000165029 001__ 165029
000165029 005__ 20251204150239.0
000165029 0247_ $$2doi$$a10.1093/jxb/eraf434
000165029 0248_ $$2sideral$$a146488
000165029 037__ $$aART-2025-146488
000165029 041__ $$aeng
000165029 100__ $$aEsquinas-Ariza, Rosa M.
000165029 245__ $$aStructural and functional comparison of hemoglobin Glb2-1 of Lotus japonicus with Glb1-1 and leghemoglobins
000165029 260__ $$c2025
000165029 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165029 5203_ $$aThe legume Lotus japonicus expresses nine hemoglobins, including leghemoglobins (Lbs), class 1 phytoglobin (Glb1-1), and an unusual phytoglobin (Glb2-1). Quantitative PCR, proteomics, and plant mutant analyses indicated that Glb2-1 is mainly present in nodules without replacing Lb function, but is also in roots and photosynthetic tissues. Comparison of hormonal profiles of the knock-out mutants glb1-1, glb2-1, and glb1-1/2-1 showed that Glb1-1 and Glb2-1 have distinct functions. The increase of salicylic acid in the leaves of glb1-1 revealed a role of Glb1-1 in the defense response, which was corroborated by accumulation of pipecolic acid, a metabolite involved in plant immunity. In contrast, the decrease of bioactive jasmonoyl-isoleucine in glb2-1 was consistent with a role of Glb2-1 in the plant's reproductive stage. The mutants also showed changes in cytokinins, gibberellins, and polyamines, but without clear distinctive patterns. The crystal structure of Glb2-1 was determined to 1.6 Å resolution and compared with those of soybean Lba and Arabidopsis Glb1. In combination with mutant versions of Glb2-1, residues Tyr31, His64, and Cys65 were identified as critical for O2-binding stability. Spectral changes in heme coordination when Tyr31 is substituted for Phe highlights the importance of the residue at the B10 position for Lb and Glb function.
000165029 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2023-147035NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/A09-23R$$9info:eu-repo/grantAgreement/ES/DGA/E35-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113985GB-I00
000165029 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000165029 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165029 700__ $$aVillar, Irene
000165029 700__ $$aMinguillón, Samuel
000165029 700__ $$aZamarreño, Ángel
000165029 700__ $$aPérez-Rontomé, Carmen
000165029 700__ $$aReeder, Brandon J.
000165029 700__ $$aSandal, Niels
000165029 700__ $$aYan, Deng
000165029 700__ $$aGarcía-Mina, José M.
000165029 700__ $$aDuanmu, Deqiang
000165029 700__ $$0(orcid)0000-0001-9047-0046$$aMartínez-Júlvez, Marta$$uUniversidad de Zaragoza
000165029 700__ $$aBecana, Manuel
000165029 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000165029 773__ $$g(2025), [17 pp.]$$pJ. Exp. Bot.$$tJournal of Experimental Botany$$x0022-0957
000165029 8564_ $$s6711240$$uhttps://zaguan.unizar.es/record/165029/files/texto_completo.pdf$$yVersión publicada
000165029 8564_ $$s2544370$$uhttps://zaguan.unizar.es/record/165029/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165029 909CO $$ooai:zaguan.unizar.es:165029$$particulos$$pdriver
000165029 951__ $$a2025-12-04-14:39:38
000165029 980__ $$aARTICLE