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a Dpto. de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, Spain
b Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Spain

A R T I C L E  I N F O

Keywords:
Approximate matching
Similarity hashing
Similarity digest algorithms
Hash lookup
Similarity search

A B S T R A C T

Efficient management and analysis of large volumes of digital data has emerged as a major challenge in the field 
of digital forensics. To quickly identify and analyze relevant artifacts within large datasets, we introduce 
APOTHEOSIS, an approximate similarity search system designed for scalability and efficiency. Our system in
tegrates approximate search techniques (which allow searching for a match on a close value) with Similarity 
Digest Algorithms (SDA; which capture common features between similar elements), using a space-saving radix 
tree and a graph-based hierarchical navigable small world structure to perform fast approximate nearest 
neighbor searches. We demonstrate the effectiveness and versatility of our system through two key case studies: 
first, in plagiarism detection, demonstrating the effectiveness of our system in identifying similar or duplicate 
documents within a large source code dataset; then, in memory artifact detection, showing its scalability and 
performance in processing large-scale forensic data collected from various versions of Microsoft Windows. Our 
comprehensive evaluation shows that APOTHEOSIS not only efficiently handles large datasets, but also provides 
a way to evaluate the performance of various SDA and their approximate similarity search in different forensic 
scenarios.

1. Introduction

The exponential growth of digital data and the proliferation of 
various digital devices (such as computers, smartphones, tablets, and 
Internet of Things devices, to name a few) have significantly increased 
the complexity of digital forensic investigations. Analysts often must 
examine large amounts of data in which every file, application, system 
log, and network packet could contain valuable evidence. Every single 
digital evidence (also called digital artifacts) may shed light on the na
ture, scope, and impact of a security incident (Johansen, 2022). Iden
tifying relevant information in this vast amount of data is, however, a 
time- and resource-intensive process.

The convergence of two distinct –yet deeply interconnected– tech
nologies, such as approximate search techniques and approximate sim
ilarity matching algorithms, can help in this process. Approximate 
search techniques identify very close matches and offer the potential to 
speed up the identification within large data sets, relaxing the constraint 
of finding an exact match. Similarly, approximate similarity matching 
algorithms provide the means to discern common features shared 

between similar artifacts. In this paper, we focus on approximate simi
larity matching algorithms that treat input (the artifacts) as a byte 
stream, process them without any interpretation of the data, and utilize 
an intermediate representation (i.e., a digest or fingerprint) to summarize 
the input. We define this kind of algorithms as similarity digest algorithms 
(SDA).1 SDA allows us to find items that are not necessarily the same, but 
simply similar in some way (Breitinger et al., 2014a).

However, the effectiveness of different SDA can vary significantly 
depending on the type of forensic data (Martín-Pérez, 2022). For 
instance, an SDA that performs well in detecting similarities in textual 
documents may not be as effective in analyzing binary executables or 
memory dumps. Therefore, there is a need for systems that can adapt 
their similarity search mechanisms based on the nature of the objects 
analyzed, ensuring effective detection and analysis across different types 
of digital artifacts.

In this paper, we present how APOTHEOSIS, an efficient approxi
mate search system, can address the problem of searching similarity 
digests across a wide range of digital artifacts (Huici et al., 2025). To 
achieve this goal, APOTHEOSIS leverages two data structures: a tree 
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data structure (in particular, a radix tree (Morrison, 1968)), which is 
employed for efficient hash lookup search; and a custom implementa
tion of Hierarchical Navigable Small World (HNSW) (Malkov and 
Yashunin, 2020), which is a graph-based approximate search method 
designed to provide fast, approximate nearest neighbor search in 
high-dimensional spaces. By integrating these frameworks with support 
for multiple SDA, our system enables fast and efficient approximate 
nearest neighbor searches on similarity digests, facilitating the rapid 
identification of related artifacts within large datasets. Furthermore, its 
extensible design enables forensic analysts to evaluate and compare the 
performance of different SDA and approximate search in various con
texts, helping to select the most appropriate algorithms for specific 
forensic tasks.

Our system is fully extensible and adaptable to a wide range of digital 
forensics problems, primarily acting as a tool for exact hash lookups and 
nearest neighbor searches. To demonstrate its versatility in different 
forensic contexts, we perform a comprehensive evaluation through two 
case studies:(i) we apply APOTHEOSIS with SDA such as ssdeep and 
TLSH to detect duplicate or plagiarized documents within a large source 
code dataset. We also compare APOTHEOSIS with other approximate 
similarity search techniques, specifically MinHash (Broder, 1997) with 
Locality-Sensitive Hashing (LSH) (Leskovec et al., 2020). We evaluate 
the search performance through standard metrics such as accuracy, 
recall, precision, and F1-score, demonstrating how our system can help 
evaluate the effectiveness of different SDA and approximate similarity 
searches in analyzing text-based artifacts; (ii) we adapt our system to 
handle a large dataset of memory artifacts collected from various 64-bit 
versions of Microsoft Windows, from Windows 7 onward. This case 
study allows us to evaluate the performance and scalability of different 
SDA in the context of binary data analysis, further showing how 
APOTHEOSIS can efficiently handle large datasets.

Our experiments demonstrate that APOTHEOSIS not only efficiently 
identifies similar artifacts, but also provides valuable insights into the 
performance of different SDA on various forensic tasks. We selected 
ssdeep and TLSH for the case studies to illustrate the versatility of our 
system in different forensic contexts, but it can easily incorporate other 
SDA depending on the specific needs of the analyst.

