Diagnostic and prognostic value of ECG-predicted hypertension-mediated left ventricular hypertrophy using machine learning
Resumen: Objective: Four hypertension-mediated left ventricular hypertrophy (LVH) phenotypes have been reported using cardiac magnetic resonance (CMR): normal LV, LV remodelling, eccentric and concentric LVH, with varying prognostic implications. The electrocardiogram (ECG) is routinely used to detect LVH; however, its capacity to differentiate between LVH phenotypes is unknown. This study aimed to classify hypertension-mediated LVH from the ECG using machine learning and test for associations of ECG-predicted phenotypes with incident cardiovascular outcomes.
Methods: ECG biomarkers were extracted from the 12-lead ECG of 20 439 hypertensive patients in UK Biobank (UKB). Classification models integrating ECG and clinical variables were built using logistic regression, support vector machine (SVM), and random forest. The models were trained in 80% of the participants, and the remaining 20% formed the test set. External validation was sought in 877 hypertensive participants from the Study of Health in Pomerania (SHIP). In the UKB test set, we tested for associations between ECG-predicted LVH phenotypes and incident major adverse cardiovascular events (MACE) and heart failure.
Results: Among UKB participants 19 408 had normal LV, 758 LV remodelling, 181 eccentric and 92 concentric LVH. Classification performance of the three models was comparable in UKB. SVM (accuracy 0.79, sensitivity 0.59, specificity 0.87, AUC 0.69) was taken forward for external validation with similar results in SHIP. There was superior prediction of eccentric LVH in both cohorts. In the UKB test set, ECG-predicted eccentric LVH was associated with heart failure (hazard ratio 3.42, 95% CI 1.06–9.86).
Conclusion: ECG-based ML classifiers represent a potentially accessible screening strategy for the early detection of hypertension-mediated LVH phenotypes.

Idioma: Inglés
DOI: 10.1097/HJH.0000000000004034
Año: 2025
Publicado en: Journal of hypertension 43, 8 (2025), 1327-1338
ISSN: 0263-6352

Financiación: info:eu-repo/grantAgreement/ES/MICINN/RYC2021-031413-I
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-12-04-14:40:07)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Teoría de la Señal y Comunicaciones



 Registro creado el 2025-12-04, última modificación el 2025-12-04


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)