000165040 001__ 165040
000165040 005__ 20251204150239.0
000165040 0247_ $$2doi$$a10.1016/j.jobe.2025.114620
000165040 0248_ $$2sideral$$a146475
000165040 037__ $$aART-2025-146475
000165040 041__ $$aeng
000165040 100__ $$0(orcid)0000-0002-2887-2105$$aMartínez, Ignacio$$uUniversidad de Zaragoza
000165040 245__ $$aSmart Built Environment (SBE): a challenge for Internet of Things (IoT) ecosystems to understand dynamic habitats and their users as complex systems
000165040 260__ $$c2025
000165040 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165040 5203_ $$aAccurately modelling building performance remains a major challenge, particularly when aiming to implement predictive control strategies in digital twin systems. The gap between simulated and real building behaviour –often over 30 %– is largely due to the unpredictable nature of human activity and the context-dependent variability of indoor conditions. Beyond energy use, gap between real and controlled comfort is often observed when operation reduces comfort to fixed setpoints. To reduce these gaps, it is key to incorporate in-situ data reflecting how buildings are actually used, occupied, and affected by environmental and operational variables.
This paper contributes with an Internet of Things (IoT)-based methodology focused on identifying and analysing key observable fields within Smart Built Environment (SBE). These fields include occupancy patterns, indoor environmental conditions, external climate, architectural configuration, energy flows, system efficiency, and operational cost. This SBE-IoT framework is structured through levels (data, information, knowledge, and cognitive control) and layers (acquisition, ingestion, processing, storage, analysis, understanding and decision-making). From this framework, data are collected and processed through a deployed IoT ecosystem (sensoriZAR) that integrates: real-time acquisition, pattern detection, and multicriteria analysis for supporting Digital Twin (DT) approaches through decision-making and informed-actuation.
The proposed SBE-IoT framework was tested in a real-world application to a university building, representative of a smart campus. The experimental results of the cross-relation study have identified comfort oversupply periods (temperatures >21 °C) lasting 30 h/month, causing 7.9 MWh in energy use −45 % of Heating, Ventilation and Air Conditioning (HVAC) demand– and €500/month in costs. This approach proved to be fully operational, low-cost (∼€3000), and rapidly scalable (Return On Investment, ROI <6 months). This SBE-IoT framework enhances digital twin capabilities by providing empirical, context-specific insight to support adaptive, efficient, and replicable decision-making in smart environments.
000165040 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000165040 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165040 700__ $$0(orcid)0000-0001-5137-2478$$aCano-Suñén, Enrique$$uUniversidad de Zaragoza
000165040 700__ $$0(orcid)0000-0001-5316-8171$$aCasas, Roberto$$uUniversidad de Zaragoza
000165040 700__ $$0(orcid)0000-0002-0544-0182$$aFernández, Ángel$$uUniversidad de Zaragoza
000165040 7102_ $$15015$$2110$$aUniversidad de Zaragoza$$bDpto. Arquitectura$$cÁrea Construc. Arquitectónicas
000165040 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000165040 7102_ $$15004$$2545$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Ingeniería Mecánica
000165040 7102_ $$15008$$2560$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Ingeniería Telemática
000165040 773__ $$g116 (2025), 114620 [22 pp.]$$tJournal of Building Engineering$$x2352-7102
000165040 8564_ $$s9699876$$uhttps://zaguan.unizar.es/record/165040/files/texto_completo.pdf$$yVersión publicada
000165040 8564_ $$s1801553$$uhttps://zaguan.unizar.es/record/165040/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165040 909CO $$ooai:zaguan.unizar.es:165040$$particulos$$pdriver
000165040 951__ $$a2025-12-04-14:39:50
000165040 980__ $$aARTICLE