Forensic Science International: Digital Investigation 53 (2025) 301930

Contents lists available at ScienceDirect

T
Digital

Investigation

Forensic Science International: Digital Investigation

ELSEVIER

journal homepage: www.elsevier.com/locate/fsidi
DFRWS USA 2025 - Selected Papers from the 25th Annual Digital Forensics Research Conference USA ' :.)
An extensible and scalable system for hash lookup and approximate

similarity search with similarity digest algorithms

Daniel Huici?, Ricardo J. Rodriguez ™", Eduardo Mena*

2 Dpto. de Informdtica e Ingenieria de Sistemas, Universidad de Zaragoza, Spain
Y Aragén Institute of Engineering Research (I3A), Universidad de Zaragoza, Spain

ARTICLE INFO ABSTRACT

Keywords:

Approximate matching
Similarity hashing
Similarity digest algorithms
Hash lookup

Similarity search

Efficient management and analysis of large volumes of digital data has emerged as a major challenge in the field
of digital forensics. To quickly identify and analyze relevant artifacts within large datasets, we introduce
APOTHEOSIS, an approximate similarity search system designed for scalability and efficiency. Our system in-
tegrates approximate search techniques (which allow searching for a match on a close value) with Similarity
Digest Algorithms (SDA; which capture common features between similar elements), using a space-saving radix
tree and a graph-based hierarchical navigable small world structure to perform fast approximate nearest
neighbor searches. We demonstrate the effectiveness and versatility of our system through two key case studies:
first, in plagiarism detection, demonstrating the effectiveness of our system in identifying similar or duplicate
documents within a large source code dataset; then, in memory artifact detection, showing its scalability and
performance in processing large-scale forensic data collected from various versions of Microsoft Windows. Our
comprehensive evaluation shows that APOTHEOSTIS not only efficiently handles large datasets, but also provides
a way to evaluate the performance of various SDA and their approximate similarity search in different forensic

scenarios.

1. Introduction

The exponential growth of digital data and the proliferation of
various digital devices (such as computers, smartphones, tablets, and
Internet of Things devices, to name a few) have significantly increased
the complexity of digital forensic investigations. Analysts often must
examine large amounts of data in which every file, application, system
log, and network packet could contain valuable evidence. Every single
digital evidence (also called digital artifacts) may shed light on the na-
ture, scope, and impact of a security incident (Johansen, 2022). Iden-
tifying relevant information in this vast amount of data is, however, a
time- and resource-intensive process.

The convergence of two distinct —yet deeply interconnected- tech-
nologies, such as approximate search techniques and approximate sim-
ilarity matching algorithms, can help in this process. Approximate
search techniques identify very close matches and offer the potential to
speed up the identification within large data sets, relaxing the constraint
of finding an exact match. Similarly, approximate similarity matching
algorithms provide the means to discern common features shared

* Corresponding author.
E-mail address: rjrodriguez@unizar.es (R.J. Rodriguez).

between similar artifacts. In this paper, we focus on approximate simi-
larity matching algorithms that treat input (the artifacts) as a byte
stream, process them without any interpretation of the data, and utilize
an intermediate representation (i.e., a digest or fingerprint) to summarize
the input. We define this kind of algorithms as similarity digest algorithms
(SDA).! SDA allows us to find items that are not necessarily the same, but
simply similar in some way (Breitinger et al., 2014a).

However, the effectiveness of different SDA can vary significantly
depending on the type of forensic data (Martin-Pérez, 2022). For
instance, an SDA that performs well in detecting similarities in textual
documents may not be as effective in analyzing binary executables or
memory dumps. Therefore, there is a need for systems that can adapt
their similarity search mechanisms based on the nature of the objects
analyzed, ensuring effective detection and analysis across different types
of digital artifacts.

