000164984 001__ 164984
000164984 005__ 20251204150238.0
000164984 0247_ $$2doi$$a10.1364/AO.383577
000164984 0248_ $$2sideral$$a117216
000164984 037__ $$aART-2020-117216
000164984 041__ $$aeng
000164984 100__ $$aKeshri, S.
000164984 245__ $$aStacked volume holographic gratings for extending the operational wavelength range in LED and solar applications
000164984 260__ $$c2020
000164984 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164984 5203_ $$aA novel stacking procedure is presented for volume phase holographic gratings (VPHGs) recorded in photopolymer material using Corning Willow Glass as a flexible substrate in order to achieve broader angular and spectral selectivity in a diffractive device with high efficiency for solar and LED applications. For the first time to our knowledge, we have shown a device designed for use with a white LED that has the same input and output angles and high efficiency when illuminated by different wavelengths. In this paper, two VPHGs were designed, experimentally recorded, and tested when illuminated at normal incidence. The experimental approach is based on stacking two individual gratings in which the spatial frequency and slant have been tailored to the target wavelength and using real-time on-Bragg monitoring of the gratings in order to control the recorded refractive index modulation, thereby optimizing each grating efficiency for its design wavelength. Lamination of the two gratings together was enabled by using a flexible glass substrate (Corning Willow Glass). Recording conditions were studied in order to minimize the change in diffraction efficiency and peak diffraction angle during lamination and bleaching. The final fabricated stacked device was illuminated by a white light source, and its output was spectrally analyzed. Compared to a single grating, the stacked device demonstrated a twofold increase in angular and wavelength range. The angular and wavelength selectivity curves are in good agreement with the theoretical prediction for this design. This approach could be used to fabricate stacked lenses for white light LED or solar applications.
000164984 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E44-17R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2016-81040-R
000164984 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000164984 590__ $$a1.98$$b2020
000164984 591__ $$aOPTICS$$b62 / 99 = 0.626$$c2020$$dQ3$$eT2
000164984 592__ $$a0.668$$b2020
000164984 593__ $$aAtomic and Molecular Physics, and Optics$$c2020$$dQ1
000164984 593__ $$aEngineering (miscellaneous)$$c2020$$dQ1
000164984 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ1
000164984 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000164984 700__ $$0(orcid)0000-0001-6899-1005$$aMarín-Sáez, J.$$uUniversidad de Zaragoza
000164984 700__ $$aNaydenova, I.
000164984 700__ $$aMurphy, K.
000164984 700__ $$0(orcid)0000-0001-9804-990X$$aAtencia, J.$$uUniversidad de Zaragoza
000164984 700__ $$aChemisana, D.
000164984 700__ $$aGarner, S.
000164984 700__ $$0(orcid)0000-0002-3299-253X$$aCollados, M.V.$$uUniversidad de Zaragoza
000164984 700__ $$aMartin, S.
000164984 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000164984 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000164984 773__ $$g59, 8 (2020), 2569-2579$$pAppl. opt. (2004)$$tApplied Optics$$x1559-128X
000164984 8564_ $$s1229578$$uhttps://zaguan.unizar.es/record/164984/files/texto_completo.pdf$$yPostprint
000164984 8564_ $$s2895337$$uhttps://zaguan.unizar.es/record/164984/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000164984 909CO $$ooai:zaguan.unizar.es:164984$$particulos$$pdriver
000164984 951__ $$a2025-12-04-14:38:43
000164984 980__ $$aARTICLE