
PHYSICAL REVIEW RESEARCH 2, 043307 (2020)

Dynamics of matter-wave quantum emitters in a structured vacuum
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The characteristics of spontaneous emission can be strongly modified by the mode structure of the vacuum.
In waveguide quantum-electrodynamics based on photonic crystals, this modification is exploited to engineer
atom-photon interactions near a band edge, but the physics of coupling to an entire band has not yet been
explored in experiments. Using ultracold atoms in an optical lattice, we study the decay dynamics of matter-wave
quantum emitters coupled to a single band of an effective photonic crystal waveguide structure with tunable
characteristics. Depending on the ratio between vacuum coupling and bandwidth, we observe a transition from
irreversible decay to fully oscillatory dynamics linked to the interplay of matter-wave bound states near the band
edges, whose spatial structure we characterize. Our results shed light on the emergence of coherence in an open
quantum system in a controllable environment and are of relevance for the understanding of vacuum-induced
decay phenomena in photonic systems.

DOI: 10.1103/PhysRevResearch.2.043307

I. INTRODUCTION

Harnessing light-matter interactions is a central topic in
the development of quantum technologies and the emergent
field of waveguide QED [1–3], where quantum emitters are
coupled to strongly confined optical fields, opening up new
avenues for the realization of photonic quantum matter in the
optical and microwave domains [4–6]. A common approach,
based on the use of photonic crystals (or band-gap materials)
[7,8], exploits their band structure and diverging density of
states to enhance the coupling to guided photon modes. In the
framework of cavity-QED [9–11], such a band structure of
guided modes can also be engineered in an array of coupled
cavities [12,13].

A fundamental question for these systems as a platform
for applications is the understanding of how quantum emit-
ters interact with the modified vacuum. Spontaneous decay
processes near a continuum edge [14–16] are subject to the
influence of an atom-photon bound state [17,18], resulting in
fractional decay of the excited state population. Such bound
states and their effects have recently been explored in photonic
[2,19] and matter-wave platforms [20,21]. When the modified
vacuum possesses a true band structure with multiple edges,
another type of bound state is predicted to exist [12,13]. This
secondary bound state can lead to qualitatively new physics, in
that the dynamics now interpolates between Markovian decay
and fully coherent oscillations as in the cavity-QED limit.
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When there are multiple bound states, a situation addressed
in this work, their features are nontrivially influenced by the
vacuum structure and thus may deviate from the simple expo-
nential localization observed near a single edge [20]. As these
bound states are proposed for engineering long-range atom-
photon interactions [1,2,19,22], deviations from the predicted
behavior should be relevant to studies of photonic-band-gap
materials and waveguide QED. In the following, we present an
experimental study where we explore these questions in detail,
based on a full and independent control over the coupling-
to-bandwidth ratio and the excitation energy, as well as an
effectively infinite Purcell factor with negligible coupling to
modes other than those of interest.

These studies are made possible by a recently developed
experimental platform [20,23] that implements an array of
matter-wave quantum emitters in an optical lattice [24] in
which ultracold atoms take the role of single photons in
the analogous photonic context. While the free-space emis-
sion of matter waves [20] is equivalent to the emission of
photons near a zero-momentum band edge, we now create
a structured vacuum for matter-wave emission in full anal-
ogy to that provided by a photonic crystal using an optical
lattice.

II. IMPLEMENTATION

Our experimental scheme, illustrated in Fig. 1(a) consists
of three elements. First, we create a system of isolated lattice
tubes confining ultracold, optically trapped 87Rb atoms in
two relevant hyperfine ground states |r〉 = |F = 1, mF = −1〉
and |b〉 = |2, 0〉 via a deep 2D optical lattice at 1064 nm.
The lattice tubes act as 1D waveguides in which the atoms
can freely propagate (for sufficiently short times τ � τz =
2π/ωz ≈ 10 ms) along the tube axis. Second, we create an
array of quantum emitters and the structured vacuum by ap-
plying an additional state-dependent lattice along the axis
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FIG. 1. (a) Experimental scheme. 87Rb atoms in two hyperfine ground states |r〉 (red) and |b〉 (blue) are confined in state-independent 1D
lattice tubes. A state-dependent longitudinal lattice provides strong confinement for |r〉 (sr = 20) and weak confinement for |b〉 (sb ≈ 2.5);
a coupling between |r〉 and |b〉 (strength �, detuning �) is applied. Each (un)populated |r〉 well acts as a quantum emitter (states |g〉, |e〉,
excitation energy h̄�) coupled to the band structure of the shallow lattice. (b) Band structure εn,q relevant for the emission of matter waves and
relative strength of the vacuum coupling γn,q(ε) for sb = 2.5 and sr = 20. (c) Measured quasimomentum distribution versus emission energy
h̄�, as seen with absorption imaging after band mapping and 14 ms time of flight, and averaged over at least three runs. The lattice parameters
are as in (b); the coupling is applied with strength �/2π = 1.02(3) kHz for a duration τ = 400 μs. The zoom in is taken with a smaller step
size of 0.1Er , and an average over at least four runs for each quasimomentum distribution, and the calculated band structure is shown (white,
dashed). (d) Theoretically computed |Bq(τ )|2, blurred by a Gaussian of width σE = 0.1Er in energy and σq = 0.15k in quasimomentum for
comparison with the experimental data of (c) (see Appendix B).

