgos, el sistema esta compuesto por tres bloques principales:

1. Interfaz de comunicacion: proporcionada por ROS, permite el intercambio de in-
formacion entre los diferentes modulos, como la percepcion del entorno y las 6rdenes
de control del agente.

2. Simulacién del entorno: gestionada mediante Gazebo, representa el mundo vir-
tual, incluyendo el circuito, el vehiculo y su sensor de camara.

3. Agente de Aprendizaje por Refuerzo: implementado con Stable Baselines3
y Gymnasium, este moédulo procesa la informacion visual, decide las acciones a
ejecutar y ajusta su politica mediante entrenamiento continuo.

20

3.2.1. Interfaz de comunicaciéon mediante ROS

En este proyecto, ROS cumple una funciéon central como middleware que facilita la
comunicacion entre los diferentes modulos del sistema, en particular entre el entorno de
simulacion en Gazebo y el agente de Aprendizaje por Refuerzo implementado con Stable
Baselines3. ROS permite estructurar el sistema de forma modular, donde cada componente
se comunica mediante la publicacion y suscripcion a tdpicos y el uso de servicios, lo que
mejora la escalabilidad y mantenibilidad del proyecto.

El nodo principal desarrollado para este sistema es DeepRacerEnv, que actia co-
mo la interfaz entre el entorno de entrenamiento y el simulador Gazebo. La comuni-
cacion con Gazebo se realiza mediante la publicaciéon de comandos de movimiento sobre
el topico /vesc/low_level/ackermann_cmd_mux/output, y la suscripcion a los topicos
/gazebo/model_states y /camera/zed/rgb/image_rect_color para obtener informa-
cién sobre la posicion del vehiculo y su percepcion visual, respectivamente. Ademas, se uti-
lizan los servicios /gazebo/pause_physics, /gazebo/unpause_physicsy /gazebo/set_model_state
para controlar la simulaciéon y reiniciar el estado del entorno al inicio de cada episodio.

deepracer_rl < » Gazebo
sub: /camara/zed/rgb/image_rect_color «—— Imagen desde ZED (camara)
sub: /gazebo/model_states ««——Estado del modelo en Gazebo
pub: /vesc/low_level/ackermann_cmd_mux/output ——3 Comandos de movimiento

Figura 3.2: Diagrama que muestra la interaccion modular entre el nodo principal de
ejecucion del entorno y sus suscriptores y publicadores.

En la Figura [3.2] se representa la arquitectura del nodo principal DeepRacerEnv,
evidenciando como se organiza la comunicaciéon mediante ROS. Los componentes que
conforman el nodo incluyen:

» Imagenes de la caAmara: Uno de los componentes se encarga de suscribirse al
topico que publica las imagenes RGB captadas por la camara virtual montada en el
frontal del vehiculo simulado. Estas imagenes son capturadas en tiempo real desde
el entorno de Gazebo y enviadas al agente, que las utiliza como observaciones del
entorno para tomar decisiones. Antes de ser procesadas por la red neuronal, las
imégenes pueden ser redimensionadas o normalizadas para adecuarse al formato de
entrada esperado por el modelo.

21

» Comandos de control (velocidad y direccién): Otro elemento actia como in-
terfaz de salida, publicando en un tépico especifico los comandos de accién generados
por el agente. Estos comandos estdn compuestos por dos valores continuos: la velo-
cidad lineal y el dngulo de direccion del vehiculo. ROS se encarga de redirigir estos
comandos al controlador del vehiculo en Gazebo, cerrando asi el bucle de control
entre percepcion y accion.

» Posicion y orientacion del vehiculo (evaluaciéon, depuracion y calculo de la
recompensa): Un componente adicional se suscribe a la informacion de estado del
vehiculo (por ejemplo, mensajes del tipo Odometry), que proporciona datos sobre la
posicion, orientacion y velocidad actuales del agente en el entorno. Esta informacion
no se utiliza como entrada del modelo, pero si se registra con fines de evaluacion,
analisis del comportamiento y depuracion. A partir de estos datos se pueden calcular
métricas como distancia recorrida, niimero de colisiones, o desviacion respecto al
centro del carril.

Gracias a esta arquitectura basada en ROS, el sistema puede ejecutarse de forma
sincronizada y controlada. Ademas, se facilita la integraciéon de componentes adiciona-
les como sensores virtuales, sistemas de monitorizaciéon o visualizaciéon en tiempo real.
Esta capacidad de orquestar la interaccién entre simulador y agente hace de ROS una
herramienta clave para el desarrollo de soluciones avanzadas de conducciéon auténoma en
entornos simulados.

3.2.2. Simulacién del entorno con Gazebo

En este proyecto, Gazebo se ha utilizado para recrear un entorno de pruebas contro-
lado, que incluye un circuito cerrado con geometria definida (curvas, rectas, margenes) y
un vehiculo simulado equipado con una camara frontal. Esta simulacion permite realizar
pruebas seguras y reproducibles, lo que resulta ideal para el desarrollo y evaluaciéon de
sistemas de conduccion autéonoma. Ademaés, tanto el vehiculo como los circuitos han sido
disenados de forma que permiten introducir cambios facilmente (nuevos sensores, diferen-
tes trazados, modificaciones fisicas del entorno) sin necesidad de rehacer el sistema desde
cero.

1. Modelo del vehiculo

El modelo del vehiculo en Gazebo ha sido disefiado con un equilibrio entre simplicidad
computacional y realismo funcional. Si bien se omiten ciertos elementos fisicos complejos,
se preservan las dinamicas esenciales necesarias para simular la conduccion, como la direc-
ciéon, el movimiento y la percepcion visual desde una camara frontal. Esta simplificacion
permite entrenar de forma eficiente sin comprometer el aprendizaje de comportamientos
relevantes. La Figura |3.3| ilustra una comparacion visual entre el modelo virtual y un
coche real de referencia.

22

Figura 3.3: Comparacion entre el modelo virtual y el modelo real de vehiculo.

2. Geometria del circuito

Gazebo permite disenar circuitos virtuales con gran precisiéon geométrica, lo que es
ideal para pruebas sistematicas y controladas. Las pistas simuladas presentan superficies
limpias y delimitaciones claras, lo que facilita la evaluacion del desempeno del agente sin
interferencias externas. En la Figura [3.4]se compara visualmente una pista simulada en
Gazebo con una pista real.

Figura 3.4: Comparacién entre el modelo virtual y el modelo real de la pista.

La Figura[3.5 muestra una vista general del entorno construido en Gazebo, incluyendo
el circuito y las marcas viales, que permiten simular de forma eficiente escenarios de
navegacion auténoma.

23

Figura 3.5: Visualizacion del simulador Gazebo con pista y vehiculo cargados.

3.2.3. Agente RL con Stable Baselines3

El agente de control desarrollado en este proyecto esta construido sobre el paradigma
de Aprendizaje por Refuerzo, utilizando la libreria Stable Baselines3 como base para
la implementacion de algoritmos. En particular, se emplea el algoritmo Proximal Policy
Optimization, ampliamente utilizado por su equilibrio entre rendimiento y estabilidad
durante el entrenamiento.

El entrenamiento del agente se lleva a cabo dentro de un entorno personalizado confor-
me a la interfaz Gymnasium. Este entorno gestiona los datos referidos la conduccion de un
vehiculo auténomo en un circuito virtual, proporcionando observaciones visuales en forma
de imagenes RGB y recibiendo acciones continuas compuestas por angulo de direcciéon y
velocidad.

Arquitectura de la red neuronal

La politica del agente —es decir, el modelo encargado de tomar decisiones en cada
instante— estd parametrizada mediante una red neuronal convolucional (CNN), disena-
da especificamente para procesar entradas visuales. Esta red actia como el ntcleo del
agente PPO, generando tanto la politica (actor, 7(s)) como el valor del estado (critico,
V(s)), y permitiendo al sistema aprender directamente a partir de iméagenes sin requerir
caracteristicas manuales.

El nucleo del agente de Aprendizaje por Refuerzo esta constituido por una red neuronal
profunda que permite procesar observaciones visuales en bruto (imagenes RGB) y trans-
formarlas en decisiones de control. Esta red actiia como funciéon de aproximaciéon tanto
para la politica (actor) como para el valor del estado (critico), siguiendo el paradigma
actor-critico caracteristico del algoritmo PPO.

24

Dado que la entrada al sistema son imégenes, se emplea una arquitectura convolu-
cional especializada en extraer patrones espaciales relevantes del entorno, como bordes
de pista, curvas o cambios en la direccién. Estas caracteristicas visuales se convierten
progresivamente en representaciones abstractas que permiten al agente inferir acciones
Optimas.

La Figura muestra un esquema detallado de la arquitectura convolucional em-
pleada como politica en el algoritmo PPO. Esta red esta disenada para procesar imégenes
RGB capturadas del entorno y extraer caracteristicas espaciales mediante capas convo-
lucionales, que actiian como detectores de patrones visuales relevantes para la toma de
decisiones.

Capa 0: Conv2D Capa 2: Conv2D Capa 4: Conv2D

Input Filtros: 32 Filtros: 64 Filtros: 64
—> Canales entrada: 3 Canales entrada: 32 Canales entrada: 64 —P{ Capa 5: ReLU H Flatten / FC
Imagen RGB (3 canales) Kernel: (8, 8) Kernel: (4, 4) Kernel: (3, 3)

Stride: (4, 4) Stride: (2, 2) Stride: (1, 1)
Pesos: [32, 3, 8, 8] Pesos: [32, 32, 4, 4] Pesos: [64, 64, 3, 3]

Politica 1r(s)

Valor V(s)

Figura 3.6: Esquema de la arquitectura convolucional utilizada como politica en PPO.
La red procesa imagenes RGB capturadas del entorno simulado mediante varias capas
convolucionales que extraen caracteristicas espaciales jerarquicas. La salida incluye tanto
la politica (actor) para seleccionar acciones, como el valor del estado (critico) para evaluar
las decisiones, siguiendo el paradigma actor-critico.

Codificador visual

La politica estd parametrizada por una red neuronal convolucional (CNN) que recibe
como nput la observacion del entorno. En nuestro caso, esta observacion es una imagen
con 3 canales (RGB) y tamano especifico segun la tarea.

