000165017 001__ 165017
000165017 005__ 20251204150238.0
000165017 0247_ $$2doi$$a10.1016/j.ijhydene.2013.11.070
000165017 0248_ $$2sideral$$a86437
000165017 037__ $$aART-2014-86437
000165017 041__ $$aeng
000165017 100__ $$0(orcid)0000-0002-5391-8021$$aBarreras, F.$$uUniversidad de Zaragoza
000165017 245__ $$aOptimal design and operational tests of a high-temperature PEM fuel cell for a combined heat and power unit
000165017 260__ $$c2014
000165017 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165017 5203_ $$aDevelopment of new materials for polymer electrolyte membranes has allowed increasing the operational temperature of PEM fuel cell stacks above 120 °C. The present paper summarizes the main results obtained in a research devoted to the design, fabrication and operational tests performed on a high-temperature PEMFC prototype. A 5-cell stack has been assembled with commercial Celtec P-1000 high-temperature MEAs from BASF Fuel Cells, but the rest of elements and processes have been developed at LIFTEC research facilities. The stack includes different novelties, such as the way in which reactant gases are supplied to the flowfield, the design of the flowfield geometry for both anode and cathode plates, the concept of block that eases the assembling and maintenance processes, and the heating strategy for a very fast start-up. The different procedures comprising the assembly, closing and conditioning stages are also widely described and discussed. Results obtained in the preliminary operational tests performed are very promising, and it is expected that the 30-cells HT-PEMFC stack will deliver an electric power 2.3 times larger than the one initially predicted.
000165017 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000165017 590__ $$a3.313$$b2014
000165017 591__ $$aCHEMISTRY, PHYSICAL$$b43 / 138 = 0.312$$c2014$$dQ2$$eT1
000165017 591__ $$aENERGY & FUELS$$b25 / 89 = 0.281$$c2014$$dQ2$$eT1
000165017 591__ $$aELECTROCHEMISTRY$$b7 / 27 = 0.259$$c2014$$dQ2$$eT1
000165017 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000165017 700__ $$aLozano, A.
000165017 700__ $$aRoda, V.
000165017 700__ $$0(orcid)0000-0002-0063-1318$$aBarroso, J.$$uUniversidad de Zaragoza
000165017 700__ $$0(orcid)0000-0003-3908-0493$$aMartín, J.$$uUniversidad de Zaragoza
000165017 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000165017 773__ $$g39, 10 (2014), 5388-5398$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000165017 8564_ $$s541713$$uhttps://zaguan.unizar.es/record/165017/files/texto_completo.pdf$$yPostprint
000165017 8564_ $$s1573648$$uhttps://zaguan.unizar.es/record/165017/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000165017 909CO $$ooai:zaguan.unizar.es:165017$$particulos$$pdriver
000165017 951__ $$a2025-12-04-14:39:24
000165017 980__ $$aARTICLE