of each tube with depths sr = 20 and sb � sr (in units of
Er = (h̄k)2/2m, where m is the atomic mass, and k = 2π/λ

with λ the lattice wavelength); this lattice tightly confines |r〉
atoms in the harmonic oscillator ground state |ψe〉 of each well
(with size � λ), while it provides a tunable band structure
for |b〉. Finally, we implement a coupling between |r〉 and |b〉
states by applying an oscillatory microwave field with strength
� and detuning � from the lattice-shifted |r〉 ↔ |b〉 resonance
at 6.8 GHz, thereby inducing transitions between |r〉 in a well
and |b〉 in a continuum of momentum modes. As a result,
each lattice well acts as a quantum emitter of a |b〉 atom with
an excitation energy h̄� and effective vacuum coupling ∝ �,
where a populated lattice well takes on the role of the emitter’s
excited state |e〉 and an unpopulated well plays the role of its
ground state |g〉. Our experiments start with a sparsely and
incoherently populated lattice (filling fraction � 0.5), so that
a majority of the quantum emitters are in the ground state (for
details, see Appendix A).

The dynamics of a quantum emitter coupled to the
band structure εn,q of the shallow lattice (with band
index n and quasimomentum q ∈ [−k, k]) is then de-
scribed by the Weisskopf-Wigner-type Hamiltonian Ĥ =∑

n,q h̄gn,qei�n,qt |g〉〈e|b̂†
n,q + H.c., where �n,q = � − εn,q/h̄

is the effective detuning of the emitter from the Bloch
state |n, q〉 = b̂†

n,q|0〉, and the effective vacuum coupling
gn,q = γn,q�/2 contains the Franck-Condon overlap γn,q =
〈n, q|ψe〉.

While the free-space case sb = 0 [20] corresponds to opti-
cal emission in the vicinity of a photonic band edge, a band
structure featuring multiple such edges [25] as in a photonic
crystal or a coupled-cavity array can readily be implemented
by tuning sb via λ. For our measurements, we generally choose
sb = 2.5 (at λ = 790.4 nm) for which the width of the ground
band is ε1,k − ε1,0 = 0.5 Er ≈ h × 1.8 kHz. The band struc-
ture and corresponding couplings for these parameters are
illustrated in Fig. 1(b).

III. BLOCH-WAVE EMISSION SPECTRUM

To access effects of the band structure, we first measure the
momentum distribution of the emitted |b〉 atoms as a function
of the excitation energy h̄�. For this purpose, we apply a
rectangular microwave pulse of duration τ = 400 μs and Rabi
frequency � = 2π × 1 kHz, which is then followed by a
500 μs-long ramp down of all three lattices for the purpose of
band mapping. The emitted |b〉 atoms are then detected after
time-of-flight using state-selective absorption imaging. The
measured quasimomentum distribution, shown in Fig. 1(c),
is very different from the parabolic shape seen for free-space
emission [20], and clearly reveals the presence of a gapped
spectrum. In addition, the emission into the ground band is
seen to be much stronger than that into the first and higher
bands. This suppression can be explained by the structure of
the vacuum coupling gn,q, which for even-n bands and sb > 0
is reduced due to the approximate odd parity of the relevant
Bloch states (as opposed to the case sb < 0; cf. Appendix A); a
further suppression for higher n is due to the finite momentum
width of |ψe〉 and the decrease in the density of states. As a
result, our system is closely modeled by a single-band picture
in which all the dynamics is induced by coupling to the ground
band. For our parameters, the band is approximately sinu-
soidal, ε(q) = −h̄ω̄ cos(qπ/k) + h̄ω̄ [denoting ε(q) ≡ ε1,q,
and h̄ω̄ ≡ (ε1,k − ε1,0)/2 = 0.25Er] and the vacuum coupling
g = 〈g1,q〉q ≈ 0.39� is approximately constant over the band.