In summary, the contribution of this paper is three-fold: 

(i) We present APOTHEOSIS, a novel approximate similarity search 
system that uniquely combines a space-saving radix tree with a 
custom Hierarchical Navigable Small World (HNSW) graph 
implementation. This integration enables fast and scalable 
approximate nearest neighbor searches over similarity hashes, 
effectively addressing the challenge of efficiently managing and 
analyzing large-scale digital forensic datasets. We have released 
the source code of our system under the GNU/GPLv3 license 
(Huici et al., 2025) to encourage collaboration, further develop
ment, and integration into existing forensic workflows, 
advancing research and practice in the field.

(ii) Through our case studies, we illustrate the adaptability of 
APOTHEOSIS to various forensic problems, including text-based 
artifact analysis and binary data analysis, highlighting its flexi
bility in handling different types of digital artifacts. We demon
strate how our system can be used to evaluate and compare the 
performance of approximate similarity searches on different SDA, 
thus providing insights that help select the most effective algo
rithms for specific tasks.

(iii) We conduct a comprehensive evaluation of APOTHEOSIS, 
assessing its performance and scalability using a large dataset of 
approximate hashes comprising millions of records. Our results 
demonstrate that our system significantly improves the efficiency 
of similarity searches, maintaining low computational overhead.

The rest of this paper is as follows. Section 2 delves into the foun
dational concepts that underpin our work. Section 3 introduces the 

architecture of APOTHEOSIS and provides insights on its design and 
functionality. Section 4 presents the results of the comprehensive eval
uation of our system. In Section 5, we critically examine the threat 
model and the limitations of our approach. Section 6 discusses related 
work, and finally Section 7 concludes the paper and sets out future 
research.

2. Background

In this section, we present the basic concepts needed to understand 
our work. We begin by discussing similarity digest algorithms, which are 
essential to compare digital artifacts based on their content. We then 
describe efficient search methods used (in particular, radix trees and 
HNSW) that enable fast searching and matching within large data sets.

2.1. Similarity digest algorithms

Similarity Digest Algorithms (SDA) are a class of approximate matching 
algorithms (or approximate similarity matching algorithms) (Breitinger 
et al., 2014a) used to identify similarities between digital artifacts, such 
as files or memory dumps, even when they are not identical. SDA work 
by processing input data (treated as byte streams) without interpreting 
the underlying content. They generate an intermediate representation, 
often called a fingerprint, hash, or digest, that summarizes the essential 
features of the input.

Unlike traditional cryptographic hash functions (Katz and Lindell, 
2015) that produce completely different results even for minor changes 
in the input data (known as the avalanche effect (Webster and Tavares, 
1986)), SDA generate digests that reflect the similarity between inputs. 
This property allows forensic analysts to detect related or derived arti
facts, which is essential in scenarios such as malware detection, 
plagiarism detection, and identification of modified files, to name a few. 
Comparison between the digests produces a similarity score, which in
dicates the degree of similarity between the original artifacts.

According to Martín-Pérez et al. (2021), SDA can be classified based 
on their hash generation methods as: (i) Feature Sequence Hashing (FSH), 
which encompasses algorithms that split the input into features and map 
them to hash values. Similarity is assessed by comparing the feature 
sequences between different digests; An example of an FSH algorithm is 
ssdeep, which calculates context-triggered piecewise hashes and is 
effective at detecting embedded or concatenated files (Kornblum, 2006); 
(ii) Byte Sequence Existence (BSE), which comprises algorithms that focus 
on detecting the presence or similarity of specific byte sequences (often 
referred to as blocks) within the input data. The similarity score is then 
determined by comparing the number of shared sequences or blocks 
between digests; and (iii) Locality-Sensitive Hashing (LSH), which assigns 
similar input objects to the same bins (or buckets) with high probability. 
TLSH (Trend Micro Locality-Sensitive Hash) is an example of an LSH al
gorithm that is commonly used in malware detection.

In this particular work, we combine APOTHEOSIS with two well- 
known SDAs of different types, specifically: (i) ssdeep, an FSH algo
rithm proposed by Kornblum (2006), initially designed for spam 
detection but widely used in digital forensics. ssdeep generates hashes 
of variable length, up to 148 characters, and produces a similarity score 
between 0 and 100, where 0 indicates no similarity and 100 indicates 
identical inputs; (ii) TLSH, an LSH algorithm introduced by Oliver et al. 
(2013) and primarily used for malware detection. TLSH generates 
fixed-length hashes of 70 characters (excluding version flags) and cal
culates a similarity score based on the distance between digests. A score 
of 0 means that the entries are nearly identical; while higher scores 
indicate greater differences.

2.2. Efficient search methods

As volume of digital data grows exponentially, efficiently searching 
and identifying similar items within massive data sets becomes 
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increasingly difficult. To address this, our system combines two data 
structures that enable fast and scalable searches: the radix tree and the 
HNSW.

2.2.1. Radix tree
A radix tree, also known as radix trie, compressed trie, or compact 

prefix tree, is a space-saving data structure designed to store and search 
strings. It optimizes storage by merging nodes with common prefixes, 
effectively reducing redundancy and saving memory. Radix trees are 
particularly useful in applications that require fast retrieval of key–value 
pairs, such as dictionaries, IP routing tables (Morrison, 1968), and file 
systems, to name a few.