Concretamente, la red utilizada tiene las siguientes capas convolucionales:

» Capa 0 (Conv2D): Esta primera capa utiliza 32 filtros con un tamano de kernel
de 8 x 8 y un stride (paso) de 4 x 4. El tensoif] de entrada tiene forma [batch_size,
3, H, W], donde 3 corresponde a las tres canales de color (RGB). El tamano re-
lativamente grande del kerne]ﬂ permite capturar patrones espaciales amplios en la
imagen, mientras que el strideﬂ de 4 reduce significativamente la resoluciéon espacial,
acelerando el procesamiento y disminuyendo la dimensionalidad para las siguientes
capas.

1Un tensor es una estructura de datos multidimensional que generaliza vectores y matrices, utilizada
para representar datos como imégenes en redes neuronales.

2El kernel o filtro es una pequeila matriz que se desliza sobre la imagen para extraer caracteristicas
locales.

3El stride es el tamano del paso con que el kernel se mueve sobre la imagen, afectando la resolucién
espacial de la salida.

25

En la Figura se muestran algunos ejemplos de filtros aprendidos por esta
capa, mientras que la Figura presenta los mapas de activacion (feature maps)
resultantes al aplicar dichos filtros a una imagen de entrada.

- Layer 2

(a) Ejemplos de filtros (kernels) aplicados
en la Capa 0.

Filters - Layer 0
|
]
|
n
B |

b) Feature maps resultantes tras aplicar la
p p
Capa 0.

Figura 3.7: En la Capa 0 de la red convolucional, los filtros (kernels) aprendidos estan
disenados para captar patrones visuales amplios, como bordes horizontales y verticales,
asi como texturas globales presentes en la imagen de entrada. Al aplicar estos filtros, se
generan mapas de activacion que resaltan las regiones donde se detectan patrones relevan-
tes, como lineas y contornos, proporcionando una primera representacion estructurada de

la informacioén visual.

» Capa 2 (Conv2D): Aqui se aplican 64 filtros con un kernel de tamano 4 x 4
y un stride de 2 x 2. Al aumentar el namero de filtros, la red puede aprender una
mayor variedad de caracteristicas mas complejas. El tamano mas pequeno del kernel
en comparacion con la primera capa permite enfocarse en detalles més finos, y el
stride de 2 continta reduciendo la resolucién espacial pero de forma més moderada,
manteniendo suficiente informaciéon para un analisis detallado.

Los filtros aprendidos en esta segunda capa se muestran en la Figura (3.8al y los
correspondientes mapas de activacion pueden observarse en la Figura [3.8b]

26

(a) Ejemplos de filtros (kernels) aplicados
en la Capa 2.

.H
-

i H 3 H 3 1 1 1
3 g s s 3 B B £
H H H H 3 : H ie
H g g H H £ £ 52
i H £ i i i 3 i%
B B B B B 5 B N
ﬂg lJE ﬂE IE E Ei -i:i
s : s s s s A .
s s s s s s 5 :
£ H H H H H H H

(b) Feature
Capa 2.

maps resultantes tras aplicar la

Figura 3.8: En la Capa 2, los filtros aprendidos presentan una mayor profundidad y un
tamano de kernel reducido, lo que les permite capturar detalles visuales mas especificos,
como esquinas, intersecciones o variaciones locales de textura. Al aplicar estos filtros, los
mapas de activacion resultantes muestran respuestas més refinadas, capaces de detectar
estructuras complejas mediante la combinacién de patrones previamente identificados en

capas anteriores.

» Capa 4 (Conv2D): Esta capa utiliza 64 filtros con kernels de 3 x 3 y stride de
1 x 1. Este es el tamano de kernel mas comin en arquitecturas convolucionales
debido a su capacidad para extraer patrones locales con gran precision. Al mantener
el stride en 1, esta capa no reduce la resoluciéon espacial, sino que se centra en
refinar las caracteristicas extraidas, permitiendo a la red aprender combinaciones

més complejas de las activaciones previas.

La Figura muestra algunos de los filtros empleados en esta capa, mientras que
en la Figura se pueden observar los correspondientes mapas de activacion.

27

.H
-

Feature maps - Layer 4

H g g H H £ £ 52

£ H £ £ i i H i%

B B B B 5 5 5 ca
‘E qul I I ni hs i

i £ £ § § I3 £ £

—+

(a) Ejemplos de filtros (kernels) aplicados (b) Feature maps resultantes tras aplicar la

en la Capa 4. Capa 4.

Figura 3.9: En la Capa 4, se aplican filtros con un kernel pequenio (3 x 3) y un stride de
1, lo que permite refinar las activaciones mediante combinaciones de caracteristicas mas
abstractas. Los mapas de activacién generados en esta etapa reflejan la consolidacion de
patrones de alto nivel extraidos de las capas anteriores, preparando asi una representacion
visual més rica y estructurada para la toma de decisiones por parte del agente.

Estas tres capas convolucionales actian de forma secuencial, disminuyendo progresiva-
mente la resolucion espacial de la imagen mientras incrementan la profundidad del tensor
de caracteristicas, lo que permite a la red capturar y representar informacion visual desde
patrones generales hasta detalles especificos.

3.2.4. Integracién y diseno del entorno Gymnasium

Para posibilitar la integracion del agente de Aprendizaje por Refuerzo con el simulador
Gazebo, se ha desarrollado una clase personalizada en Python denominada DeepRacerEnv,
que extiende la interfaz estdndar de gym.Env, compatible con la librerfa Gymnasium. Esta
clase encapsula toda la logica necesaria para la interaccion entre ROS, Gazebo y el agente
de entrenamiento, gestionando el ciclo completo de ejecucion del entorno: reset (), step()
y, en caso necesario, render ().

Aunque el entorno DeepRacerEnv se ha disenado siguiendo la estructura de un Proceso
de Decision de Markov (MDP), en la practica se trata de un Proceso de Decision
de Markov Parcialmente Observable (POMDP), ya que el agente no tiene acceso
completo al estado del entorno. En su lugar, recibe una observacion parcial, representada
por una imagen RGB de la caAmara frontal, que no contiene toda la informacion relevante

28

del estado subyacente (por ejemplo, la posicion y velocidad del vehiculo no son observables
directamente). Las acciones corresponden a comandos de control continuo: direcciéon de
las ruedas y velocidad del vehiculo.

La transicion entre estados se produce a través de la dinamica simulada del entorno
(definida por Gazebo y el modelo fisico del vehiculo), y cada acciéon ejecutada genera una
recompensa escalar, disenada para fomentar un comportamiento de conduccion eficiente
y seguro. Esta formulaciéon permite aplicar algoritmos de Aprendizaje por Refuerzo que
buscan aprender una politica que maximice la recompensa acumulada, aunque el agente
debe inferir el estado real a partir de observaciones parciales, lo cual incumple la propiedad
de Markovianidad]

El entorno define de forma clara los espacios de observacién y acciéon requeridos por
la API de Gymnasium. El espacio de observacion esta constituido por imagenes RGB de
tamano 120 x 160 x 3, captadas por la cadmara frontal del vehiculo simulado. El espa-
cio de accién se define como un espacio continuo bidimensional, representado mediante
gym. spaces.Box, donde el primer valor corresponde al angulo de direccion del volante
(rango [—1,1]) y el segundo a la velocidad lineal del vehiculo (rango [0, 5]).

Durante la inicializacion, el entorno establece los mecanismos de comunicacion con el
simulador a través de ROS, mediante la suscripcion y publicacion en distintos topicos, asi
como el uso de servicios. Se suscribe a los topicos /camera/zed/rgb/image_rect_color
para obtener la imagen de la caAmara delantera y /gazebo/model_states para conocer
la posicién y orientaciéon del vehiculo. Por otra parte, publica comandos de control en
el topico /vesc/low_level/ackermann_cmd_mux/output, empleando mensajes del tipo
AckermannDriveStamped. Ademas, se utilizan servicios ROS para pausar y reanudar la
simulacion, lo que permite mantener un control preciso sobre el entorno fisico durante el
entrenamiento. Esta informacion se considera tnicamente para el calculo de la reward y
de las situaciones en las que el robot comete errores durante el entrenamiento.

El vehiculo simulado implementa un modelo de direccion Ackermann[10)], utilizado en
la mayoria de automoviles reales. Este modelo asegura que las ruedas delanteras puedan
girar en angulos diferentes pero coordinados durante una curva, permitiendo que todas
las ruedas describan trayectorias circulares con un centro de giro comun. Esto minimiza
el deslizamiento lateral de los neumaticos, lo cual es esencial para una conduccion realista
y estable.

En la figura se ilustra el principio del modelo de direccion Ackermann, donde se
observa que, al tomar una curva, las ruedas delanteras giran con dngulos distintos para que
todas las ruedas del vehiculo sigan trayectorias circulares con un centro comin de rotacion,
las ruedas traseras no giran. Este diseno geométrico permite que las ruedas traseras y
delanteras no deslicen lateralmente, lo cual es crucial para mantener la estabilidad del

4La propiedad de Markovianidad implica que el proximo estado del sistema depende tnicamente del
estado actual y la accién tomada. En un POMDP, el agente no observa directamente el estado completo,
por lo que debe trabajar con observaciones parciales que no garantizan dicha propiedad.

29

vehiculo y replicar con fidelidad las condiciones de conduccion reales en el simulador.

: Centre of turning circle)

Figura 3.10: Visualizaciéon del modelo de conducciéon Ackermann. En este modelo, las
ruedas delanteras giran en diferentes angulos, de forma que todas las ruedas siguen tra-
yectorias con un centro de curvatura comiin, minimizando el deslizamiento lateral.

Para controlar vehiculos con geometria Ackermann en ROS, se emplean mensajes del ti-
po ackermann_msgs/AckermannDriveStamped, definidos por el paquete ackermann_msgs.
Estos mensajes encapsulan la informaciéon de control en una estructura compuesta por una
cabecera temporal (std_msgs/Header) y una instancia de AckermannDrive, que incluye
los siguientes campos:

» steering_angle: angulo de giro de las ruedas delanteras (en radianes).

» steering_angle_velocity: velocidad a la que cambia el angulo de direccion.
» speed: velocidad lineal del vehiculo.

» acceleration: aceleracion lineal deseada.

» jerk: tasa de cambio de la aceleracion.

En el contexto de este proyecto, se utilizan tinicamente los campos steering_angle y
speed para definir la accién del agente en cada paso del entorno. El resto de pardmetros se
dejan por defecto, ya que no son estrictamente necesarios para un control basico durante
el entrenamiento.