IV. BAND DECAY

The dynamics inside the ground band depends on the rel-
ative strength of the vacuum coupling and the bandwidth.
With the excitation energy tuned to the center of the band, we
monitor the time evolution of the excited-state amplitude for
different ratios g/ω̄; the results are shown in Fig. 2(a). Three
regimes can be distinguished: irreversible decay for g/ω̄ � 1
[weak coupling, Fig. 2(a) (1)], damped oscillatory decay for
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FIG. 2. (a) Decay dynamics at the band center � = ω̄ with (1)
weak coupling with � = 2π × 0.4 kHz (g/ω̄ = 0.18), (2, 3) inter-
mediate coupling with � = 2π × (1.0, 2.3) kHz (g/ω̄ = 0.43, 1.0),
and (4) strong coupling for a reduced bandwidth (0.1Er) with � =
2π × 2.2 kHz (g/ω̄ = 4.9). The dots are data taken for different
hold times, averaged over at least three runs each, with error bars
representing the standard error of the mean. The gray lines represent
the predictions of the isolated-emitter model, with its estimated range
of applicability indicated in bold. (b) Schematic illustrating the com-
petition between coupling g and tunneling ∼ω̄ in the shallow lattice
(see text). (c) Emission spectrum for g/ω̄ = 0.43 and τ = 400 μs,
obtained from the distributions in Fig. 1(c) by summing over quasi-
momenta. The dashed curve is the prediction of the single-emitter
model, and the solid curve is the same prediction reduced by 40%.

g/ω̄ ∼ 1 [intermediate coupling, Fig. 2(a) (2, 3)], and un-
damped oscillations for g/ω̄ � 1 [strong coupling, Fig. 2(a)
(4)].

For an isolated emitter, a Wannier picture provides a qual-
itative description of the coupling dependence in terms of the
quantum Zeno effect [26,27] [cf. Fig. 2(b)]: here the atom co-
herently cycles with Rabi frequency 2g between the strongly
confining emitter well and a corresponding |b〉 well of the
shallow lattice, where it is subject to tunnel escape at a rate
∼ω̄ that damps the coherent local evolution, with exponential
decay for weak coupling g/ω̄ � 1. Switching back to the band
picture, in this case the band edges are both far away in energy
such that the situation becomes analogous to spontaneous free
space decay [28]. On the other hand, for strong coupling
the bandwidth becomes negligible, and the cavity-QED limit
with an effectively single-mode vacuum is recovered (sim-
ilarly, and independent of the coupling strength, the initial
dynamics is Rabi-like for times t � ω̄−1 = 0.17 ms for which
the associated Heisenberg uncertainty in energy exceeds the
bandwidth).1

While an analytical treatment of the dynamics of a
multiple-emitter system is beyond the scope of this work,
an isolated emitter is described by the interaction-picture
Schrödinger equation for Ĥ with the ansatz |ψ (t )〉 =

1Similar behavior has been observed in quantum tunneling experi-
ments [32].

A(t )|e; 0〉 + ∑
q Bq(t )|g; 1, q〉, where A(t ) is the excitation

amplitude [with A(0) = 1] and Bq(t ) the spectral amplitude of
the matter-wave radiation field. The analog scenario for pho-
tonic crystals has previously been analyzed [12,13,29], yield-
ing A(t ) = i

2π

∫ ∞
−∞ dωG(ω + i0+)ei(�−ω)t , where G(ω) =

1/[ω − � − �(ω)/h̄] is the Green’s function containing the
self-energy �(ω) = −ih̄g2/

√
ω(2ω̄ − ω), which captures the

back-action of the band on the emitter. From this result for
A(t ), it is then straightforward in our case to obtain the spectral
amplitudes Bq(t ) = −ig

∫ t
0 dτei(ε(q)/h̄−�)τ A(τ ) of the emitted

matter waves through numerical integration (cf. Appendix B).
In the following, we will compare the predictions of this
simplified model to observed decay and emission behavior.

The model’s predictions for A(t ) are shown in Fig. 2(a)
alongside the data for decay in the band center. There is
indeed good agreement before significant population (>10%)
leaves the Wigner-Seitz cell of the emitter considered (cf. Ap-
pendix B), validating the applicability of the isolated-emitter
model in this regime. More generally, the agreement between
the observed dynamics and the model degrades as time pro-
gresses (with the exception of g/ω̄ � 1, where the emitters
are effectively decoupled). The observed deviations such as
an offset and enhanced oscillations are qualitatively simi-
lar to those already seen in free-space emission [20] which
arise from coupling to neighboring, initially empty emitters.
Other possible effects, arising from the weak longitudinal
confinement or collisional interactions, are expected to be less
significant on the observed timescales.

