000164981 001__ 164981
000164981 005__ 20251204150238.0
000164981 0247_ $$2doi$$a10.1007/s10494-015-9663-8
000164981 0248_ $$2sideral$$a92760
000164981 037__ $$aART-2016-92760
000164981 041__ $$aeng
000164981 100__ $$0(orcid)0000-0002-2267-8598$$aDopazo, C.$$uUniversidad de Zaragoza
000164981 245__ $$aMicro-scale Mixing in Turbulent Constant Density Reacting Flows and Premixed Combustion
000164981 260__ $$c2016
000164981 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164981 5203_ $$aDNS datasets for inert and reactive scalars in statistically homogeneous and stationary turbulence of constant density fluid, and for turbulent premixed flames in an inflow-outflow configuration and in a jet are examined. The objective is to gain a better physical understanding of mixing to use in modeling molecular diffusion terms. Classical descriptions in term of either scalar fluctuation moments or pdf conservation equations can be related to transport of iso-scalar surfaces by turbulent convection and molecular diffusion. The kinematics and propagation speeds of iso-surfaces are theoretically analyzed. The effective normal strain rate, which combines flow and diffusion-reaction induced processes, emerges as an essential variable; scalar gradients and dissipation rates increase for negative effective normal strains and decrease for positive ones. It is argued that the characteristic mixing time should be proportional to the inverse of the effective normal strain rate. The latter displays drastically different behaviors for constant density turbulence, with predominantly positive values, and for flows with significant heat release, with mostly negative ones. The former turbulent flows cause scalars to become less dissipative as time progresses, whereas the latter increase scalar dissipation. Functional dependences of the molecular diffusion rate conditioned on composition are sought. It is suggested that the characteristic mixing time is determined by the different interrelated processes, mainly in the limits of very low and very high Karlovitz numbers.
000164981 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000164981 590__ $$a1.775$$b2016
000164981 591__ $$aTHERMODYNAMICS$$b24 / 58 = 0.414$$c2016$$dQ2$$eT2
000164981 591__ $$aMECHANICS$$b57 / 133 = 0.429$$c2016$$dQ2$$eT2
000164981 592__ $$a0.731$$b2016
000164981 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ1
000164981 593__ $$aPhysics and Astronomy (miscellaneous)$$c2016$$dQ2
000164981 593__ $$aPhysical and Theoretical Chemistry$$c2016$$dQ2
000164981 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000164981 700__ $$aCifuentes, L.
000164981 700__ $$0(orcid)0000-0002-5821-1666$$aHierro, J.
000164981 700__ $$0(orcid)0000-0003-3908-0493$$aMartin, J.$$uUniversidad de Zaragoza
000164981 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000164981 773__ $$g96 (2016), 547–571$$pFlow turbul. combust.$$tFlow, Turbulence and Combustion$$x1386-6184
000164981 8564_ $$s2202747$$uhttps://zaguan.unizar.es/record/164981/files/texto_completo.pdf$$yVersión publicada
000164981 8564_ $$s1336539$$uhttps://zaguan.unizar.es/record/164981/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000164981 909CO $$ooai:zaguan.unizar.es:164981$$particulos$$pdriver
000164981 951__ $$a2025-12-04-14:38:39
000164981 980__ $$aARTICLE