30

La Figura muestra una representacion esquemética del ciclo de un MDP aplicado
al entorno DeepRacerEnv. En este esquema se ilustran las interacciones entre el agente
y el entorno, donde en cada paso el agente recibe una observacion del estado actual,
selecciona una accion basada en su politica, y a continuacion el entorno devuelve una nueva
observacion junto con una recompensa que guia el aprendizaje. Este ciclo iterativo refleja
la dindmica fundamental del Aprendizaje por Refuerzo implementado en el simulador
Gazebo, que permite al agente optimizar su comportamiento de conduccién auténoma
mediante la maximizacion de la recompensa acumulada.

Estado Siguiente estado

Nueva imagen

!

Accion

Transicion
Markoiviana

Direccién y velocidad
Entorno

Gazebo + Modelo fisico i

Reward

Funcion de recompensa

Figura 3.11: Representacion del ciclo de Proceso de Decision de Markov (MDP) aplicado
al entorno DeepRacerEnv. El esquema ilustra la interaccion secuencial entre el agente y
el entorno: el agente observa el estado actual (imagen de camara), selecciona una accion
(control de direccion y velocidad), y recibe una nueva observacion junto con una recom-
pensa.

Cada episodio de entrenamiento comienza con una llamada al método reset (), que res-
tablece la posicion y orientaciéon del vehiculo a una configuracion inicial predeterminada,
reinicia las variables internas del entorno y vacia la memoria de trayectorias. Por su parte,
el método step(action) aplica una accién generada por el agente al entorno, publican-
do los comandos necesarios mediante un mensaje AckermannDriveStamped y esperando
brevemente (time.sleep(0.025)) para garantizar que la accion haya tenido efecto antes
de evaluar el nuevo estado. Esta pausa, ajustada empiricamente, mejora la estabilidad del
entrenamiento al sincronizar mejor la simulacién fisica con el ciclo de aprendizaje.

Una vez aplicada la accion, el entorno devuelve una nueva observacion (imagen RGB),

31

una recompensa escalar, indicadores de finalizacion del episodio (done y truncated),E] y
un diccionario opcional con informaciéon adicional. La recompensa se calcula a partir de
una funciéon compuesta que combina distintos factores, como la distancia al centro del
carril, la proximidad a los waypoints definidos y la orientacion del vehiculo respecto al
recorrido. Estos criterios se ponderan adecuadamente para fomentar un comportamiento
eficiente y seguro.

Durante el entrenamiento, el entorno almacena las trayectorias recorridas por el vehicu-
lo en archivos CSV, lo que permite un analisis posterior detallado del comportamiento del
agente. Para el calculo de la recompensa se requiere encontrar el waypoint mas cercano
al vehiculo, en un principio esta biisqueda se realizaba mediante una bisqueda secuencial
(fuerza bruta), lo cual resultaba ineficiente al manejar grandes cantidades de puntos. Para
resolver esta limitacion, se implement6 una estructura de datos KDTree[II], que permite
realizar busquedas vecinas de forma mucho més rapida, sin sacrificar precision. Dicha
mejora temporal se puede observar en la Tabla [3.1]

Método de biisqueda Tiempo promedio (s) Mejora
Fuerza bruta 0.0030 -
KDTree 0.0003 10x

Tabla 3.1: Comparaciéon de tiempos promedio entre bisqueda por fuerza bruta y KDTree.

Gracias a esta arquitectura modular, el entorno DeepRacerEnv permite una integracion
fluida con algoritmos de Aprendizaje por Refuerzo basados en imégenes y acciones conti-
nuas. La combinaciéon de Gymnasium, ROS y Gazebo ofrece un marco robusto y realista
para el entrenamiento de agentes inteligentes, con control preciso sobre cada aspecto de
la simulacién. La implementacion del modelo de direccién Ackermann, el uso de obser-
vaciones visuales en tiempo real y la incorporacion de técnicas eficientes como KDTree
consolidan este entorno como una plataforma potente y extensible para el desarrollo de
sistemas de conduccién auténoma.

3.3. Diseno de la funcién de recompensa

Una parte crucial del entrenamiento por Aprendizaje por Refuerzo es el diseno de la
funcion de recompensa. Esta funcion define lo que el agente debe considerar como com-
portamiento deseado, y guia el aprendizaje hacia una politica eficiente. En este proyecto,
se ha disenado una funcién de recompensa personalizada, adaptada al entorno simulado
y al comportamiento esperado del vehiculo auténomo.

5El indicador done sefiala que el episodio ha finalizado por alcanzar una condicién terminal definida
por la tarea, como salirse del circuito, ir direccién contraria o estar demasiado tiempo quieto. En cambio,
truncated indica una finalizaciéon no relacionada con el comportamiento del agente, como alcanzar un
limite maximo de pasos o una interrupcién externa.

32

El objetivo principal de esta funcion es fomentar que el coche:

Mantenga una orientacion coherente con el trazado del circuito.

» Permanezca dentro de los limites de la pista, lo méas centrado posible.

Avance progresivamente hacia los waypoints que conforman el recorrido.

Evite comportamientos indeseados como ir marcha atrés, salirse del circuito o que-
darse parado.

La Figura ilustra de forma esquemética los factores que influyen en la funciéon
de recompensa. Se muestran las variables espaciales relevantes (distancia al centro, orien-
tacion, y avance) y asi esta visualizacion sirve como mapa conceptual para entender como
se integran distintas fuentes de informaciéon durante el entrenamiento.

Figura 3.12: Representacion grafica de la funcion de recompensa. Se visualizan los elemen-
tos clave que influyen en el calculo de la recompensa: la distancia lateral al centro de la
pista, la orientacion del vehiculo respecto al trazado y la progresiéon hacia los waypoints.

La funcién de recompensa implementada combina varias métricas parciales ponderadas,
que se detallan a continuacién:

1. Distancia al centro de la pista: Se penaliza el alejamiento del vehiculo respecto
al centro de la pista. Si se supera un umbral maximo, también se considera que el
vehiculo ha salido del circuito y se termina el episodio con penalizacion.

33

2. Orientacién del vehiculo: Se calcula el coseno del angulo entre el vector de orien-
tacion del coche y el vector que une el waypoint actual con el siguiente. Si este
valor es bajo (inferior a 0.3), significa que el coche circula en direccién contraria
al trazado, por lo que se penaliza con una recompensa negativa y se termina el
episodio.

3. Movimiento efectivo: Se calcula la distancia recorrida en cada paso en compara-
cién con un valor maximo estimado. Este valor representa si el vehiculo avanza de
forma constante y se usa como incentivo para evitar que se quede parado.

4. Progreso por waypoints: Se mantiene un contador de waypoints superados. Si
completa todos los waypoints del circuito, recibe una bonificaciéon adicional como
recompensa por haber completado el circuito.

5. Penalizacién por comportamiento incorrecto: Si la velocidad del vehiculo es
negativa (marcha atras), sale de la pista o permanece estancado durante demasiados
pasos consecutivos, se penaliza con una recompensa negativa y se termina el episodio.

La recompensa total se calcula como una combinaciéon ponderada de las tres compo-
nentes principales

total_reward = Tcentro * Wcenter + Torientacion * Worient + Tavance * Wavance-

Donde:

» Recompensa por centrado en el carril (7centro):

d

dméx

(3.1)

Tcentro = 1—

donde d es la distancia lateral entre el vehiculo y el waypoint mas cercano (centro
del carril), y dmax es la distancia maxima permitida (mitad del grosor de la pista).

(Ver Figura

» Recompensa por orientacion (7qrentacion)
Torientacion = COS(Q) (32)

donde 6 es el angulo entre la direccion del vehiculo (segin su orientacion actual) y
el vector tangente al trazado en el waypoint actual. (Ver Figura|3.13b

» Recompensa por avance (7ayance):

_ Pt = P

ravance -

(3.3)

51’1’1 ax

donde p; v p;_1 son las posiciones actuales y anteriores del vehiculo respectivamente,
Y Omax €s el desplazamiento maximo esperado por paso. (Ver Figura

34

(8

a) Recompensa por cen- (b) Recompensa por c¢) Recompensa por avan-
trado. orientacion. ce.

Figura 3.13: Visualizacion de las tres componentes principales que conforman la funcion
de recompensa del entorno DeepRacerEnv: (a) la distancia lateral al centro del carril, que
penaliza salidas de la pista; (b) el alineamiento de la orientacion del vehiculo con el eje de
la pista, fomentando trayectorias suaves; y (c) el avance hacia adelante, que recompensa
el progreso continuo del agente. Estas métricas se combinan de forma ponderada para
guiar el aprendizaje del agente hacia un comportamiento de conduccién 6ptimo.

Los pesos utilizados son weenter = 1, Worient = 1 ¥ Wavance = 2, con el objetivo de
priorizar el progreso del vehiculo a lo largo del trazado sobre las demas métricas.

Dado que cada una de las recompensas parciales esta normalizada en el rango [0,1], y
considerando los pesos aplicados, la recompensa total esta acotada en el intervalo

total reward € [-2.5, 1-1+1-1+1-2] =[-2.5,4].

Este limite superior permite mantener la funcién de recompensa dentro de una escala
numérica controlada y coherente durante el entrenamiento del agente. El limite inferior
es la reward negativa que se da durante el entrenamiento por hacer algo indebido.

Esta funcién ha demostrado ser efectiva para guiar al agente hacia una conduccion es-
table, eficiente y generalizable dentro del entorno simulado. En la Figura [3.14]se observa
la trayectoria descrita por el vehiculo tras completar el entrenamiento con la funcién de
recompensa compuesta. La trayectoria resulta continua, centrada en la pista y sin osci-
laciones bruscas, lo que evidencia que el agente ha aprendido una politica de navegacion
robusta y alineada con los objetivos deseados.

35

Evolucion del Aprendizaje del Coche

y e ™\

— trajectory_epl.csv
® \Waypoints

Posicion Y
o
/

. N /

T T
-10.0 —7.5 —=5.0 2.5 0.0 2.5 5.0 1.5 10.0
Posicion X

Figura 3.14: Trayectoria recorrida por el vehiculo tras el entrenamiento con la funcién
de recompensa compuesta. Se observa un desplazamiento continuo y estable, centrado en
la pista y sin oscilaciones bruscas, lo que indica que el agente ha aprendido una politica
eficaz de conducciéon auténoma, alineada con los objetivos de centrado, orientaciéon y
avance definidos en la funcién de recompensa.