To test the model’s predictions for the dependence on exci-
tation energy, we compute |Bq(τ = 400 μs)|2 as a function of
h̄�, with q limited to the first Brillouin zone, and compare
it to the measured ground-band momentum distribution of
Fig. 1(c). With a small amount of blurring due to magnetic-
field jitter and the finite size of the sample, the results of
the calculation, shown in Fig. 1(d) closely resemble the mo-
mentum features of the data. Moreover, the model cleanly
reproduces the integrated spectrum [cf. Fig. 2(c)] up to an
overall scaling factor of order unity consistent with the time
evolution.

V. FROM DRESSED TO BOUND STATES

The Rabi oscillations for g/ω̄ � 1 involve emitted |b〉
atoms in the Wannier functions of the shallow lattice, featur-
ing equally strong contributions from all Bloch waves of the
band. The Wannier functions are fixed by the lattice poten-
tial and together with |ψe〉 form dressed states as in cavity
QED. This picture breaks down for g/ω̄ ∼ 1 when the band is
spectrally resolved such that certain quasimomenta contribute
more strongly than others, with the consequence that the
spatial shape of the emitted radiation becomes dependent on
both g and �. In generalization of the free-space case [23] the
two dressed states are replaced by two bound states in which
the |b〉 atoms form an evanescent wave around the emitter
(taking the role of the Wannier function), which is given by
ψ±

B (z) = ∫ k
−k dq φ±

B (q)〈z|1, q〉, with quasimomentum proba-
bility amplitudes φ±

B (q) = (h̄g/2k)/[h̄ω±
B − ε(q)] (for details,

see Appendix B). The bound-state energies h̄ω±
B , which are

obtained as real-valued poles in G(ω) and vary with �, g, and
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FIG. 3. Structure of the bound states at h̄�+ = 1.0(1)Er

and h̄�− = −0.5(1)Er above (a), (b) the upper and below
(c), (d) the lower band edge. (a) Calculated quasimomentum
distribution |φ±

B (q)|2 of the bound state above the band at
h̄ω+

B = 4h̄ω̄ ≈ h × 3.9(3) kHz and corresponding computed
position space distribution |ψ±(z)|2, where al = λ/2 is the
lattice spacing. (b) Observed quasimomentum distribution
from time-of-flight following an adiabatic ramp on
(2 ms long) of the coupling up to g/ω̄ = 0.43. Each data
point is the average of more than 30 individual repetitions. The
density plot shows the average time-of-flight picture. The gray
curve is the quasimomentum distribution from (a) convolved
with a Gaussian blur (σq = 0.15k) to accommodate finite size
effects and imaging resolution. (c) Quasimomentum and position
distributions as in (a) for the bound state below the band at
h̄ω−

B = −2h̄ω̄ ≈ h × −1.9(3) kHz; the latter exhibits a small plateau
for our parameters. (d) Observed quasimomentum distribution, taken
as in (b). The gray curve is blurred with the same Gaussian as in (b).

ω̄, are outside of the band and converge to the band edges
from above and below for decreasing g/ω̄. In addition to the
real poles, which lead to Rabi-like oscillations with reduced
amplitude, G(ω) supports other singularities [29] which are
responsible for Markovian and non-Markovian decay of the
emitter population as the ratio g/ω̄ is varied.

In order to compare with the model, we directly access
two representative bound states located on opposite sides of
the band, h̄�± = (1 ± 3)h̄ω̄, and weak coupling |g/�±| � 1
(such that ω±

B ≈ �±). To avoid nonadiabatic emission effects
[20], we prepare these states by slowly ramping on the cou-
pling g using a sinusoidal ramp. The ramp duration of 2 ms
is long with respect to the bound state frequencies ω±

B , and
no dynamics are observed for a variable hold time between 0
and 0.5 ms following the ramp, confirming that the resulting
state is stationary. The resulting quasimomentum distributions
are observed in time-of-flight after a band map of all optical
potentials as before. The observed distributions [cf. Figs. 3(b)

and 3(d)] match qualitatively the predictions for |φ±
B (q)|2

within the range −2k to 2k, with quantitative agreement if
we allow for a blurring of 0.15k due to finite size effects
(system size ∼10 μm) and imaging resolution. We note that
the two states are copies of each other displaced by half of the
Brillouin zone, φ±

B (q + k) = φ∓
B (q).