In a radix tree, each node represents a sequence of characters (a 
substring) of the keys being stored. Edges correspond to the substrings 
that differentiate the keys. This structure allows for efficient search 
operations by traversing the tree based on the characters of the query 
key, allowing one to quickly locate the desired key or determine its 
absence. When inserting a new key–value pair, the tree dynamically 
adjusts its structure, merging nodes with common prefixes (if necessary) 
to maintain its compact form. Deletion involves removing nodes as 
necessary, ensuring that the tree remains efficient and well-organized.

The computational complexity of search and insert operations in a 
radix tree is O (k), where k is the key length (Morrison, 1968). This 
means that the time to search for a key depends on the length of the key, 
not the number of keys stored, making radix trees highly efficient for 
exact matching in scenarios with a large number of strings.

2.2.2. Hierarchical navigable small world (HNSW)
A commonly employed method for searching for information is K- 

Nearest Neighbor Search (K-NNS), which operates under the assumption 
that a defined distance function exists between data elements. K-NNS 
aims to identify the K elements within a dataset that minimize the dis
tance to a specified query. A straightforward implementation of K-NNS 
entails computing distances between the query and every data element 
within the dataset, and then selecting those elements with the shortest 
distances. Unfortunately, the computational complexity of this naïve 
approach increases linearly with the number of elements, rendering it 
impractical for large-scale datasets (e.g., its time complexity in the 
worst-case is O (N), where N is the number of elements in the dataset). 
Consequently, there has been significant interest in developing rapid 
and scalable K-NNS algorithms.

Additionally, a number of challenges and problems arise when 
working with high-dimensional data. To overcome the curse of dimen
sionality in exact solutions for K-NNS (Yianilos, 1993), the concept of 
Approximate K-Nearest Neighbors Search (K-ANNS) was proposed, 

which seeks to find a set of K data points that are close to the query point 
but not necessarily the absolute closest. This relaxation can be useful in 
situations where finding the exact nearest neighbors is computationally 
expensive or impractical, such as in high-dimensional data spaces. There 
are several types of K-ANNS methods, such as probability-based (e.g., 
LSH (Leskovec et al., 2020)), tree-based (e.g., KD-Tree (Bentley, 1975)), 
or graph-based (e.g., NN-Descent (Dong et al., 2011)).

In this work, we use Hierarchical Navigable Small World (HNSW) 
(Malkov and Yashunin, 2020), a widely adopted graph-based K-ANNS 
method. HNSW is based on the Navigable Small World (NSW) (Watts 
and Strogatz, 1998), which constructs a proximity graph with short and 
long links, enabling rapid navigation through local and distant regions 
of the data space.

HNSW introduces a hierarchical structure by organizing data points 
into multiple layers. The base layer (or ground layer) contains all the 
elements (e.g., Layer 0 in Fig. 1), while higher layers house increasingly 
smaller subsets. This multi-layered graph balances efficiency and accu
racy, allowing searches to start from a sparse top layer and refine results 
as they descend to the denser base layer.

To gain a broader perspective on how our approach compares to 
existing methods, a detailed discussion of related work and alternative 
approaches is provided in Section 6. Below we explain in a simple and 
brief way how insertion and search work in HNSW.

Construction/insertion. When adding a new data point, the algorithm 
determines the maximum level for the node based on a probabilistic 
model. The new node connects to its K nearest neighbors in each layer up 
to its maximum level, establishing both short- and long-range connec
tions. This process maintains the small-world property of the graph, 
ensuring efficient navigability. To enforce this property, it may prune 
weaker connections and adjust levels in the graph structure. The con
struction complexity scales as O (Nlog N), while the insert complexity 
scales as O (log N), where N is the number of nodes (Malkov and 
Yashunin, 2020).

Search. To find approximate nearest neighbors for a query point, the 
search starts at the highest layer with the entry point node. The algo
rithm traverses the graph exploring the neighboring nodes that are 
closest to the query at that layer, moving progressively to lower layers. 
At each step, it maintains a candidate list of possible nearest neighbors, 
pruning nodes that are farther away. This hierarchical traversal allows 
the algorithm to efficiently reduce the search space and find approxi
mate nearest neighbors with a time complexity of O (log N) (Malkov and 
Yashunin, 2020).

Fig. 1. High-level overview of different use cases of APOTHEOSIS in digital forensics.
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3. APOTHEOSIS: system architecture

Efficient similarity detection in forensics requires a system capable of 
handling both exact and approximate searches across diverse datasets. 
APOTHEOSIS (APprOximaTe searcH systEm Of Similarity dIgeSts) 
achieves this by integrating a radix tree for fast exact hash lookups and a 
HNSW graph for scalable approximate nearest neighbor search. While 
these data structures are well established, their standard implementa
tions are primarily designed for continuous vector spaces, making them 
unsuitable for hash-based data and the similarity scores generated by 
SDAs. In this section, we describe how APOTHEOSIS adapts these 
structures to forensic similarity detection, enabling efficient retrieval of 
similar files across a variety of digital artifacts.

Fig. 1 shows a high-level overview of APOTHEOSIS and its potential 
use cases in digital forensics. The system is designed to be flexible and 
adaptable, allowing it to be used in various scenarios. By offering local 
deployment as a software library and remote access via a REST API, our 
system provides flexibility in how it can be integrated and used within 
different forensic analysis workflows.