Con el fin de comprender mejor como el agente percibe el entorno y cémo reacciona
ante distintas situaciones, se desarrollé6 una herramienta que permite capturar imégenes
del entorno desde la perspectiva del vehiculo, junto con la informaciéon procesada por
el sistema en cada instante. Esto facilita un analisis cualitativo del comportamiento del
agente, ya que permite visualizar tanto la observacién como las acciones tomadas y la
recompensa recibida.

En la Figura se muestran diversas capturas representativas obtenidas durante
un episodio de evaluaciéon del modelo final entrenado. Cada imagen incluye la vista frontal
del entorno percibido por el agente, junto con los valores de accién generados (dngulo de
direccion y velocidad) y la recompensa correspondiente en ese instante (en un color ana-

36

ranjado). Esta visualizacion permite analizar el comportamiento del sistema en situaciones
reales y verificar que la funcién de recompensa responde adecuadamente. Al tratarse de
un modelo ya entrenado, también se visualizan los pesos activos de la red neuronal en
cada paso, lo que ofrece una vision mas profunda del proceso de toma de decisiones del
agente.

(a) Paso 100. (b) Paso 600.

(c) Paso 1600. (d) Paso 2000.

Figura 3.15: Diagnostico visual del comportamiento del agente durante distintos pasos del
episodio de evaluacion. Cada subfigura muestra la imagen observada por el vehiculo, junto
con los valores de accion (angulo de direccion y velocidad) y la recompensa obtenida en ese
instante. Estos ejemplos ilustran como la funcién de recompensa responde ante diferentes
configuraciones espaciales, permitiendo validar que el agente toma decisiones coherentes
con la politica aprendida y que la recompensa refuerza adecuadamente comportamientos
deseados como mantener el carril, avanzar y orientarse correctamente. También se pueden
observar los pesos especificos utilizados en los célculos de la red neuronal para cada imagen.

Ademés, se desarroll6 un script que permite controlar el vehiculo de forma manual
dentro del entorno simulado, con el objetivo de probar y depurar la funcién de recompensa
de manera mas precisa. Este script permite registrar, paso a paso, las observaciones,
recompensas y acciones generadas al mover el agente de forma controlada, sin necesidad
de un modelo entrenado.

Esta funcionalidad resulto especialmente ttil durante el disenio y ajuste de la funcion
de recompensa, ya que permitio verificar como respondia ante diferentes situaciones: des-
viaciones laterales, cambios en la orientacién, proximidad a los bordes o inactividad del
vehiculo. El anélisis detallado de estas pruebas permiti6 identificar errores o inconsisten-

37

cias en la formulaciéon de la recompensa, facilitando su correccion antes del entrenamiento
final del agente.

En la Figura se muestra una secuencia de situaciones concretas registradas con
este método, donde se evalia la respuesta de la funcién de recompensa ante distintas
configuraciones espaciales del agente.

(b) En el centro y mal orientado.

(d) Lejos del centro y mal orientado.

(e) Més alejado del centro y mal orientado. (f) Fuera de pista y peor orientado.

38

(g) Lejos del centro y bien orientado.

Figura 3.16: Evaluacion cualitativa de la funciéon de recompensa en diferentes configura-
ciones espaciales del agente. Se observa cémo la recompensa disminuye progresivamente
a medida que el agente se desvia del centro de la pista o se orienta incorrectamente. En
particular: (a) recompensa alta por estar centrado y bien orientado, ademés de llevar una
velocidad elevada lo que implica mayor avance; (b—c) penalizacion por orientacion defi-
ciente, a pesar de estar centrado; (d—f) castigo severo por alejamiento del centro y mala
orientacion; (g) compensacion parcial debido a buena orientacién, aunque con posicion
alejada. Esta secuencia permite comprobar que la funciéon de recompensa combina de
forma efectiva la posiciéon y orientacion del agente para proporcionar senales coherentes
durante el aprendizaje.

Se aprecia cémo la recompensa disminuye progresivamente a medida que el agente se
desvia del centro de la pista o se orienta incorrectamente. En particular:

(a) Recompensa alta por estar centrado, bien orientado y avanzando bastante entre
paso y paso.

(b—c) Penalizacion por orientacion deficiente, a pesar de estar centrado.

(d—f) Castigo severo por alejamiento del centro y mala orientacion, llegando a penaliza-
ciones negativas (limite inferior de total reward).

(g) Compensacion parcial gracias a una buena orientacion, aunque el agente esté lejos
del centro.

Esta secuencia permite comprobar que la funciéon de recompensa combina de forma
efectiva la posicion y orientacion del agente para proporcionar senales coherentes durante
el aprendizaje.

39

Capitulo 4

Experimentacion y resultados

4.1. Metodologia experimental

Para evaluar la eficacia del sistema desarrollado, se disenaron y llevaron a cabo una
serie de experimentos controlados que permitieron analizar el rendimiento del agente en
diferentes condiciones. Esta seccién introduce la metodologia general, mientras que las
siguientes secciones describen de forma individual cada conjunto de experimentos realiza-

dos.

4.1.1. Circuitos empleados

Para el desarrollo del proyecto se han utilizado circuitos extraidos de un repositorio pt-
blico en GitHub, el cual proporciona varios trazados listos para ser utilizados en entornos
de simulacién con Gazebo y ROS.

Estos circuitos fueron integrados en el entorno de simulaciéon local mediante la impor-
tacion directa de sus archivos de mundo (.world) y modelos (.sdf/.urdf/.dae). Su uso
permitié ahorrar tiempo de disefio, manteniendo un entorno consistente para evaluar el
desempeno del agente.

Los circuitos empleados son los siguientes y se ilustran en la Figura [4.1] donde se
muestra una vista general de cada uno en el entorno de simulacion Gazebo. La diversi-
dad en su diseno permiti¢ validar la capacidad de generalizacion del agente a distintos
contextos geométricos y de navegacion.

40

Circuito base

Figura 4.1: Los mapas mostrados en la Figura corresponden a los entornos virtuales em-
pleados en las simulaciones con Gazebo.

4.1.2. Configuraciéon del agente e hiperparametros

El modelo ha sido entrenado mediante el algoritmo PPO (Proximal Policy Optimiza-
tion), implementado con Stable Baselines3. Las observaciones del entorno consisten en
imagenes, lo que motivo el uso de una politica basada en convoluciones (CnnPolicy). Los
hiperparametros utilizados son:

» learning rate: 1le-4 - tasa de aprendizaje fija para actualizar la red neuronal.
= gamma: 0.995 — factor de descuento que da mas peso a recompensas futuras.

» gae lambda: 0.92 — parametro de suavizado para el calculo de la ventaja gene-
ralizada (GAE).

» n_steps: 2048 — ntumero de pasos a recolectar por actualizacion del modelo.
» batch _size: 128 — tamano de los mini-lotes usados durante la optimizacion.

» clip range: 0.2 - rango de recorte usado para estabilizar las actualizaciones de la
politica.

» ent_coef: 0.01 — coeficiente de la pérdida por entropia, que favorece la exploracion.

» vf coef: 0.5 — coeficiente de la pérdida del valor estimado.

41

» device: "cuda" — entrenamiento acelerado por GPU utilizando PyTorch.

Estos parametros han sido elegidos tras una fase inicial de experimentacion y ajuste
manual, priorizando la estabilidad del aprendizaje, la eficiencia del entrenamiento y la
capacidad de generalizacion del modelo. Aunque no se ha realizado ajuste automatico de
hiperparametros (mediante optimizacion bayesiana o grid search), los resultados obtenidos
han mostrado un rendimiento satisfactorio en los escenarios planteados. Cabe destacar
que los experimentos a discutir a continuacion, todos ellos asociados a la funcién de
recompensa anteriormente descrita, se han realizado utilizando estos hiperparametros y
en el denominado circuito base, lo que permitié un entorno controlado para analizar el
impacto individual de cada componente de la reward en el comportamiento del agente.

Ademas de estas métricas, cabe destacar el uso de TensorBoard para comprobar que el
entrenamiento del modelo era correcto, permitiendo una visualizacion clara y detallada de
miultiples indicadores durante el proceso de aprendizaje. Entre las métricas mas relevantes
que se pueden monitorear se incluyen la recompensa media por episodio y la entropia de la
politica. Estas graficas facilitan la deteccion de comportamientos anémalos, como colapsos
en la politica o sobreajuste, y permiten validar que el modelo converge de manera estable
hacia una soluciéon 6ptima.

En la Figura se muestran diversas métricas extraidas con TensorBoard durante el
entrenamiento del agente. Estas graficas permiten observar la evolucion de la pérdida total,
la calidad de la estimacion del valor (value loss), la estabilidad de las actualizaciones
(approx_ kI, clip_fraction), asi como la reduccion progresiva de la entropia de la politica,
indicativa de una menor exploracion.

Cabe senalar que, si bien estas métricas se han tenido en cuenta para verificar la
estabilidad y eficacia del entrenamiento, no se ha profundizado en su analisis ni en el
comportamiento interno del algoritmo PPO. El foco principal de este trabajo ha sido la
integracion del agente con el entorno simulado y la validacion de su rendimiento, mas que
una exploracion detallada de los mecanismos internos del algoritmo de optimizacion.

42

train/approx_ki B train/clip_fraction EoIDOi train/clip_range gozod train/entropy_loss I

0018 4
2845
0016 2846
¢ o 2846

0014
01 0 2887
omz 2848
W ok 30k o 50 E o 50 o 50

train/explained_variance oot train/leamning rate oo train/loss Fozod train/policy_gradient_loss s

ed

1

10k 20k ey ak 50 W 20k W a0k 50 0k 20k Ak 50 ok 20k 3k ak 50

train/std oo train/value_loss i

10k 20k ey ak 50 W 20k W a0k 50

Figura 4.2: Las graficas corresponden a métricas obtenidas durante el entrenamiento del
agente, donde se puede observar la evolucion de la pérdida total (total loss), la calidad
de la estimacion del valor (value loss), la estabilidad de las actualizaciones del modelo
(aproximacion de KL y fraccion de clip), la entropia de la politica que refleja el grado
de exploracion, y la varianza explicada (explained variance) que indica la capacidad del
critico para modelar correctamente el entorno.