The spatial profile of the lower bound state (ψ−
B ) is similar

to that found below a continuum with a single edge [20]
and the form usually considered in the literature (albeit with
quasimomentum cutoffs at ±k that lead to a slight modifi-
cation of its exponential decay [17]). In contrast, the strong
contributions from q = ±k in the upper bound state (ψ+

B )
lead to strong deviations from exponential localization, with
strong modulations at the lattice period featuring the nodes of
a standing wave.

VI. CONCLUSIONS

In this work, we have shown that decay in a band presents
new features not present in free-space matter-wave emission.
In particular, fractional decay changes its character to longer-
time oscillations when a second bound state is present. In the
context of open quantum systems, these oscillations represent
a partial retrieval of information lost to the environment at
well-defined times, which is not realizable with only one
bound state. These bound states also provide insight into the
corresponding states in photonic band-gap materials, where
our results might be relevant for the engineering of bound-
state-mediated long-range interactions [2] as they highlight
the importance of the positioning of the quantum emitter
with respect to a photonic crystal, where long-range couplings
between emitters may be susceptible to small displacements
on the scale of the lattice period. The accessibility of higher
bands and tunable geometries will provide flexibility for stud-
ies of effective spin models, analogs of chiral emission, and
collective emission phenomena [24,30,31].

ACKNOWLEDGMENTS

We thank Y. Kim and M. G. Cohen for discussions and a
critical reading of the manuscript. This work was supported by
NSF (Grants No. PHY-1607633 and No. PHY-1912546). M.S.
was supported by a GAANN fellowship from the U.S. Depart-
ment of Education, and A.L. received support partially from a
Spain-US Fulbright grant co-sponsored by the Ramón Areces
Foundation and partially from SUNY Center for Quantum
Information Science on Long Island.

APPENDIX A: EXPERIMENTAL PROCEDURES

Sample preparation: The experiment begins by creating an
optically trapped Bose-Einstein condensate [33]. In order to
minimize gravitational sag, the horizontal, state-independent
lattices are first adiabatically ramped up in 80 ms followed by
the vertical state-dependent lattice (90 ms) to final depths of
40Er,1064nm, 40Er,1064nm, and 20Er,790.41nm so that the atomic
cloud sits at approximately the trap minimum potential, with
a residual confinement along the z direction of ωz ≈ 2π ×
100 Hz. Here Er,λ is the recoil energy of the lattice. This
procedure creates an atomic sample deep within the Mott
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regime. With the atoms loaded into the lattice, a variable
fraction f is then transferred, at a bias field of 5 G, to an
intermediate |F = 2, mF = 1〉 state using a two-photon mi-
crowave and radio-frequency pulse of about 2 ms duration.
The transferred atoms are removed using resonant light on
the D2 cycling transition (F = 2 → F ′ = 3). After the pulse
sequence (in which f is adjusted between 0.6 and 0.85 to
compensate for differing initial atom number), the remaining
sample has about 2.7(3) × 104|r〉 atoms with an average site
occupation of 〈ni〉 � 0.5 in the tubes.

State-dependent lattice and atom detection: Our experi-
mental techniques follow that of our previous work [20]. In
brief, we generate the state-dependent potential using σ− light
tuned to λ = 790.4 nm, between the D1 and D2 transitions of
87Rb. We detect the atoms after a 500 μs-long linear ramp-
off of all optical lattice potentials to perform a band-map
operation followed by 14 ms of time-of-flight (ToF) expan-
sion. During ToF, we apply Stern-Gerlach separation using a
magnetic field gradient in order to spatially separate hyperfine
states of different magnetic moment. We then perform state-
selective absorption imaging in order to resolve all hyperfine
states in each ground state manifold individually (used for
magnetometry [34]). Images are analyzed for data extraction
after using a principal component analysis routine to remove
residual fringes in the images.

Determining the resonance condition: The resonance con-
dition � = 0 is defined with respect to the transition between
the band minimum εn=1,q=0 and the harmonic-oscillator
ground state in the matter-wave emitter potential (with a
residual bandwidth of 0.01 Er). We use lattice transfer spec-
troscopy [35] to determine the resonance condition. An
optically trapped BEC of |r〉 atoms is first transferred into the
|b〉 state, after which the state-dependent lattice potential is
ramped on slowly. Microwave pulses of duration τ = 400 μs
are then applied at a fixed strength � = 2π × 1.0 kHz and
variable frequency to transfer maximally 30% of population
into the |r〉 state. The � = 0 frequency for use in the ex-
periment is obtained from a fit of a Rabi spectrum to the
data. Systematic residual mean-field shifts are estimated to
be between 150 and 270 Hz for all initial atom numbers
used, based on a direct simulation of the 1D time-dependent
Gross-Pitaevskii equation and have been included in the spec-
trum of Fig. 2(c). The resonance condition (which depends on
both optical and magnetic fields) is stabilized using a posts-
election magnetometry technique, yielding an uncertainty of
σE ≈ h × 350 Hz ≈ 0.1Er [20,34].