As described earlier, APOTHEOSIS leverages two data structures that 
work together: a custom implementation of radix tree and HNSW. These 
data structures are combined with similarity digests to enable efficient 
approximate similarity searches. The APOTHEOSIS database stores all 
hashes and associated extended information for each hash. By keeping 
this information separate from the HNSW structure, we maintain a low 
space complexity for the HNSW graph.

The radix tree is used to store similarity digests and efficiently 
retrieve exact matches. Unlike hash tables, it allows for prefix-based 
searches, making it well suited for detecting partial or hierarchical 
similarities within structured forensic data. In parallel, HNSW is used for 
approximate similarity searches, offering a trade-off between speed and 
accuracy on large-scale datasets. However, existing HNSW imple
mentations assume continuous vector spaces and rely on distance met
rics such as Euclidean or cosine similarity. Since SDAs generate discrete 
hash values with algorithm-specific scoring functions, APOTHEOSIS 
adapts HNSW to use SDA-derived similarity scores instead of traditional 
distance-based metrics.

The system works in two phases: indexing and querying. During 
indexing, similarity digests are extracted using a modular SDA interface 
and stored in the radix tree for exact searches. At the same time, digests 
are inserted into the HNSW graph, where edges to similar nodes are 
created based on the calculated similarity scores. The query phase first 
checks the radix tree for exact matches. If no exact match is found, an 
approximate similarity search is performed using HNSW, retrieving the 
K nearest neighbors based on the SDA similarity scores. This combined 
approach ensures high-speed retrieval of similar files, improving 
forensic efficiency in identifying duplicate or related artifacts in diverse 
datasets, from textual documents to binary executables.

APOTHEOSIS supports two types of search methods for added flex
ibility: (i) Nearest Neighbors-Based Search: To identify the K most similar 
nodes to a given query node (where K ∈ N>0), the system performs an 
approximate nearest neighbor search starting at the highest layer of the 
HNSW graph from the entry point node. At each level, it evaluates 
neighboring nodes to find approximate closest matches based on the 
similarity score, refining the set of candidate nodes as it moves down 
through the layers. A priority queue is used to manage candidates effi
ciently, prioritizing nodes that are closer to the query. An improvement 
in our system, compared to the original HNSW algorithm (Malkov and 
Yashunin, 2020), is that it also considers the neighbors of the candidate 
nodes during the traversal; this increases the probability of finding 
nodes that are closer to the query, thus improving the quality of the 
approximation. Upon reaching the ground layer (level 0), the algorithm 
selects the final K approximate nearest neighbors; and (ii) Thresh
old-Based Search. In threshold-based searches, the system retrieves nodes 
whose similarity scores meet a specific condition relative to a threshold 
value t > 0. The search parameters include the query node (the hash for 

which similar nodes are searched), the threshold value t (a similarity 
score threshold), and the comparison mode (which specifies whether to 
retrieve nodes with similarity scores above or below the threshold t). 
The search process is similar to nearest neighbor search, but with key 
differences: at the base layer, only nodes that meet the threshold con
dition are added to the candidate queue. As before, it also analyzes the 
neighbors of the candidate nodes and selects those that are closest to the 
query and meet the given threshold criteria.

To optimize performance, a sensitivity analysis is recommended for 
key HNSW parameters since their settings play a crucial role in 
balancing accuracy, memory consumption, and computational over
head. The parameters M and Mmax, which control the graph connectiv
ity, affect recall by increasing the number of connections per node, 
thereby improving search accuracy at the expense of higher memory 
usage and longer search times. The parameter ef, which regulates the 
number of candidate nodes explored during queries and affects indexing 
efficiency, improves recall but results in longer query times. Further
more, Mmax0, which defines connectivity at the lowest layer, also in
fluence the overall system performance. Since these parameters directly 
affect search quality and resource constraints, a systematic sensitivity 
analysis is necessary to achieve an optimal balance tailored to the re
quirements of the forensic dataset.

Note that the combination of the radix tree and HNSW facilitates 
efficient processing of large data sets, while the system’s ability to 
support multiple SDAs ensures adaptability across diverse forensic ap
plications. By integrating exact and approximate search mechanisms 
within a modular framework, APOTHEOSIS offers a flexible and scalable 
solution for forensic similarity detection. The only requirement is that an 
intermediate representation (such as a similarity digests or hash) can be 
generated for the data items, allowing the system to work across a va
riety of digital artifacts.

APOTHEOSIS is open-source software released under the GNU/ 
GPLv3 license (Huici et al., 2025). The availability of the source code 
promotes transparency and encourages collaboration within the 
research community. The system’s REST API interface (Richardson and 
Ruby, 2007) simplifies deployment and integration into existing forensic 
analysis workflows, making it accessible to a broader audience.

4. Evaluation

To evaluate the effectiveness and applicability of APOTHEOSIS in 
the field of digital forensics, we designed a comprehensive evaluation 
considering document duplication detection and performance on large 
digital forensic datasets. Our goal is to demonstrate how our system can 
enhance forensic investigations by improving the speed of similarity 
searches on different types of digital artifacts.

We focus on the following research questions to guide our 
evaluation: 

RQ1.− How effective is APOTHEOSIS in detecting duplicate content or 
modified versions of original documents? (see § 4.1).
RQ2.− How does APOTHEOSIS perform in terms of performance and 
scalability when handling large digital forensic datasets? (see § 4.2).