En la Figura se muestra un ejemplo de las gréaficas generadas por TensorBoard,
a partir de los datos registrados autométicamente por la libreria Stable Baselines3. Es-
tas graficas resultan fundamentales para evaluar el rendimiento del agente y ajustar los
hiperparametros del modelo de forma informada.

43

eval 2 cards

eval/mean_reward T oo

+
ra
LJd

.

eval/mean_ep_length

1.5e+4
Te+4

Te+d

5000 5000

10k 20k 30k 40k 50k 10k 20k 30k 40k 50k

Figura 4.3: Visualizacion de métricas clave durante el entrenamiento del agente mediante
TensorBoard, incluyendo la recompensa media por episodio en evaluacién, asi como su
duracion.

Como se puede observar en esta gréafica, conforme avanzan los episodios las evaluaciones
obtienen mejores resultados, estos se pueden observar tanto en la duracion de los episodios
como en la recompensa media de estos. Ademaés se puede llegar a la conclusion de que un
episodio largo es sinbnimo de una reward igualmente alta.

4.1.3. Meétricas de evaluacion

Para valorar objetivamente el rendimiento del agente se han utilizado las siguientes
métricas cualitativas y cuantitativas:

» Velocidad media de avance: Se observa si el agente es capaz de conducir a
una velocidad adecuada, evitando comportamientos ineficientes como detenerse sin
motivo o avanzar de forma extremadamente lenta. Aunque la velocidad no se impone
como una restriccion, se espera una conduccion fluida y constante.

= Recompensa acumulada por episodio: Se analiza la recompensa total obtenida
en cada episodio. Una tendencia creciente durante el entrenamiento indica que el
agente estd aprendiendo una politica mas eficaz. Esta métrica también se utiliza
para comparar distintas versiones del modelo.

» Duracién de la trayectoria: Se mide cuanto tiempo (en pasos de simulacion) es
capaz de mantenerse el agente conduciendo de forma vélida antes de salirse o cometer
un error critico. Cuanto mayor es la duracion, mejor se considera el desempeno del
agente.

44

= Distribucién de acciones y recompensa por paso: Se han registrado las ac-
ciones ejecutadas por el agente (como velocidad lineal y angular) en cada paso de
simulacion, junto con la recompensa obtenida. El andlisis de estos datos permite
identificar patrones de comportamiento y evaluar la estabilidad y coherencia de la
politica aprendida.

= Trayectoria recorrida sobre el circuito: Se ha visualizado el recorrido real efec-
tuado por el agente sobre el trazado, lo que permite comparar su comportamiento
frente a la trayectoria ideal. Este tipo de representacion es especialmente 1util para
detectar desviaciones sistematicas, oscilaciones o errores de guiado.

Estas métricas combinan evaluacion automética y analisis cualitativo, permitiendo
tener una vision completa del rendimiento del agente en tareas de conduccién simulada.
La Figura muestra la evolucion de las acciones ejecutadas por el agente (velocidad
lineal y angulacion de las ruedas) y la recompensa obtenida paso a paso durante un
episodio de evaluacion. Este gréafico permite observar la coherencia del comportamiento
aprendido.

45

Eval Log Over Steps

—— Wheel Angle
0.2

0.1 4

Wheel Angle

0.0

o 250 500 750 1000 1250 1500 1750 2000

Speed

o 250 500 750 1000 1250 1500 1750 2000

Reward

o 250 500 750 1000 1250 1500 1750 2000
Step

Figura 4.4: La Figura ilustra como el agente adapta progresivamente sus acciones, modi-
ficando la velocidad y el angulo de las ruedas, mientras maximiza la recompensa recibida.
Esta visualizacion se ha extraido de una prueba de ejecucién de un modelo con la reward
comentada. Se puede apreciar que el angulo de las ruedas (grafico superior) presenta varia-
ciones coherentes con los ajustes necesarios en la trayectoria, la velocidad (gréafico medio)
oscila en funcion del entorno y la politica del agente, y la recompensa (grafico inferior)
refleja picos en los momentos de desempeno més eficiente, el pico final es una recompensa
extra por haber completado la vuelta a la pista exitosamente. Esto indica una politica de
control que busca estabilidad y maximizaciéon de la recompensa acumulada.

Por otra parte, la Figura |4.5| representa la trayectoria real seguida por el agente du-
rante un episodio en el entorno simulado. Esta visualizaciéon permite detectar de forma
clara si el agente sigue el centro del carril, si corrige adecuadamente en curvas o si pre-
senta oscilaciones. Una trayectoria eficiente y estable se aproxima a una linea fluida y
centrada. En este caso se puede observar claramente una evoluciéon en los intentos que ha
ido haciendo el agente, desde trayectorias muy curvadas hasta una muy correcta y fluida
que completa el recorrido.

46

Evolucion del Aprendizaje del Coche

!

4 =
6 4 — trajec esv
— ftraj eph.csv
—— traj epllesy
— i1 ry_epl6.csv
— tllieflory_ep2l esv
o jgftory_ep26.csv \
4+ — Fajfctory_ep3l.esv (
e ctory_ep36.csv
ectory_ep41 csv
ectory_ep46.csv
jectory_epS1.csv
ectory_epS6.csv
24— ctory_ep6l.csv
e jNytory_ep66.csv
— 1 epll.csv
= {rajel 3 6.5V
—— trajectol
= frajectory_e
[trajectory_ep9l.
= frajectory_ep96.csv b
— ftrajectory_epl0l.csv
= ftrajectory_epl06.csv
— ftrajectory_eplll.csv
= ftrajectory_epll6.csv
— ftrajectory_epl2l.csv
= ftrajectory_epl26.csv
— ftrajectory_epl3l.csv
—— trajectory_epl36.csv
trajectory_epl4l.csv
—— trajectory_epla6.csv
— ftrajectory_epl51.csv
—— trajectory_epl56.csv
— ftrajectory_epl6l.csv
—— trajectory_epl66.csv
— ftrajectory_epl7l.csv
—— trajectory_epl76.csv
— ftrajectory_eplBl.csv
—— trajectory_epl86.csv
trajectory_epl9l.csv
—— trajectory_epl96.csv
® Waypoints

T q

Posicion Y

—2 4

—4 4

i T
-10.0 -71.5 —=5.0 2.5 0.0 2.5 5.0 7.5 10.0
Posicion X

Figura 4.5: La Figura muestra claramente la mejora progresiva en la trayectoria del agente,
evidenciando su capacidad para aprender a seguir el centro del carril y realizar correcciones
suaves en las curvas, lo que se traduce en un comportamiento de conduccion cada vez mas
estable y eficiente.

4.2. Conjunto de experimentos

Como ya se ha comentado, se ha logrado programar una funciéon de recompensa que
proporciona resultados satisfactorios, permitiendo que el agente aprenda a conducir de
forma estable y eficiente en los circuitos simulados. Sin embargo, antes de alcanzar esta
configuracion 6ptima, se realizaron otros experimentos que no lograron resultados exitosos
o concluyentes.

Estos intentos iniciales, aunque no alcanzaron el desempeno esperado, resultaron fun-
damentales para comprender mejor el comportamiento del agente y para guiar el disenio

47

final de la funcién de recompensa y la configuracion del entrenamiento. Por esta razom,
también es importante destacar estos experimentos fallidos o con resultados suboptimos,
ya que aportan valiosas lecciones sobre la sensibilidad del aprendizaje a distintos parame-
tros y estructuras de recompensa.

En esta seccion se describen tanto los experimentos previos que no lograron buenos
resultados, como otros experimentos de interés realizados detallando las causas principales
y los aprendizajes derivados.

4.2.1. Estudio de ablacién de la funcién de recompensa

Con el fin de validar el correcto funcionamiento de la funcién de recompensa propues-
ta y entender en profundidad las razones detras de su efectividad, se ha realizado un
estudio de ablacion. Este tipo de analisis permite aislar el impacto de cada uno de los
componentes que conforman la recompensa total, evaluando su contribucién especifica al
comportamiento del agente durante el entrenamiento.

La motivacion principal de este estudio no es tinicamente comparar configuraciones,
sino evidenciar por qué la combinaciéon propuesta logra inducir un comportamiento de
conduccién activo, estable y eficiente. Para ello, se han eliminado selectivamente diferentes
términos de la funcién de recompensa, manteniendo constantes el resto de variables del
entorno, y se ha observado el efecto de cada configuracion sobre diversas métricas de
rendimiento.

Se consideraron tres componentes clave:

" Teentro: Fecompensa basada en la distancia al centro de la pista.

" Torentacion: Fecompensa basada en la orientacion del vehiculo respecto al eje del tra-
zado.

= Tavance: TeCOmMpensa basada en el avance del agente entre pasos.

Cada configuracion fue entrenada desde cero durante 50000 timesteps, ademés de tener
todos los pesos de sus recompensas aisladas igualados a 1, y evaluada en el mismo circuito,
bajo condiciones idénticas y probadas durante 5 ejecuciones distintas cada una de ellas.
Las métricas utilizadas para la evaluacion fueron:

» Distancia media al centro de la pista (m): cuanto menor, mejor centrado esta
el vehiculo (la anchura de la pista sobre la que se han hecho las pruebas es de 0.991
m, es decir, la distancia maxima al centro es la mitad, 0.4955).

» Velocidad media (m/s): refleja la fluidez del movimiento (siendo la velocidad
méxima 5 m/s).

48

» Tiempo de ejecucién (s): representa la eficiencia general y el tiempo durante el
que se ejecuta el modelo, este puede terminar al completar una vuelta o al activar
alguno de los flags de terminacién (como puede ser quedarse demasiado tiempo
quieto o con una velociadad muy reducida).

» Porcentaje de vuelta completada (%): mide la capacidad del agente para ter-

minar el circuito sin errores criticos.