In this paper, we present how APOTHEOSIS, an efficient approxi-
mate search system, can address the problem of searching similarity
digests across a wide range of digital artifacts (Huici et al., 2025). To
achieve this goal, APOTHEOSIS leverages two data structures: a tree

! In this paper, we use the SDA interchangeably as a singular and plural acronym.

https://doi.org/10.1016/j.fsidi.2025.301930

Available online 1 August 2025
2666-2817/© 2025 The Author(s).
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license

mailto:rjrodriguez@unizar.es
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2025.301930
https://doi.org/10.1016/j.fsidi.2025.301930
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2025.301930&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. Huici et al.

data structure (in particular, a radix tree (Morrison, 1968)), which is
employed for efficient hash lookup search; and a custom implementa-
tion of Hierarchical Navigable Small World (HNSW) (Malkov and
Yashunin, 2020), which is a graph-based approximate search method
designed to provide fast, approximate nearest neighbor search in
high-dimensional spaces. By integrating these frameworks with support
for multiple SDA, our system enables fast and efficient approximate
nearest neighbor searches on similarity digests, facilitating the rapid
identification of related artifacts within large datasets. Furthermore, its
extensible design enables forensic analysts to evaluate and compare the
performance of different SDA and approximate search in various con-
texts, helping to select the most appropriate algorithms for specific
forensic tasks.

Our system is fully extensible and adaptable to a wide range of digital
forensics problems, primarily acting as a tool for exact hash lookups and
nearest neighbor searches. To demonstrate its versatility in different
forensic contexts, we perform a comprehensive evaluation through two
case studies:(i) we apply APOTHEOSIS with SDA such as ssdeep and
TLSH to detect duplicate or plagiarized documents within a large source
code dataset. We also compare APOTHEOSIS with other approximate
similarity search techniques, specifically MinHash (Broder, 1997) with
Locality-Sensitive Hashing (LSH) (Leskovec et al., 2020). We evaluate
the search performance through standard metrics such as accuracy,
recall, precision, and F1-score, demonstrating how our system can help
evaluate the effectiveness of different SDA and approximate similarity
searches in analyzing text-based artifacts; (ii) we adapt our system to
handle a large dataset of memory artifacts collected from various 64-bit
versions of Microsoft Windows, from Windows 7 onward. This case
study allows us to evaluate the performance and scalability of different
SDA in the context of binary data analysis, further showing how
APOTHEOSTIS can efficiently handle large datasets.

Our experiments demonstrate that APOTHEOSIS not only efficiently
identifies similar artifacts, but also provides valuable insights into the
performance of different SDA on various forensic tasks. We selected
ssdeep and TLSH for the case studies to illustrate the versatility of our
system in different forensic contexts, but it can easily incorporate other
SDA depending on the specific needs of the analyst.

In summary, the contribution of this paper is three-fold:

(i) We present APOTHEOSIS, a novel approximate similarity search
system that uniquely combines a space-saving radix tree with a
custom Hierarchical Navigable Small World (HNSW) graph
implementation. This integration enables fast and scalable
approximate nearest neighbor searches over similarity hashes,
effectively addressing the challenge of efficiently managing and
analyzing large-scale digital forensic datasets. We have released
the source code of our system under the GNU/GPLv3 license
(Huici et al., 2025) to encourage collaboration, further develop-
ment, and integration into existing forensic workflows,
advancing research and practice in the field.

(ii) Through our case studies, we illustrate the adaptability of
APOTHEOSIS to various forensic problems, including text-based
artifact analysis and binary data analysis, highlighting its flexi-
bility in handling different types of digital artifacts. We demon-
strate how our system can be used to evaluate and compare the
performance of approximate similarity searches on different SDA,
thus providing insights that help select the most effective algo-
rithms for specific tasks.

(iii) We conduct a comprehensive evaluation of APOTHEOSIS,
assessing its performance and scalability using a large dataset of
approximate hashes comprising millions of records. Our results
demonstrate that our system significantly improves the efficiency
of similarity searches, maintaining low computational overhead.

The rest of this paper is as follows. Section 2 delves into the foun-
dational concepts that underpin our work. Section 3 introduces the

Forensic Science International: Digital Investigation 53 (2025) 301930

architecture of APOTHEOSIS and provides insights on its design and
functionality. Section 4 presents the results of the comprehensive eval-
uation of our system. In Section 5, we critically examine the threat
model and the limitations of our approach. Section 6 discusses related
work, and finally Section 7 concludes the paper and sets out future
research.

2. Background

In this section, we present the basic concepts needed to understand
our work. We begin by discussing similarity digest algorithms, which are
essential to compare digital artifacts based on their content. We then
describe efficient search methods used (in particular, radix trees and
HNSW) that enable fast searching and matching within large data sets.

2.1. Similarity digest algorithms

Similarity Digest Algorithms (SDA) are a class of approximate matching
algorithms (or approximate similarity matching algorithms) (Breitinger
et al., 2014a) used to identify similarities between digital artifacts, such
as files or memory dumps, even when they are not identical. SDA work
by processing input data (treated as byte streams) without interpreting
the underlying content. They generate an intermediate representation,
often called a fingerprint, hash, or digest, that summarizes the essential
features of the input.