To answer these questions, we first present the datasets constructed 
for the experiments, as well as the experimental setup and metrics used. 
We then answer each question.

Datasets, Metrics, and Experimental Setup. To address RQ1, we used 
the dataset provided in (Ljubovic and Pajic, 2020), which contains 
student assignment submissions from two introductory programming 
courses at the University of Sarajevo (Bosnia and Herzegovina). This 
dataset includes a total of 43,792 source code files, making it well suited 
for evaluating the effectiveness of APOTHEOSIS in detecting document 
duplication or forgery in forensic contexts.

Since the provided ground truths do not specify exact similarity 
scores or thresholds used to classify plagiarism, we generated a new 
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ground-truth dataset. We computed similarity scores for each pair of 
files using ssdeep and TLSH, following a cleaning process to exclude 
files too small to generate valid similarity digests.

For each SDA, we built an APOTHEOSIS model using the new 
ground-truth dataset and configured with M = ef = Mmax = Mmax0 = 16. 
Since APOTHEOSIS primarily operates as a hash lookup mechanism and 
an approximate nearest neighbor search tool for hash-based compari
sons, its effectiveness is closely tied to the performance of the underlying 
SDA.

To provide a comprehensive evaluation of our tool, we perform a 
comparative analysis with MinHash, a simply and widely recognized 
technique for estimating the Jaccard index (Broder, 1997; Leskovec 
et al., 2020), which quantifies the overlap between generated signa
tures. When combined with LSH, MinHash facilitates efficient K-ANNS 
by grouping similar items into the same hash buckets, significantly 
reducing computational complexity for large-scale similarity detection 
tasks. We refer to this combination as MinHashLSH. Following the same 
experimental procedures used with SDA, we generate MinHash signa
tures for each file using N = 72 permutations and compute the Jaccard 
similarities between all file pairs to establish the ground truth.

We evaluate the performance of these models using standard metrics: 
accuracy (Acc = TP+TN

TP+TN+FP+FN), precision (Prec = TP
TP+FP), recall (Rec =

TP
TP+FN), and F1-score (F1 = 2 ⋅ Prec⋅Rec

Prec+Rec). Here, TP represents the true 
positives (correctly detected plagiarism cases), FP denotes the false 
positives (incorrect plagiarism detections), TN refers to the true nega
tives (correctly identified non-plagiarized files), and FN corresponds to 
the false negatives (undetected plagiarism cases).

For RQ2, we used a dataset containing Windows system modules 
(shared libraries, kernel drivers, and system executables) collected from 
different versions of Microsoft Windows. Specifically, we considered 
Windows 7, Windows 8.1, Windows Server 2012 R2, Windows Server 
2016; Windows Server 2019 on 64 bit architectures. For each operating 
system, we created a virtual machine and perform a fresh installation of 
Windows to avoid the possible presence of malware or unwanted soft
ware. We then ran a program that iterated through the Windows system 
folder, loaded each system dynamic shared library into its process 
address space, and dumped the memory regions associated with the li
brary that contained binary code to disk at a page granularity, along 
with its associated metadata. To accomplish this, we relied on the 
Windows Memory Extractor tool (Fernández-Álvarez and Rodríguez, 
2022).

In Windows terminology, a module refers to the representation of the 
process memory space of an executable file or a shared library 
(Microsoft, 2021), while a page is a fixed-length block (typically 4096 
bytes) into which the virtual memory of a Windows process is divided 
(Microsoft Docs, 2018).

We stored the relationship of each module to its pages and computed 
similarity hashes using ssdeep and TLSH via the SUM software library 
(Martín-Pérez et al., 2021). Additionally, where possible, we applied the 
best unrelocation method to normalize the raw bytes (Martín-Pérez 
et al., 2021). As metadata, we retrieved the file version, original and 
internal filenames, product and company names, legal copyright, byte 
size, and base address. All of this information is stored in a SQL database 
(MySQL). In total, we collected approximately 4.2 million pages 
belonging to about 37,500 Windows system files.

We chose this dataset to evaluate the system’s performance and 
scalability in handling large forensic datasets because it closely reflects 
real-world scenarios. For instance, this dataset can be used to create a 
list of allowed SDA hashes, allowing the system to function as a detec
tion mechanism that quickly identifies known, non-malicious artifacts, 
thereby improving the efficiency of forensic investigations (Pryde et al., 
2018). Unlike the source code dataset used in RQ1, which only contain 
file names and similarity scores, here we retain more data for each node 
(such as module metadata, the operating system it originates from, and 
other binary file details). This dataset is more representative of actual 

systems used during forensic investigation, where multiple pieces of 
data can be associated with hashes. As metrics, we measured the average 
time taken to insert a new node, perform hash lookups, and retrieve 
K-NN of a given hash under different HNSW configurations. For this 
experiment, we consider only TLSH.

Let us recall that the dataset used for RQ2 serves only to illustrate the 
functionality of APOTHEOSIS, which is dataset independent and appli
cable to various forensic investigations.

All experiments were conducted on a personal computer with an 
Intel(R) Core(TM) i7-10700 processor @2.90 GHz. The system is 
equipped with 64 GB of DDR4 RAM clocked at 3200 MHz and runs the 
GNU/Linux Debian 11.7 operating system.