Componentes DlStE.lIlCIa Velocidad Tiempo de Vuelta
activas media al media (m/s) | ejecucién (s) completada
centro (m) ! (%)
Solo Tcentro 0.122 4+ 0.003 0.063 4+ 0.000 468.8 + 8.125 16.49 % =+ 0.001
Solo Torientacion 0.016 4+ 0.000 0.000 4 0.000 14.184 4+ 2.622 0.00 % 4 0.000
S0lo T avance 0.238 4+ 0.002 2.184 4+ 0.003 105.118 £ 0.855 | 100.00 % =40.000
Tcentro 1 Torientacion 0.016 4+ 0.000 0.000 4 0.000 13.56 + 0.346 0.00 % 4 0.000
T'centro T Tavance 0.158 4+ 0.002 0.312 4+ 0.001 744.536 4 2.647 | 100.00 % =40.000
Torientacion T Tavance 0.378 £+ 0.002 0.519 4+ 0.002 470.826 £+ 9.698 | 100.00 % =£0.000
Todas las 0.1324+0.003 | 2.371+0.016 | 103.23+2.113 | 100.00 %=0.000
componentes

Tabla 4.1: Resultados cuantitativos del estudio de ablaciéon de la funcién de recompensa

A partir de los resultados recogidos en la Tabla[4.1], se pueden extraer varias conclusio-
nes significativas sobre el papel que juega cada componente de la funcién de recompensa
en el aprendizaje del agente:

= Los modelos entrenados tnicamente con 7eentro O Torientacion NO fueron capaces de
completar ninguna vuelta (16.49 % y 0%, respectivamente). En el caso de reentro, €l
agente logra mantener una distancia media aceptable al centro (0.122 m), pero con
una velocidad media muy baja (0.063 m/s). Para romentacion, la distancia media es
notablemente mejor (0.016 m), pero la velocidad es nula, indicando que el agente
permanece inmovil. Esto sugiere que, por si solos, estos componentes no inducen
desplazamiento real.

s El término 7,.ance demuestra ser el principal motor del comportamiento activo. El
modelo que lo emplea de forma aislada completa el 100 % del circuito, con una alta
velocidad media (2.184 m/s), a pesar de tener una distancia al centro relativamente
alta (0.238 m). Esto evidencia que, sin restricciones adicionales, el agente puede
priorizar el avance sin preocuparse por la estabilidad o el centrado.

49

» La combinacion 7eentro + Torientacion Obtiene una distancia al centro baja (0.015 m,
una distancia despreciable dentro del margen que se considera estar centrado en la
pista), pero la velocidad es nula y el tiempo de ejecucion es 13.56 s, lo que indica
que el agente simplemente no se mueve. Este comportamiento trivial maximiza
la recompensa sin desplazarse, lo que pone de relieve la necesidad de un término
explicito que promueva el movimiento. El episodio de prueba del modelo termina al
no haber avanzado ningin waypoint en ese tiempo.

= Las combinaciones que incluyen r,yance junto con otras componentes logran com-
pletar el 100% de las vueltas. Sin embargo, presentan diferentes compromisos en
términos de velocidad y centrado. Por ejemplo, la combinacion rcentro + Tavance reduce
la distancia al centro a 0.158 m, aunque con una velocidad media baja (0.312 m/s) y
el mayor tiempo de ejecucion (744.536 s), lo que sugiere un comportamiento pruden-
te. En cambio, 7orientacion + Tavance Muestra un desempeno con una mayor velocidad
(0.519 m/s) y tiempo moderado (470.826 s), a costa de una mayor desviacion del
centro (0.378 m).

= El modelo con todas las componentes activas obtiene resultados globalmente supe-
riores: completa el circuito en el menor tiempo (103.23 s), con la mayor velocidad
media (2.371 m/s) que es practicamente la mitad de la velocidad que puede alcan-
zar el robot y una distancia al centro razonablemente baja (0.132 m). Esto sugiere
que la combinacién balanceada de incentivos permite un comportamiento eficiente
y controlado.

El estudio de ablacién ha demostrado que la funcién de recompensa disenada cumple
eficazmente su proposito: guiar al agente hacia un comportamiento de conduccion au-
tonoma que sea tanto activo como estable y preciso. La evaluacion sistemética de cada
componente revela que el término de avance es indispensable para inducir movimiento
y completar el circuito, actuando como motor principal del aprendizaje. Sin embargo, su
uso aislado tiende a generar trayectorias rapidas pero menos centradas ya que esto no es
una necesidad en la recompensa.

Los términos de centrado y orientacién, por otro lado, aunque no suficientes por
si solos para inducir desplazamiento, aportan restricciones esenciales que estabilizan y
afinan el comportamiento del agente. Cuando se combinan con el término de avance,
permiten equilibrar la recompensa entre velocidad, trayectoria y precision, lo que se refleja
en métricas notablemente mejores.

La configuracién completa, que incluye los tres componentes, es la tnica que logra un
desempeno alto y equilibrado en todas las métricas evaluadas. Esta evidencia empirica
valida que la funcién de recompensa no solo esta correctamente formulada, sino que su fun-
cionamiento se fundamenta en la sinergia entre incentivos complementarios. En conjunto,
este estudio confirma que un diseno de recompensa bien balanceado no solo promueve la
accion, sino que también asegura una conduccion eficaz, segura y generalizable.

30

Para complementar el analisis cuantitativo presentado en la Tabla en la Figu-
ra se muestran las trayectorias representativas obtenidas durante las pruebas de cada
configuracion del estudio de ablacion. Estas trayectorias incluyen la vuelta completa, la
salida del circuito y tres curvas caracteristicas, permitiendo observar de forma visual y
cualitativa como influyen los distintos componentes de la funciéon de recompensa en el
comportamiento del agente.

La comparacion grafica facilita la comprension del impacto que tiene cada término
sobre la capacidad del agente para seguir el trazado de la pista, su estabilidad lateral y su
fluidez de conduccion. De esta manera, se puede corroborar visualmente la interpretacion
de las métricas, evidenciando las diferencias en la precision y el estilo de conducciéon entre
los modelos entrenados con distintos componentes activos.

Evolucion del Aprendizaje del Coche

— todas.csv
~— centro+orientacion.csv
—— centrotavance.csv
= orientacion+avance.csv
—— orientacion.csv
— avance.csv

centro.csy
@ Vaypoints

Posicion Y
o
!

T
-10.0 =1.5 -5.0 —2.5 0.0 2.5 5.0 75 10.0
Posicién X

(a) Trayectoria completa del circuito.

51

Evolucién del Aprendizaje del Coche

Evolucién del Aprendizaje del Coche

Posicion Y
Posicion Y

-4.0

-45

-15 -10 -05 00 05 10 a5 50 55 6.0 6.5

Posicion X Posicion X

(b) Salida del circuito aumentada. (c) Primera curva aumentada.

Evolucién del Aprendizaje del Coche Evolucion del Aprendizaje del Coche
05

00

Posicion Y

Posicion Y

-1.0

5] 7 s s 10
Posicién X

Posicion X

(d) Segunda curva aumentada. (e) Tercera curva aumentada.

Figura 4.6: Trayectorias representativas del agente bajo diferentes configuraciones de la
funcion de recompensa. La figura muestra: (a) la vuelta completa, (b) la salida del circuito
y (c)-(e) tres curvas seleccionadas del trazado.

Como se refleja en las trayectorias mostradas en la Figura [4.6a] se confirma lo obser-
vado en las métricas anteriores: el modelo entrenado solo con 7.0 abandona la prueba
prematuramente, mostrando un avance muy limitado; el modelo con Gnicamente 7qientacion
permanece practicamente inmovil (tridngulo direccional visible en direccion incorrecta en

52

la Figura , sin desplazarse a lo largo del circuito; la combinaciéon de ambas sin
el término de avance no logra movimiento alguno y termina réapidamente (mismo caso
que el anterior); mientras que las configuraciones que incluyen r,yance permiten completar
la vuelta completa con diferentes estilos de conduccién, desde un comportamiento mas
conservador y lento cuando se combina con 7.0, hasta trayectorias mas rapidas pero
menos centradas con 7ogentacion- Finalmente, la configuracion con todas las recompensas
activas consigue un equilibrio 6ptimo, reflejado en una conduccion eficiente, rapida y ra-
zonablemente centrada, corroborando la importancia de la combinacién sinérgica de los
tres términos en la funcién de recompensa.

Este comportamiento también se aprecia con mayor detalle en las figuras ampliadas:
en la Figura [4.6c, correspondiente a la primera curva del circuito, se evidencia como
los modelos que incluyen r,yance SON capaces de tomar la curva con distintas trayectorias,
algunas mas amplias pero continuas; en la Figura se aprecia la capacidad de an-
ticipaciéon del modelo con todas las recompensas activas, que toma una linea méas fluida
y centrada en comparacion con los demas; y en la Figura [4.6€], correspondiente a la
ultima curva antes de cerrar la vuelta, se observa nuevamente como dicho modelo logra
mantener una trayectoria estable y balanceada, completando el recorrido con éxito. Estas
observaciones refuerzan el valor del diseno cuidadoso de la funcién de recompensa para
lograr un comportamiento robusto y eficaz en tareas de conduccién auténoma.

4.2.2. Capacidad de generalizaciéon

Para que un agente de conduccién auténoma sea realmente 1til, no basta con que
funcione adecuadamente en un tnico entorno de entrenamiento. Es crucial que sea capaz
de generalizar su comportamiento a situaciones nuevas o no vistas durante el aprendizaje,
adaptandose a variaciones del entorno sin requerir una reentrenamiento completo.

Con este objetivo, se entren6 al agente exclusivamente en un circuito base, y poste-
riormente se evalu6 su rendimiento en dos circuitos distintos, con geometrias diferentes
pero comparables en términos de escala y dificultad. Para completar el analisis, también
se probo al agente en los mismos tres circuitos (el de entrenamiento y los dos nuevos) pero
en sentido contrario, es decir, recorriéndolos en direccién opuesta a la usada durante
el entrenamiento.

Estas pruebas permiten evaluar no solo la capacidad del agente para enfrentarse a
nuevos escenarios, sino también su habilidad para adaptarse a inversiones topologicas
del entorno, que implican variaciones en las curvas, puntos de decisiéon y distribucion de
waypoints.

Las métricas empleadas para la evaluacion fueron las mismas utilizadas en el estudio
de ablacion: distancia media al centro de la pista, velocidad media, tiempo de ejecucion
y porcentaje de vuelta completada.

33

Otros circuitos

Para analizar la capacidad del agente de transferir su comportamiento a nuevos tra-
zados, se realizaron pruebas en varios circuitos diferentes a aquel utilizado durante el
entrenamiento. Estos circuitos presentaban variaciones en la geometria.

Los resultados mostraron que el agente era capaz de avanzar en todos los circuitos,
evitando quedarse bloqueado, lo que demuestra una cierta capacidad de locomocion ge-
nérica. Estas evidencias apuntan a que el modelo tiene cierta capacidad de generalizacion
estructural (mantiene su politica de avance y evita comportamientos triviales como dete-
nerse).