Higher-band contributions: The observed quasimomentum
distributions show a small (�20%) population of atoms at
higher quasimomenta (q ≈ 2.5k). This can be attributed to a
small contamination by the first excited harmonic-oscillator
level for |r〉 at the beginning of the measurement which is
coupled to the first excited band for the |b〉 atoms due to a
non-vanishing Franck-Condon overlap. These atoms are in a
different region of quasimomentum space from the evanescent
waves in the experimental data.

Positioning of the emitters: In the experiments in the
main text, the commensurability of the emitter array with
the shallow lattice creating the band structure guarantees that
the coupling is uniform across the sample. Furthermore, it
is possible to realize the case sb < 0 by shifting the lattice

FIG. 4. (a) Franck-Condon factor γn,q and observed emission
profile (b) for sb = −2.6 at λ = 789.8 nm, with all other parameters
as in Fig. 1(c). The strongest emission signal occurs in the first
excited band; the relatively strong percentage of atoms within the
first band gap results from the strong coupling to the first excited
band, giving rise to non-Markovian emission in the band gap.

wavelength in the opposite direction from the tune-out point.
Physically, this corresponds to shifting the emitter lattice with
respect to the shallow lattice by half of a lattice spacing, align-
ing the emitters with the unit cell boundaries. This results in
Franck-Condon factors that are appreciable for excited bands
n � 2 [cf. Fig. 4(a)] and in observed emission profiles with
appreciable contributions from both the ground and first exited
bands [cf. Fig. 4(b)].

APPENDIX B: THEORETICAL CONSIDERATIONS

Time evolution: The time evolution of the excited
emitter population is determined by solving A(t ) =
(i/2π )

∫ ∞
−∞ dωG(ω + i0+)ei(�−ω)t using the techniques

of complex analysis. As demonstrated in Ref. [29] (see also
Refs. [12,13]), there are three kinds of singularities in G(ω)
which contribute: stable poles corresponding to bound states
outside the band, an unstable pole inside the band, and an
incoherent loss due to branch cuts at the band edges. The
equations of motion can then be solved numerically for any
desired parameters by solving for the poles with their residues
and numerically integrating along the branch cuts.

Numerical computation of bound states: By using the
method of Laplace transforms and assuming a stable bound-
state pole, we can find the composition of the bound state.
Specifically, using the same steps as in Ref. [23] [cf.
Eqs. (37)–(38) and (40)–(46) therein], one finds

|�±
B 〉 = N

[
|e; 0〉 + g

2k

∫ k

−k
dq

|g; 1, q〉
ω±

B − ε(q)/h̄

]
, (B1)

with N a normalization constant. In the limit of strong cou-
pling g/ω̄ � 1, the second term reduces effectively to a
ground state emitter and a Wannier function in the shallow
lattice |g; wb〉 commensurate with the position of the emitter,
with ω±

B = ±g dominating the integral. Thus, we see that
|�±

B 〉 = N (|e; 0〉 ± |g; wb〉) maps to the dressed states of the
Jaynes-Cummings model in this limit.

In order to learn about the spatial shape of the emit-
ted radiation component, we compute numerically (by exact
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FIG. 5. Computed |Bq(t )|2 for −k � q � k. The single-band
model predicts identically zero contribution outside of the first
Brillouin zone.

diagonalization) the Bloch waves, ψq(z), corresponding to
the band structure of interest with small quasimomentum
spacing (100 steps across the Brillouin zone) and add
the results according to the defining equation ψ±

B (z) =
g
∫ k
−k

dq
2k ψq(z)/[ω±

B − ε(q)/h̄].
Theoretical computation of Bq(t ): In order to cal-

culate |Bq(t )|2 for t = 400 μs, we integrate Bq(t ) =
−ig

∫ t
0 dτei(ε(q)/h̄−�)τ A(τ ), or after swapping the order of

integrations,

Bq(t ) = ig

2π

∫ ∞

−∞
dωG(ω + i0+)

ei(ε(q)/h̄−ω)t − 1

ω + i0+ − ε(q)/h̄
, (B2)

for the first Brillouin zone, and set |Bq(t )|2 equal to zero
outside this zone; cf. Fig. 5. This reflects the band-mapping
procedure arranging the quasimomenta in an extended-zone
scheme and our model having only one band. In order to
make a comparison with the experimental data of Fig. 1(c) we
apply a Gaussian blur of σE = 0.1Er in the energy axis and
σq = 0.15k in the momentum axis to account for magnetic
field and finite size uncertainty.