4.1. RQ1: effectiveness in document duplication detection

4.1.1. Performance metrics across varying thresholds
Fig. 2 presents the performance metrics for the APOTHEOSIS models 

with ssdeep and TLSH, as well as MinHashLSH, at different threshold 
values τ. Each threshold τ corresponds to a distinct ground-truth dataset, 
constructed by applying the corresponding threshold to the similarity 
scores on the new ground-truth dataset. In this way, each dataset con
tains only those file pairs that meet the specified threshold criteria, 
allowing us to evaluate how APOTHEOSIS performance metrics vary as 
the definition of “similar” or “duplicate” files becomes more or less 
strict. For the APOTHEOSIS models, we restrict the K-NN search oper
ation to a maximum of K = 8 neighbors.

With the APOTHEOSIS models, the precision remains consistently 
high at 1.00 for both SDA across all τ, indicating that it does not generate 
false positives, in contrast to MinHashLSH.

Recall, on the other hand, shows gradual improvement as the 
threshold increases, meaning that more true positives are detected with 
stricter similarity requirements. This results in a similar upward trend 
for the F1-score. Accuracy also increases with higher thresholds, 
reflecting better overall performance in correctly identifying plagiarized 
and non-plagiarized files as more stringent ground-truth datasets are 
used.

MinHashLSH shows an overall improvement in performance metrics 
as similarity thresholds increase, but exhibits significant fluctuations, 
especially a noticeable drop in recall at τ = 80. This non-linear behavior 
can be attributed to the probabilistic nature of these algorithms, where 
random permutations may not always optimally capture the true simi
larity between documents. Furthermore, we observe a key limitation in 
detecting exact matches (i.e., τ = 100). This limitation arises from how 

Fig. 2. Performance metrics comparison of APOTHEOSIS using ssdeep and 
TLSH, as well as MinHashLSH, at different thresholds τ.
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LSH splits MinHash signatures into bands, relying on partial overlaps to 
identify candidates. At τ = 100, all bands must match exactly, leaving no 
tolerance for discrepancies in the signatures. As a result, the probabi
listic nature of LSH makes it unsuitable for detecting exact matches.

These findings indicate that as thresholds increase, all the techniques 
become more effective at detecting duplications. Specifically, with 
APOTHEOSIS, while both SDA improve with higher thresholds, TLSH 
consistently achieves higher recall and F1 scores in all τ evaluated, 
making it a more effective choice to detect duplications in text-based 
documents.

4.1.2. Number of plagiarized cases in MinHash, ssdeep, and TLSH 
datasets

Fig. 3 presents the cumulative distribution function of the detected 
matches per file for the MinHash, ssdeep, and TLSH datasets, 
considering τ = 70. These datasets are the most inclusive in this 
experiment, as they also include all file pairs considered similar by the 
respective algorithms under stricter thresholds. Note that the number of 
files in each dataset, denoted by N, differs slightly. In the previous 
experiment, we imposed a maximum limit of K = 8 for the K-NN search 
operation in the APOTHEOSIS models. As shown in the figure, this 
limitation resulted in missed plagiarism cases, as the system does not 
fully capture additional cases beyond this limit. Specifically, there are 
cases where files have more than eight plagiarized matches, which are 
not fully represented in the results.

4.2. RQ2: performance and scalability on large datasets

We focus our evaluation on two key HNSW configuration parame
ters, M and ef, using N = 10000 and TLSH as SDA. The parameters Mmax 
and Mmax0 were varied while holding the other settings constant to 
evaluate their impact on insert, K-NN lookup, and approximate K-NN 
(AKNN) search operations. Due to space limitations, we present a se
lection of representative plots that capture key trends observed across all 
experiments (the full set of results are available upon request).

4.2.1. Varying M with ef = 16
Increasing M from 4 to 32 shows a steady increase in insertion time 

across all values of Mmax and Mmax0, where Mmax0 exerts a more signif
icant influence on performance. Similar trends are observed for both K- 
NN lookup and AKNN search operations. When M = 4, the insert oper
ation time remains low, even at high values of Mmax and Mmax0. The 
AKNN search times level off as M increases, indicating diminishing 
returns at higher values. The K-NN search operation exhibits signifi
cantly lower runtime compared to the other operations, which show 
similar performance. This difference is primarily attributed to the 
traversal of the radix tree, where the query hash is found directly, 

eliminating the need for additional approximate search operations. 
Fig. 4a, b, and 4c shows the insert, lookup, and AKNN operation results 
for M = ef = 16, illustrating the general trend across all values of Mmax 
and Mmax0.

4.2.2. Varying ef with M = 16
As expected, increasing ef results in longer times for the insert, K-NN 

lookup, and approximate K-NN search operations. Higher ef values 
improve the accuracy of the approximate search by exploring more 
candidate nodes, but they also increase the operation times due to the 
additional computation. In contrast, low ef values reduce search time 
but at the cost of accuracy. Fig. 5 shows the approximate K-NN search 
operation results for M = 16 and ef = {2, 6, 14}.

4.2.3. Impact of N on time complexity
We perform a sensitivity analysis and employ a curve-fitting 

approach to validate the time complexities explained in Section 2.2.2. 
In this analysis, we considered three different system configurations 
CFGi: (ef, M, Mmax, Mmax0) (specifically, CFG1: (4, 4, 16, 16), CFG2: (8, 8, 
16, 16), and CFG3: (8, 16, 16, 32)) with varying HNSW parameters while 
varying N from 100 to 50, 000, in increments of 100.