Como se muestra en la Figura [4.7] el agente es capaz de generar trayectorias exi-
tosas en diferentes circuitos de prueba, lo que evidencia su capacidad para adaptarse a
variaciones en la geometria de los trazados.

Circuito de Circuito de
prueba 1 prueba 1

Evolucién del Aprendizaje del Coche Evolucién del Aprendizaje del Coche

— tajectory_eplesv

— tajectory_eplcsv
@ vaypoints @ vayponts

4 Y |

| AN T
|

Posicion Y

Posicion Y
|

& °
e

| ’2 N

___ga.

AN
)

/
/[

-15 -5.0 -25 0.0 25 50 7.5 -10.0 -15 -5.0 -25 0.0 25 50 7.
Posicién X Posicion X

0

Figura 4.7: Las trayectorias ilustradas en la Figura demuestran que el agente puede gene-
ralizar su politica aprendida para mantener un comportamiento de conducciéon coherente
y efectivo en circuitos no vistos durante el entrenamiento, adaptandose a diferentes con-
figuraciones geométricas.

Los resultados cuantitativos de estas pruebas se recogen en la Tabla[4.2] donde puede
observarse que el agente mantiene una velocidad estable y completa la vuelta con éxito en
ambos trazados, aunque presenta diferencias en el centrado, lo que refleja la variabilidad
geométrica entre circuitos. Se realizaron cinco ejecuciones independientes en cada circuito
para calcular las medias y desviaciones estandar correspondientes.

o4

. DIStE.mCIa Velocidad Tiempo de Vuelta
Circuito media al media (m/s) ejecucion (s) completada
centro (m) ! (%)
Circuito de prueba 1 | 0.115 £ 0.002 2.324 £0.015 98.39 £ 2.587 100.00 % +0.000
Circuito de prueba 2 | 0.239 £ 0.003 2.216 £0.012 106.03 +2.104 | 100.00 % =+0.000

Tabla 4.2: Resultados cuantitativos en otros circuitos con el modelo entrenado (todas las
componentes activas)

Desde el punto de vista cuantitativo, los resultados obtenidos reflejan un comporta-
miento coherente con el objetivo de navegacion eficiente:

» En el primer circuito, el agente logré completar una vuelta en 98.39 segundos, con
una velocidad media de 2.324 m/s y una distancia media al centro de tan solo
0.115 m, lo que indica una conduccién rapida y centrada, incluso en un entorno no
visto durante el entrenamiento.

= En el segundo circuito, con curvas mas cerradas, se observa una ligera disminu-
cion del rendimiento: la velocidad media descendi6 a 2.216 m/s, la distancia media
al centro aument6 a 0.239 m, y el tiempo de vuelta se elevd a 106.03 segundos.
Este comportamiento sugiere que el agente tiene mas dificultades para mantener
una trayectoria 6ptima en geometrias méas exigentes, aunque sigue siendo capaz de
completar el recorrido pese a tener alguna trayectoria un poco peor de lo esperado.

En conjunto, estos resultados refuerzan la hipotesis de que el agente ha aprendido
una politica de navegacion basada en patrones generales de la pista, y no simplemente
una secuencia de acciones memoristica. Esta capacidad de generalizacion es un indicador
positivo de la robustez del modelo aprendido.

Sentido contrario

Una buena prueba para comprobar la robustez del modelo consiste en invertir el sentido
de la marcha en el mismo circuito en el que fue entrenado. Al hacer esto, los patrones
espaciales y visuales que el agente encuentra son distintos, y se requiere una capacidad
de adaptacion a una distribuciéon de observaciones diferente.

En la Figura se muestran las trayectorias generadas por el agente al recorrer todos
los circuitos en sentido contrario. A pesar del cambio en la direcciéon, se observa que el
comportamiento sigue siendo coherente y la trayectoria se mantiene estable y centrada,
lo cual indica que el modelo ha aprendido una politica que no depende exclusivamente

95

de secuencias visuales o patrones en una direcciéon fija, sino que posee cierto grado de
generalizacion espacial.

Circuito base

Circuito de prueba 1 Circuito de prueba 2

BACSaR

™~

~——— ~

Figura 4.8: Las trayectorias en sentido contrario ilustran la capacidad del agente para
mantener un comportamiento consistente y adaptativo, demostrando que su politica no
estd restringida a una tnica direcciéon de recorrido y presenta generalizacion frente a
cambios en la distribuciéon visual y espacial del entorno.

Los resultados cuantitativos se presentan en la Tabla [4.3] Todas las vueltas fueron
completadas satisfactoriamente en los tres circuitos, lo que confirma que el agente man-
tiene un desempeno robusto bajo inversion de direccion. Las métricas de velocidad media
y tiempo de ejecuciéon son comparables a las obtenidas en el sentido original, aunque se
observan ligeras variaciones en la distancia media al centro. Al igual que en los demas
experimentos, se llevaron a cabo cinco ejecuciones para obtener los datos.

Estas diferencias pueden atribuirse a la asimetria geométrica de los trazados o a la
distribucién distinta de curvas y obstéculos visuales en el nuevo sentido. Aun asi, el agente
es capaz de adaptarse sin necesidad de ser reentrenado, lo cual constituye una evidencia
clara de su capacidad de generalizacion y resiliencia en escenarios no vistos durante el
entrenamiento.

56

Distancia

Vuelta

Circuito media al Vel.ocidad "I‘iemp‘o de completada
centro (m) media (m/s) ejecucion (s) (%)
Circuito base 0.241 £+ 0.003 2.529 £0.014 92.48 +£1.755 100.00 % +0.000
Circuito de prueba 1 | 0.107 £ 0.002 2.595 £0.017 88.27 £ 1.632 100.00 %=0.000
Circuito de prueba 2 | 0.150 £ 0.002 2.181 £ 0.013 110.17 £ 2.749 100.00 % =+0.000

Tabla 4.3: Resultados cuantitativos en otros circuitos con el modelo entrenado (todas las

componentes activas)

Los resultados obtenidos al invertir el sentido de la marcha evidencian que el agen-
te ha desarrollado una politica de navegacion robusta y generalizable. La capacidad de
completar exitosamente todas las vueltas en direccién contraria, sin necesidad de reentre-
namiento y manteniendo un rendimiento comparable en términos de velocidad y estabili-
dad, demuestra que el modelo no se limita a memorizar trayectorias especificas, sino que
ha aprendido una representaciéon mas abstracta del entorno. Esto refuerza la validez del
enfoque propuesto y su aplicabilidad en escenarios no vistos o con ligeras modificaciones
respecto al entorno de entrenamiento.

57

Capitulo 5

Conclusiones y lineas futuras

Este proyecto ha consistido en el desarrollo de un agente auténomo de conduccién ba-
sado en Aprendizaje por Refuerzo, entrenado en un entorno simulado con ROS y Gazebo,
utilizando imagenes como entrada principal de la red neuronal. La arquitectura imple-
mentada permite cerrar el ciclo entre simulacion, percepciéon y acciéon, mediante un flujo
de datos en tiempo real que integra ROS, Gazebo, Gym y Stable Baselines3.

Entre los logros més destacados se encuentra la correcta integracion del entorno de
simulaciéon con el agente de control basado en PPO, asi como el disefio de una funciéon
de recompensa eficaz que guia el aprendizaje hacia una conduccién centrada, fluida y
eficiente. El estudio de ablacion realizado demuestra empiricamente la importancia de
cada componente de esta recompensa y respalda las decisiones de diseno adoptadas. A
nivel técnico, se ha conseguido que el agente aprenda comportamientos razonables de
conduccién con entrada visual, lo cual supone un reto importante por la complejidad
inherente al espacio de observaciones y acciones.

No obstante, el proyecto también ha presentado dificultades importantes. El ajuste
de hiperparametros fue especialmente sensible, y la falta de herramientas para evaluar
automaticamente la calidad del comportamiento del agente exigié una supervision manual
intensiva. Asimismo, el entorno de simulacién no siempre ofrecié estabilidad total, lo cual
requirié solucionar diversos problemas de compatibilidad y sincronizacion.

Ademas de los resultados cuantitativos obtenidos durante la fase de evaluaciéon —como
las recompensas medias, la velocidad media alcanzada o el nimero de episodios comple-
tados con éxito—, el desarrollo del proyecto ha generado una serie de resultados cualita-
tivos que también son relevantes y reflejan el valor del trabajo realizado. Se ha consegui-
do una integracion funcional entre distintas tecnologias de codigo abierto (Gazebo, ROS,
Gymnasium, Stable Baselines3) dentro de un flujo de entrenamiento completamente
local. Este logro implica resolver incompatibilidades entre librerias, gestionar la sincroni-
zacion entre simulador y agente, y asegurar una comunicacion eficiente entre los distintos

58

componentes del sistema. A diferencia de plataformas comerciales como AWS DeepRa-
cer, que dependen de la nube, esta soluciéon es completamente local, lo que permite una
total autonomia del usuario, evita costes asociados y ofrece un control completo sobre el
entorno y el codigo.

Otro resultado destacable ha sido la construccién de un entorno de simulacién perso-
nalizable y modular. Tanto el vehiculo como los circuitos fueron disenados para permitir
modificaciones sencillas, como la incorporacién de nuevos sensores, la introduccién de
diferentes trazados o la alteraciéon de las condiciones fisicas del entorno. Esto facilita la
experimentacion futura sin necesidad de rehacer el sistema desde cero.

A nivel de comportamiento, se ha observado que el agente entrenado no solo aprende
a seguir el trazado de un circuito especifico, sino que tiende a desarrollar un estilo de
conducciéon fluido y adaptable. En pruebas cualitativas realizadas en circuitos no vistos
o invertidos, el vehiculo mostré una capacidad razonable para mantener la trayectoria y
reaccionar ante curvas o bifurcaciones de forma coherente, aunque con un rendimiento algo
inferior al del circuito original. Este comportamiento sugiere que el modelo no memorizo
trayectorias concretas, sino que captd ciertos patrones generales de navegacion, lo cual
indica una incipiente capacidad de generalizacion.

Cabe destacar también el valor formativo del proceso. El desarrollo completo del sis-
tema desde cero, ejecutado exclusivamente en local, ha requerido adquirir y aplicar co-
nocimientos avanzados sobre robética, simulacion, inteligencia artificial y arquitectura de
software. Este aprendizaje transversal y profundo se traduce no solo en un sistema fun-
cional, sino en una comprension soélida que permitira escalar o adaptar el proyecto con
mayor eficacia en el futuro.

