000164998 001__ 164998
000164998 005__ 20251204150238.0
000164998 0247_ $$2doi$$a10.1038/s41598-025-24371-3
000164998 0248_ $$2sideral$$a146432
000164998 037__ $$aART-2025-146432
000164998 041__ $$aeng
000164998 100__ $$aMedina, Sonia
000164998 245__ $$aSCOBY-based, innovative, and sustainable production of gallic acid from sucrose towards multipurpose applications
000164998 260__ $$c2025
000164998 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164998 5203_ $$aKombucha is a traditional beverage obtained from the fermentation of sugared tea by a symbiotic culture of bacteria and yeast (SCOBY), whose metabolism contributes significantly to the phytochemical composition and health-promoting properties of the final product. Among the phenolics present, gallic acid stands out as a multifunctional molecule with antioxidant, anti-inflammatory, and cardio-protective activities, making it a compound of growing interest for the development of functional foods, nutraceuticals and cosmetics. While gallic acid in kombucha has typically been attributed to plant-derived precursors, its potential de novo microbial origin has remained largely unexplored. In this work, robust evidence supports that SCOBY can synthesise gallic acid directly from sugars, without the contribution of tea or other plant materials. Metabolomic analyses combined with physicochemical characterisation (pH, ethanol, acetic acid, total soluble solids, sucrose, glucose, and fructose) revealed a linear increase in gallic acid production under standard fermentation conditions, associated with the microbial community’s tolerance to high sugar concentrations and its metabolic capacity to generate bioactive phenolics. This finding highlights a previously unrecognised role of SCOBY as a natural cell factory for gallic acid production. In contrast to metabolic engineering approaches in model microorganisms such as Escherichia coli or Pseudomonas, our study demonstrates that a non-engineered microbial consortium can achieve this transformation simply and sustainably. These results open a novel route for the plant-free biosynthesis of gallic acid with potential applications across the food, cosmetic, and pharmaceutical industries.
000164998 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2023-148254OB-C21$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1
000164998 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000164998 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000164998 700__ $$aMedrano-Padial, Concepción
000164998 700__ $$aGuillén, Silvia
000164998 700__ $$aPérez-Través, Laura
000164998 700__ $$aPérez-Novas, Irene
000164998 700__ $$aPeriago, Paula
000164998 700__ $$aGarcía-Viguera, Cristina
000164998 700__ $$aDomínguez-Perles, Raúl
000164998 773__ $$g15, 1 (2025), 40536 [13 pp.]$$pSci. rep. (Nat. Publ. Group)$$tScientific reports (Nature Publishing Group)$$x2045-2322
000164998 8564_ $$s2559447$$uhttps://zaguan.unizar.es/record/164998/files/texto_completo.pdf$$yVersión publicada
000164998 8564_ $$s2570049$$uhttps://zaguan.unizar.es/record/164998/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000164998 909CO $$ooai:zaguan.unizar.es:164998$$particulos$$pdriver
000164998 951__ $$a2025-12-04-14:39:01
000164998 980__ $$aARTICLE