Fig. 6 shows, from left to right, the curve fitting plots for insert, hash 
lookup, and approximate K-NN search operations. All observed trends 
align with theoretical expectations. The insert and approximate K-NN 
search operations exhibit similar behaviors (in particular, a natural 
logarithmic growth trend as the dataset size increases), as they both 
involve traversing and updating the HNSW graph–although the 
approximate K-NN search requires some additional logic to complete. 
Among the configurations, CFG3 consistently outperforms the others, 
which can be attributed to its higher M and Mmax values. More con
nections lead to a more connected structure and faster convergence 
during these operations. The hash lookup operation, on the other hand, 
shows a nearly linear growth with a very low slope, indicating that it 
scales efficiently even with large datasets. In this case, CFG3 was the 
worst-performing configuration. This is because it has more connections 
per node, which requires traversing and accessing more nodes during 
the lookup search, resulting in longer times.

5. Threat model and limitations

This section first introduces the threat model of APOTHEOSIS and 
then describes its limitations.

5.1. Threat model

APOTHEOSIS detects similarities between any digital artifacts using 
SDA. An adversary who is aware of the SDAs in use could manipulate the 
data to evade detection or cause false positives, for instance by altering 
byte data to affect similarity scores or disrupting the digest generation 
and comparison processes (Martín-Pérez et al., 2021). To counter this, 
our system supports multiple SDA simultaneously, making it difficult for 
adversaries to exploit vulnerabilities in different algorithms.

The system’s REST API could be susceptible to denial of service at
tacks if an adversary overloads it with excessive requests or crafted in
puts that exhaust resources, leading to unavailability. Mitigation 
strategies include rate limiting, deploying content delivery networks, 
load balancing, and continuous monitoring of network and server 
performance.

An adversary could also attempt to extract sensitive data by querying 
approximate hashes through the REST API. However, APOTHEOSIS 
operates on hashes (intermediate representations of artifacts) and does 
not store original data. Users can control what metadata is returned in 
search results, minimizing the risk of unwanted data exposure.

Fig. 3. Cumulative distribution of similar matches per file for ssdeep and 
TLSH datasets considering τMinHashLSH = τssdeep = 70 and τTLSH = 30.
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5.2. Threats to validity

We discuss the validity of our work according to construct, internal, 
and external validity (Cruzes and ben Othmane, 2017).

5.2.1. Construct validity
We conducted controlled experiments using standard evaluation 

metrics to fine-tune and assess our system. This approach ensures that 
our experiments measure what is intended, reducing the likelihood of 
construct validity issues.

5.2.2. Internal validity
APOTHEOSIS relies on third-party libraries to calculate similarity 

digests and related comparison operations. Any vulnerabilities or bugs 
in these libraries could affect the effectiveness of the system or be 
exploited by adversaries.

APOTHEOSIS uses HNSW, which is a graph-based K-ANNS method. 
While HNSW is a popular choice, there are other K-ANNS methods. 
Wang et al. (2021) provide a recent survey of graph-based K-ANNS. A 
more profound and comprehensive evaluation of other K-ANNS methods 
can help determine which approach is best suited to each problem in the 
digital forensics domain.

Furthermore, while HNSW is effective, it may not always find the 
most accurate nearest neighbors due to its approximate nature. Post- 
processing techniques (such as re-ranking or re-scoring) can improve 
search precision and be effective to address this limitation.

HNSW can be very memory-intensive, which is a limitation for very 
large datasets. While compression techniques can reduce its memory 
usage, they introduce decompression overhead that can degrade 

performance.
Likewise, constructing the initial HNSW index can be computation

ally expensive and time-consuming, particularly for large datasets. In 
this sense, parallel indexing can speed up the construction of the initial 
HNSW index.

Finally, our experimental results show that the performance of 
HNSW can be sensitive to parameter settings. Fine-tuning these pa
rameters can be challenging and may require domain-specific knowl
edge. Therefore, systematic experimentation is necessary to fine-tune 
HNSW parameters for the specific dataset and query workload. In this 
sense, automated parameter optimization techniques can also be 
helpful.

5.2.3. External validity
APOTHEOSIS is specifically designed to work with similarity digests. 

Therefore, our system cannot be used if the similarity digests of the 
artifacts cannot be computed. For instance, ssdeep or TLSH cannot 
generate a digest under certain circumstances (Martín-Pérez et al., 
2021).

Our experiments were performed on well-structured datasets with 
known real-world data. In contrast, real-world forensic data often con
tains noise, adverse modifications, or missing artifacts, which can affect 
the performance of similarity search. Therefore, the generalizability of 
our findings to other datasets, SDA, or contexts may be limited. Future 
work should include a broader range of datasets and real-world cases to 
validate the applicability of APOTHEOSIS in diverse situations, 
including data from real-world forensic cases assess system robustness. 
Additionally, adversarial testing could help assess resilience against 
obfuscation techniques used to evade similarity detection.

Fig. 4. Runtime (in milliseconds) of the insert, K-NN lookup, and approximate K-NN (AKNN) search operations, with M = ef = 16 and N = 10000.