Pese a los avances logrados, el sistema desarrollado presenta algunas limitaciones co-
nocidas que conviene senalar. La politica aprendida por el agente, al haber sido entrenada
en un entorno relativamente controlado y especifico, podria no generalizar adecuadamente
a zonas no vistas si no se introducen técnicas adicionales como el domain randomizationll
Ademas, los entrenamientos se realizaron siempre desde el mismo punto de partida, lo cual
puede limitar la diversidad de experiencias que el agente acumula durante el aprendizaje
y reducir su robustez ante situaciones inesperadas o variantes iniciales.

En cuanto a la valoracion de los objetivos alcanzados, los principales propositos defi-
nidos al inicio del proyecto se han cumplido satisfactoriamente. Se ha desarrollado una
plataforma de conduccién auténoma completamente local, empleando exclusivamente he-
rramientas de codigo abierto y prescindiendo de servicios en la nube, lo que ha aportado
flexibilidad, reducciéon de costes y control total sobre el entorno de experimentacion. Ade-
més, se ha entrenado con éxito un agente de conducciéon autonoma mediante Aprendizaje
por Refuerzo, utilizando como entrada imagenes captadas por una camara frontal. El

!Técnica utilizada en Aprendizaje por Refuerzo que consiste en variar aleatoriamente aspectos del
entorno simulado (como texturas, iluminacién o dindmicas) durante el entrenamiento, para mejorar la
capacidad de generalizacion del agente a entornos reales o desconocidos.

39

agente ha demostrado un comportamiento coherente, estable y generalizable en entornos
simulados, siendo capaz de mantenerse centrado en la pista, avanzar de forma fluida y
tomar curvas sin salirse, todo ello basdéndose tnicamente en la percepcion visual.

Asimismo, se ha verificado la capacidad de generalizaciéon del modelo al probarlo en
circuitos no vistos durante el entrenamiento, observando que mantiene un rendimiento
aceptable sin necesidad de reentrenamiento. También se ha realizado un estudio de abla-
cion de la funcion de recompensa, lo que ha permitido entender mejor los factores que
guian el aprendizaje del agente. Algunos objetivos secundarios, como la comparacién con
otros algoritmos de Aprendizaje por Refuerzo o el uso de multiples modalidades senso-
riales, no se han abordado debido a limitaciones de tiempo y recursos. No obstante, se
identifican como posibles lineas de desarrollo futuro que podrian enriquecer el trabajo
realizado.

Entre las posibles mejoras y lineas futuras se encuentra la transferencia del modelo
a un robot real, lo que implicaria aplicar técnicas de sim-to-real para reducir la brecha
entre la simulacién y el entorno fisico, como el ajuste en el mundo real. También seria
interesante explorar algoritmos alternativos al PPO, como SAC (Soft Actor-Critic) o TD3,
que podrian ofrecer mejoras en determinadas condiciones. Otro aspecto a considerar es
la ampliacion del entorno simulado, incorporando escenarios més complejos y realistas
que incluyan diferentes variaciones de iluminaciéon o desniveles en el terreno, con el fin de
evaluar la robustez del modelo. Finalmente, entrenar al agente en multiples mapas con
geometrias distintas desde el inicio podria fomentar una mayor capacidad de generalizacion
y transferencia.

En conjunto, el proyecto sienta una base solida para el desarrollo de sistemas de conduc-
cién auténoma basados en vision y Aprendizaje por Refuerzo, y deja abiertas numerosas
vias para su mejora, ampliacion y aplicacién en escenarios mas exigentes y realistas.

60

Apéndice A

Anexos

A.1. Especificaciones del entorno de simulacién

A continuaciéon se describen las caracteristicas técnicas del entorno utilizado para el
desarrollo y entrenamiento del agente. Se detallan tanto los aspectos de software como de
hardware que han condicionado el rendimiento y la compatibilidad del sistema implemen-
tado.

Sistema operativo: Ubuntu 20.04.6 LTS

Simulador: Gazebo 11.15.1 + ROS Noetic

Framework de entrenamiento: Stable Baselines3 (version 2.2.1) + Gymnasium
(version 0.29.1)

Backend de red neuronal: PyTorch (version 2.4.1)

Hardware: NVIDIA TITAN Xp, 64 GB RAM, Intel i7-6700

A.2. Composiciéon del entorno y ejecucion

En esta seccién se describe la forma en la que se estructura y lanza el entorno de
simulacion. Se indican los comandos principales de ejecucion y los nodos que intervienen
en el proceso de entrenamiento y prueba del agente.

= Comandos de ejecucion principal:

61

roslaunch deepracer_simulation train.launch

roslaunch deepracer_simulation try.launch

= Componentes involucrados:

Nodo de control del agente

Nodo de captura de observaciones desde camara

Nodo de servo (control de movimiento)

Nodo de publicacién de odometria

Nodo de publicacién de estados articulares

e Carga y publicacion del modelo del robot (URDF)

A.3. Arquitectura de la red neuronal

Se muestra aqui la estructura de la red neuronal utilizada para aprender la politica
de control del agente. La arquitectura estd compuesta por capas convolucionales para la
extraccion de caracteristicas visuales y capas densas que generan las acciones continuas
de salida.

= Entrada: imégenes RGB de 120 x 160 x 3
= Capas convolucionales:

e Conv2D(32 filtros, 8x8, stride 4) + ReLU
e Conv2D(64 filtros, 4x4, stride 2) + ReLU
e Conv2D(64 filtros, 3x3, stride 1) + ReLU

= Capas totalmente conectadas:

e Dense(512) + ReLU

e Output: acciones continuas (velocidad, giro)

A.4. Infraestructura de referencia: AWS DeepRacer

Con el fin de contextualizar la arquitectura propuesta en este trabajo, a continuaciéon
se presenta un resumen de la infraestructura utilizada por AWS DeepRacer, una de las

62

plataformas mas conocidas para el entrenamiento de agentes de conduccién auténoma
mediante Aprendizaje por Refuerzo.

Bl Your AWS account

VPC

Sagefhaker

5@

Kinesis Video Streams

(R

Robomaker CloudWatch Logs

DeepRacer
(via AWS Console)

Figura A.1: Figura explicativa de la infraestructura de DeepRacer de AWS.

Este sistema se basa en una infraestructura en la nube donde el entrenamiento se
realiza de forma remota mediante servicios gestionados como Amazon SageMaker, AWS
RoboMaker y Amazon S3, como se puede ver en la Figura El entorno de simulacion
y la funcién de recompensa se definen en la consola web, y los modelos entrenados se
descargan posteriormente al vehiculo fisico para pruebas reales.

En contraste, el sistema desarrollado en este trabajo se ejecuta completamente en lo-
cal, sin depender de servicios externos, lo que permite mayor control sobre los recursos,
personalizacién del entorno y reduccion de costes. Esta independencia también plantea
desafios adicionales, como la necesidad de resolver manualmente problemas de integra-
cién y configuracion entre componentes, pero proporciona una plataforma mas flexible y
replicable en otros contextos.

63

Bibliografia

1]

2l

3]

4]

[5]

6]

17l

8]

19]

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.
MIT Press, 2018. |[Online|. Available: https://www.andrew.cmu.edu/course/10-703/
textbook /BartoSutton.pdf

Amazon Web Services, “Aws deepracer developer guide,” https://docs.aws.amazon.
com/deepracer/latest /developerguide /deepracer-rl.html, 2025, technical documenta-
tion for DeepRacer environment, reward function, and simulation.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017. [Online].
Available: https://arxiv.org/abs/1707.06347

J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-dimensional
continuous control using generalized advantage estimation,” arXiv preprint ar-
Xiw:1506.02438, 2016.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA Workshop on
Open Source Software, 2009.

N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2004, pp. 2149-2154.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, N. Ernestus, and N. Dormann, “Stable-
baselines3: Reliable reinforcement learning implementations,” https://github.com/
DLR-RM /stable-baselines3, 2021, accessed: 2025-06-14.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep

learning library,” in Advances in Neural Information Processing Systems (NeurIPS),
2019.

F. Foundation, “Gymnasium documentation,” https://gymnasium.farama.org, 2023,
accessed: 2025-06-14.

64

https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-rl.html
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-rl.html
https://arxiv.org/abs/1707.06347
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://gymnasium.farama.org

[10]

[11]

R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous
Mobile Robots, 2nd ed. MIT Press, 2011.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. J. Carey, 1. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, and
C. R. Harris, “Scipy 1.0: Fundamental algorithms for scientific computing in
python,” Nature Methods, vol. 17, pp. 261-272, 2020, kDTree module available
at https://docs.scipy.org/doc/scipy/reference/generated /scipy.spatial. KD Tree.html.
[Online|. Available: https://www.nature.com/articles/s41592-019-0686-2

65

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html
https://www.nature.com/articles/s41592-019-0686-2

	Resumen
	Abstract
	Agradecimientos
	Índice general
	Índice de figuras
	Índice de tablas
	Introducción
	Introducción general
	Motivación y contexto
	Objetivos y alcance
	Planificación temporal y estructura del documento

	Planteamiento del problema y fundamentos teóricos
	Descripción del problema
	Aprendizaje por Refuerzo (Reinforcement Learning)
	Proximal Policy Optimization (PPO)
	Redes neuronales y redes convolucionales

	Tecnologías y herramientas utilizadas
	Simulación y robótica móvil
	Aprendizaje Automático

	Arquitectura y diseño del sistema
	Flujo de datos entre ROS, Gazebo y el agente
	Componentes principales del sistema
	Interfaz de comunicación mediante ROS
	Simulación del entorno con Gazebo
	Agente RL con Stable Baselines3
	Integración y diseño del entorno Gymnasium

	Diseño de la función de recompensa

	Experimentación y resultados
	Metodología experimental
	Circuitos empleados
	Configuración del agente e hiperparámetros
	Métricas de evaluación

	Conjunto de experimentos
	Estudio de ablación de la función de recompensa
	Capacidad de generalización

	Conclusiones y líneas futuras
	Anexos
	Especificaciones del entorno de simulación
	Composición del entorno y ejecución
	Arquitectura de la red neuronal
	Infraestructura de referencia: AWS DeepRacer

	Bibliografía