Just as in the case of A(t ), one can apply the residue
theorem in (B2) to split the emission into a part due to
stable poles (bound states) and a decaying part (unbounded
emission), Bq(t ) = BB

q (t ) + Bde
q (t ). The decaying part present

at the nth Wigner-Seitz cell Bde
n (t ) = ∫ k

−k
dq
2k Bde

q (t ) cos(nπq)
allows estimating the influence of neighboring emitters in the
dynamics. More specifically, they start to play a role when the
unbounded emission outside the original Wigner-Seitz cell is
about 10% (

∑
n �=0 |Bde

n (t )|2 � 0.1).

[1] J. I. Cirac and H. J. Kimble, Quantum optics, what next?, Nat.
Photonics 11, 18 (2017).

[2] J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E.
Chang, and H. J. Kimble, Atom-atom interactions around the
band edge of a photonic crystal waveguide, Proc. Nat. Acad.
Sci. USA 113, 10507 (2016).

[3] D. Roy, C. M. Wilson, and O. Firstenberg, Colloquium:
Strongly interacting photons in one-dimensional continuum,
Rev. Mod. Phys. 89, 021001 (2017).

[4] J. S. Douglas, H. Habibian, C. L. Hung, A. V. Gorshkov, H. J.
Kimble, and D. E. Chang, Quantum many-body models with
cold atoms coupled to photonic crystals, Nat. Photonics 9, 326
(2015).

[5] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung,
and H. J. Kimble, Colloquium: Quantum matter built from
nanoscopic lattices of atoms and photons, Rev. Mod. Phys. 90,
031002 (2018).

[6] I. Carusotto, A. A. Houck, A. J. Kollár, P. Roushan, D. I.
Schuster, and J. Simon, Photonic materials in circuit quantum
electrodynamics, Nat. Phys. 16, 268 (2020).

[7] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State
Physics and Electronics, Phys. Rev. Lett. 58, 2059 (1987).

[8] S. John, Strong Localization of Photons in Certain Disordered
Dielectric Superlattices, Phys. Rev. Lett. 58, 2486 (1987).

[9] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D.
Boozer, and H. J. Kimble, Trapped atoms in cavity QED: Cou-
pling quantized light and matter, J. Phys. B 38, S551 (2005).

[10] H. Walther, B. T. Varcoe, B.-G. Englert, and T. Becker,
Cavity quantum electrodynamics, Rep. Prog. Phys. 69, 1325
(2006).

[11] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms,
Cavities, and Photons (Oxford University Press, Oxford, 2006).

[12] F. Lombardo, F. Ciccarello, and G. M. Palma, Photon localiza-
tion versus population trapping in a coupled-cavity array, Phys.
Rev. A 89, 053826 (2014).

[13] G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, Atom-field
dressed states in slow-light waveguide QED, Phys. Rev. A 93,
033833 (2016).

[14] K. Rzazewski, M. Lewenstein, and J. Eberly, Threshold effects
in strong-field photodetachment, J. Phys. B 15, L661 (1982).

[15] A. Kofman, G. Kurizki, and B. Sherman, Spontaneous and
induced atomic decay in photonic band structures, J. Mod. Opt.
41, 353 (1994).

[16] P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S.
Bay, Fundamental quantum optics in structured reservoirs, Rep.
Prog. Phys. 63, 455 (2000).

[17] V. P. Bykov, Spontaneous emission from a medium with a band
spectrum, Sov. J. Quant. Electron. 4, 861 (1975).

[18] S. John and J. Wang, Quantum Electrodynamics Near a Pho-
tonic Band Gap: Photon Bound States and Dressed Atoms,
Phys. Rev. Lett. 64, 2418 (1990).

[19] Y. Liu and A. A. Houck, Quantum electrodynamics near a
photonic bandgap, Nat. Phys. 13, 48 (2017).

[20] L. Krinner, M. Stewart, A. Pazmiño, J. Kwon, and D. Schneble,
Spontaneous emission of matter waves from a tunable open
quantum system, Nature (London) 559, 589 (2018).

