000165018 001__ 165018
000165018 005__ 20251204150239.0
000165018 0247_ $$2doi$$a10.1016/j.proci.2014.06.026
000165018 0248_ $$2sideral$$a91233
000165018 037__ $$aART-2015-91233
000165018 041__ $$aeng
000165018 100__ $$aCifuentes, L.$$uUniversidad de Zaragoza
000165018 245__ $$aLocal volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame
000165018 260__ $$c2015
000165018 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165018 5203_ $$aThe local volumetric dilatation rate, namely, the rate of change of an infinitesimal fluid volume per unit volume, [fórmula], is an important variable particularly in flows with heat release. Its tangential and normal strain rate components,[fórmula]  and [fórmula] , respectively, account for stretching and partially for separation of iso-scalar surfaces. A three-dimensional direct numerical simulation (DNS) of a turbulent premixed methane–air flame in a piloted Bunsen burner configuration has been performed by solving the full conservation equations for mass, momentum, energy and chemical species using tabulated chemistry. Results for the volumetric dilatation rate as a function of the iso-scalar surface geometry, characterized by the mean and Gauss curvatures, [fórmula]  and [fórmula] , are obtained in several zones (reactants, preheat, reacting and products) of the computational domain. Flat iso-scalar surfaces are the most likely geometries in agreement with previous DNS. The relationship between density and a reaction progress variable, under a low Mach number flamelet assumption, leads to an expression for [fórmula]  with contributions from progress variable source and molecular diffusion budget, with a significant contribution from the latter; this approximate expression for the volumetric dilatation rate is studied with DNS results. The joint pdf of [fórmula]  and[fórmula]   confirms that the line [fórmula]  separates mostly expansive flow regions from compressive zones.
000165018 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000165018 590__ $$a4.12$$b2015
000165018 591__ $$aENERGY & FUELS$$b17 / 88 = 0.193$$c2015$$dQ1$$eT1
000165018 591__ $$aTHERMODYNAMICS$$b5 / 57 = 0.088$$c2015$$dQ1$$eT1
000165018 591__ $$aENGINEERING, MECHANICAL$$b4 / 131 = 0.031$$c2015$$dQ1$$eT1
000165018 591__ $$aENGINEERING, CHEMICAL$$b16 / 135 = 0.119$$c2015$$dQ1$$eT1
000165018 592__ $$a2.515$$b2015
000165018 593__ $$aChemical Engineering (miscellaneous)$$c2015$$dQ1
000165018 593__ $$aPhysical and Theoretical Chemistry$$c2015$$dQ1
000165018 593__ $$aMechanical Engineering$$c2015$$dQ1
000165018 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165018 700__ $$0(orcid)0000-0002-2267-8598$$aDopazo, C.$$uUniversidad de Zaragoza
000165018 700__ $$0(orcid)0000-0003-3908-0493$$aMartín, J.$$uUniversidad de Zaragoza
000165018 700__ $$aDomingo, P.
000165018 700__ $$aVervisch, L.
000165018 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000165018 773__ $$g35, 2 (2015), 1295-1303$$pProc. Combust. Inst.$$tPROCEEDINGS OF THE COMBUSTION INSTITUTE$$x1540-7489
000165018 8564_ $$s1791510$$uhttps://zaguan.unizar.es/record/165018/files/texto_completo.pdf$$yVersión publicada
000165018 8564_ $$s1795970$$uhttps://zaguan.unizar.es/record/165018/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165018 909CO $$ooai:zaguan.unizar.es:165018$$particulos$$pdriver
000165018 951__ $$a2025-12-04-14:39:25
000165018 980__ $$aARTICLE