000165045 001__ 165045
000165045 005__ 20251204150239.0
000165045 0247_ $$2doi$$a10.1016/j.combustflame.2014.11.034
000165045 0248_ $$2sideral$$a91983
000165045 037__ $$aART-2015-91983
000165045 041__ $$aeng
000165045 100__ $$0(orcid)0000-0002-2267-8598$$aDopazo, C.$$uUniversidad de Zaragoza
000165045 245__ $$aStrain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame
000165045 260__ $$c2015
000165045 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165045 5203_ $$aA Direct Numerical Simulation (DNS) dataset of a turbulent premixed propagating flame with an Arrhenius one-step chemistry in an input–output configuration is examined. Combustion takes place in the ‘corrugated flamelets’ regime. Heat release causes the flow volumetric dilatation rate to be positive over most of the computational domain, with associated positive strain rates normal to iso-scalar surfaces and both positive or negative strain rates tangent to them. The normal propagation of convex and concave iso-surface infinitesimal area elements produces stretching and reduction, respectively, superposed to tangential flow strain rate effects. The normal propagation speed of iso-surfaces increases monotonically from ‘fresh gases’ to ‘hot products’, which draws two adjacent ones closer; this contribution, due to both chemistry and molecular diffusive transport, is much greater than that of the normal flow strain, and enhances mixing and chemical conversion. Many aspects of turbulent premixed flames traditionally explained in terms of tangential strain rates can likely be well understood using the normal ones.
000165045 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000165045 590__ $$a4.168$$b2015
000165045 591__ $$aENERGY & FUELS$$b16 / 88 = 0.182$$c2015$$dQ1$$eT1
000165045 591__ $$aENGINEERING, CHEMICAL$$b15 / 135 = 0.111$$c2015$$dQ1$$eT1
000165045 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b3 / 85 = 0.035$$c2015$$dQ1$$eT1
000165045 591__ $$aTHERMODYNAMICS$$b4 / 57 = 0.07$$c2015$$dQ1$$eT1
000165045 591__ $$aENGINEERING, MECHANICAL$$b3 / 131 = 0.023$$c2015$$dQ1$$eT1
000165045 592__ $$a2.807$$b2015
000165045 593__ $$aChemical Engineering (miscellaneous)$$c2015$$dQ1
000165045 593__ $$aChemistry (miscellaneous)$$c2015$$dQ1
000165045 593__ $$aPhysics and Astronomy (miscellaneous)$$c2015$$dQ1
000165045 593__ $$aFuel Technology$$c2015$$dQ1
000165045 593__ $$aEnergy Engineering and Power Technology$$c2015$$dQ1
000165045 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165045 700__ $$aCifuentes, L.$$uUniversidad de Zaragoza
000165045 700__ $$0(orcid)0000-0003-3908-0493$$aMartin, J.$$uUniversidad de Zaragoza
000165045 700__ $$aJimenez, C.
000165045 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000165045 773__ $$g162, 5 (2015), 1729-1736$$pCombust. flame$$tCombustion and Flame$$x0010-2180
000165045 8564_ $$s1576275$$uhttps://zaguan.unizar.es/record/165045/files/texto_completo.pdf$$yVersión publicada
000165045 8564_ $$s2755922$$uhttps://zaguan.unizar.es/record/165045/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165045 909CO $$ooai:zaguan.unizar.es:165045$$particulos$$pdriver
000165045 951__ $$a2025-12-04-14:39:56
000165045 980__ $$aARTICLE