[21] A. González Tudela and J. I. Cirac, Quantum optics without
photons, Nature (London) 559, 481 (2018).

[22] N. M. Sundaresan, R. Lundgren, G. Zhu, A. V. Gorshkov,
and A. A. Houck, Interacting Qubit-Photon Bound States with
Superconducting Circuits, Phys. Rev. X 9, 011021 (2019).

[23] M. Stewart, L. Krinner, A. Pazmiño, and D. Schneble, Analysis
of non-Markovian coupling of a lattice-trapped atom to free
space, Phys. Rev. A 95, 013626 (2017).

043307-6

https://doi.org/10.1038/nphoton.2016.259
https://doi.org/10.1073/pnas.1603788113
https://doi.org/10.1103/RevModPhys.89.021001
https://doi.org/10.1038/nphoton.2015.57
https://doi.org/10.1103/RevModPhys.90.031002
https://doi.org/10.1038/s41567-020-0815-y
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1088/0953-4075/38/9/007
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1103/PhysRevA.89.053826
https://doi.org/10.1103/PhysRevA.93.033833
https://doi.org/10.1088/0022-3700/15/18/004
https://doi.org/10.1080/09500349414550381
https://doi.org/10.1088/0034-4885/63/4/201
https://doi.org/10.1070/QE1975v004n07ABEH009654
https://doi.org/10.1103/PhysRevLett.64.2418
https://doi.org/10.1038/nphys3834
https://doi.org/10.1038/s41586-018-0348-z
https://doi.org/10.1038/d41586-018-05738-1
https://doi.org/10.1103/PhysRevX.9.011021
https://doi.org/10.1103/PhysRevA.95.013626


DYNAMICS OF MATTER-WAVE QUANTUM EMITTERS IN A … PHYSICAL REVIEW RESEARCH 2, 043307 (2020)

[24] I. de Vega, D. Porras, and J. I. Cirac, Matter-Wave Emission in
Optical Lattices: Single Particle and Collective Effects, Phys.
Rev. Lett. 101, 260404 (2008).

[25] O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein con-
densates in optical lattices, Rev. Mod. Phys. 78, 179 (2006).

[26] A. Peres, Zeno paradox in quantum theory, Am. J. Phys. 48,
931 (1980).

[27] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland,
Quantum Zeno effect, Phys. Rev. A 41, 2295 (1990).

[28] V. Weisskopf and E. Wigner, Berechnung der natürlichen Lin-
ienbreite auf Grund der Diracschen Lichttheorie, Z. Phys. 63,
54 (1930).

[29] A. González-Tudela and J. I. Cirac, Markovian and non-
Markovian dynamics of quantum emitters coupled to two-
dimensional structured reservoirs, Phys. Rev. A 96, 043811
(2017).

[30] A. González-Tudela and J. I. Cirac, Non-Markovian quantum
optics with three-dimensional state-dependent optical lattices,
Quantum 2, 97 (2018).

[31] A. González-Tudela and J. I. Cirac, Quantum Emitters
in Two-Dimensional Structured Reservoirs in the
Nonperturbative Regime, Phys. Rev. Lett. 119, 143602
(2017).

[32] S. R. Wilkinson, C. F. Bharucha, M. C. Fischer, K. W.
Madison, P. R. Morrow, Q. Niu, B. Sundaram, and
M. G. Raizen, Experimental evidence for non-exponential
decay in quantum tunneling, Nature (London) 387, 575
(1997).

[33] D. Pertot, D. Greif, S. Albert, B. Gadway, and D. Schneble,
Versatile transporter apparatus for experiments with optically
trapped Bose-Einstein condensates, J. Phys. B 42, 215305
(2009).

[34] L. Krinner, M. Stewart, A. Pazmiño, and D. Schneble, In-situ
magnetometry for experiments with atomic quantum gasses,
Rev. Sci. Instr. 89, 013108 (2018).

[35] J. Reeves, L. Krinner, M. Stewart, A. Pazmiño, and D.
Schneble, Nonadiabatic diffraction of matter waves, Phys. Rev.
A 92, 023628 (2015).

043307-7

https://doi.org/10.1103/PhysRevLett.101.260404
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1119/1.12204
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1007/BF01336768
https://doi.org/10.1103/PhysRevA.96.043811
https://doi.org/10.22331/q-2018-10-01-97
https://doi.org/10.1103/PhysRevLett.119.143602
https://doi.org/10.1038/42418
https://doi.org/10.1088/0953-4075/42/21/215305
https://doi.org/10.1063/1.5003646
https://doi.org/10.1103/PhysRevA.92.023628