Fig. 5. Runtime (in milliseconds) of the approximate K-NN search operation varying ef ∈ {2, 6, 14}, with N = 10000 and M = 16.
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6. Related work

In this section, we review tools related to HNSW and previous 
research on the hash lookup problem and similarity search in digital 
forensics.

6.1. Tools related to HNSW

HNSW has gained much attention due to its efficiency in approxi
mate nearest neighbor searches. However, existing implementations of 
HNSW primarily support continuous metrics that rely on continuous 
vector components, they are not designed to handle deterministic and 
discrete hashes. As a result, these implementations are not well suited 
for our use case, requiring custom adaptation to effectively process 
discrete hash-based representations. The most prominent implementa
tion is HNSWlib (Malkov, 2018), a C++ library with Python3 bindings. 
While it allows customization of the distance function, it is limited to 
continuous metrics such as Euclidean distance, inner product, and 
cosine similarity. These metrics require continuous vector components, 
which are not suitable for hashes that are deterministic and discrete.

Similarly, Facebook AI Similarity Search (Johnson et al., 2019) is a 
C++ library with GPU acceleration support, but it also uses vector-based 
search similarity functions, making it incompatible with hash compar
isons. Other HNSW implementations in languages such as Java, Go, and 
Rust share the same focus on vector search. A recent Python imple
mentation (Bartholomy, 2023) also lacks support for hash-based data. In 
contrast, APOTHEOSIS is specifically designed for hash-based data. By 
accommodating hash similarity metrics, our system offers practitioners 
a specialized and flexible solution to efficiently identify and analyze any 
digital artifacts.

6.2. Hash lookup and similarity search

Several methods have been developed to improve the efficiency of 
hash lookup and similarity search, such as n-gram indexing, dynamic 
programming, and locality-sensitive hashing. Navarro et al. (2001) and 
Boytsov (2011) provide comprehensive reviews of these techniques, 
highlighting their applications in approximate string matching and DNA 
sequence analysis.

In digital forensics, the F2S2 (Winter et al., 2013) approach im
proves forensic similarity searches by indexing piecewise hash signa
tures, optimizing SDA such as ssdeep, and significantly reducing search 
times compared to brute-force approaches. Breitinger et al. (2014b)
proposed a divide-and-conquer approach using hierarchical Bloom fil
ters to reduce the search complexity to O (log N) on large datasets. Our 
system uses radix tree for hash lookup, achieving a search time 
complexity of O (k), where k is the hash length in bytes. This means that 
the search time complexity is independent of the number of elements 
stored, providing efficient performance even with large data sets. 
Furthermore, unlike our system, Bloom filters, while effective for 
large-scale set operations, can lead to false positives. In contrast, our 
approach does not produce false positives but may miss some true 
matches due to threshold-based filtering. Finally, Liebler et al. (2019)
evaluated three hash lookup strategies, measuring runtime and memory 
consumption, and offering insights for optimizing such systems.

Our work extends these approaches by providing a flexible platform 
capable of handling multiple SDA and supporting threshold-based 
searches and AKNNs. For instance, integrating F2S2 with our radix 
tree could enable fast localization of similar hashes when the SDA 
generates piecewise hashes, improving approximate K-NN search re
sults. This integration would require some engineering efforts in the 
insertion and search operations. Similarly, the hash search strategies 
evaluated by Liebler et al. (2019) could be incorporated as alternatives 
to our HNSW model.

Also worth mentioning is FRASHER (Göbel et al., 2022), an auto
mated framework for evaluating SDA performance through structured 

Fig. 6. Curve fitting for the insert, K-NN lookup, and approximate K-NN 
operation for dataset sizes N ∈ [100, 50000] for three different APOTHEOSIS 
configurations (CFGi: (ef, M, Mmax, Mmax0); specifically, CFG1: (4, 4, 16, 16), 
CFG2: (8, 8, 16, 16), and CFG3: (8, 16, 16, 32).
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test cases such as fragment detection and efficiency, among others. 
While this framework focuses on SDA benchmarking, APOTHEOSIS 
primarily focuses on providing methods for scalable, real-time approx
imate similarity search on large forensic datasets, with evaluation of 
SDA and its approximate similarity search on particular forensic prob
lems being a secondary benefit of our system. Thus, our system com
plements the benchmarking capabilities provided by FRASHER.

7. Conclusions and future work

In this paper, we presented APOTHEOSIS, a flexible and efficient 
system designed for hash lookup and approximate similarity searches on 
large forensic datasets using SDA. By combining a radix tree structure 
with a graph-based HNSW algorithm, APOTHEOSIS offers fast lookups 
and approximate nearest neighbor searches, optimized for hash-based 
data. Through two case studies (document duplication detection in a 
source code plagiarism dataset and system module analysis in memory 
forensics), we demonstrated its ability to efficiently identify similar ar
tifacts while achieving robust performance in terms of runtime and 
scalability. Furthermore, our system can also help evaluate the perfor
mance of different SDA and approximate similarity searches in partic
ular forensic tasks.

As future work, we plan to investigate and evaluate the accuracy and 
performance of alternative K-ANNS methods to potentially enhance our 
system. Furthermore, our ongoing efforts include to further optimize 
HNSW configuration parameters to improve overall performance. 
Similarly, we also plan to explore additional use cases and expand the 
scope of our system to other types of digital artifacts, such as image or 
video artifacts. Finally, we welcome collaboration with the digital fo
rensics community to gather feedback and insights and enhance the 
utility and relevance of our system.
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