Unlike traditional cryptographic hash functions (Katz and Lindell,
2015) that produce completely different results even for minor changes
in the input data (known as the avalanche effect (Webster and Tavares,
1986)), SDA generate digests that reflect the similarity between inputs.
This property allows forensic analysts to detect related or derived arti-
facts, which is essential in scenarios such as malware detection,
plagiarism detection, and identification of modified files, to name a few.
Comparison between the digests produces a similarity score, which in-
dicates the degree of similarity between the original artifacts.

According to Martin-Pérez et al. (2021), SDA can be classified based
on their hash generation methods as: (i) Feature Sequence Hashing (FSH),
which encompasses algorithms that split the input into features and map
them to hash values. Similarity is assessed by comparing the feature
sequences between different digests; An example of an FSH algorithm is
ssdeep, which calculates context-triggered piecewise hashes and is
effective at detecting embedded or concatenated files (Kornblum, 2006);
(ii) Byte Sequence Existence (BSE), which comprises algorithms that focus
on detecting the presence or similarity of specific byte sequences (often
referred to as blocks) within the input data. The similarity score is then
determined by comparing the number of shared sequences or blocks
between digests; and (iii) Locality-Sensitive Hashing (LSH), which assigns
similar input objects to the same bins (or buckets) with high probability.
TLSH (Trend Micro Locality-Sensitive Hash) is an example of an LSH al-
gorithm that is commonly used in malware detection.

In this particular work, we combine APOTHEOSIS with two well-
known SDAs of different types, specifically: (i) ssdeep, an FSH algo-
rithm proposed by Kornblum (2006), initially designed for spam
detection but widely used in digital forensics. ssdeep generates hashes
of variable length, up to 148 characters, and produces a similarity score
between 0 and 100, where 0 indicates no similarity and 100 indicates
identical inputs; (ii) TLSH, an LSH algorithm introduced by Oliver et al.
(2013) and primarily used for malware detection. TLSH generates
fixed-length hashes of 70 characters (excluding version flags) and cal-
culates a similarity score based on the distance between digests. A score
of 0 means that the entries are nearly identical; while higher scores
indicate greater differences.

2.2. Efficient search methods

As volume of digital data grows exponentially, efficiently searching
and identifying similar items within massive data sets becomes

D. Huici et al.

increasingly difficult. To address this, our system combines two data
structures that enable fast and scalable searches: the radix tree and the
HNSW.

2.2.1. Radix tree

A radix tree, also known as radix trie, compressed trie, or compact
prefix tree, is a space-saving data structure designed to store and search
strings. It optimizes storage by merging nodes with common prefixes,
effectively reducing redundancy and saving memory. Radix trees are
particularly useful in applications that require fast retrieval of key-value
pairs, such as dictionaries, IP routing tables (Morrison, 1968), and file
systems, to name a few.

In a radix tree, each node represents a sequence of characters (a
substring) of the keys being stored. Edges correspond to the substrings
that differentiate the keys. This structure allows for efficient search
operations by traversing the tree based on the characters of the query
key, allowing one to quickly locate the desired key or determine its
absence. When inserting a new key-value pair, the tree dynamically
adjusts its structure, merging nodes with common prefixes (if necessary)
to maintain its compact form. Deletion involves removing nodes as
necessary, ensuring that the tree remains efficient and well-organized.

The computational complexity of search and insert operations in a
radix tree is #'(k), where k is the key length (Morrison, 1968). This
means that the time to search for a key depends on the length of the key,
not the number of keys stored, making radix trees highly efficient for
exact matching in scenarios with a large number of strings.

2.2.2. Hierarchical navigable small world (HNSW)

A commonly employed method for searching for information is K-
Nearest Neighbor Search (K-NNS), which operates under the assumption
that a defined distance function exists between data elements. K-NNS
aims to identify the K elements within a dataset that minimize the dis-
tance to a specified query. A straightforward implementation of K-NNS
entails computing distances between the query and every data element
within the dataset, and then selecting those elements with the shortest
distances. Unfortunately, the computational complexity of this naive
approach increases linearly with the number of elements, rendering it
impractical for large-scale datasets (e.g., its time complexity in the
worst-case is @'(N), where N is the number of elements in the dataset).
Consequently, there has been significant interest in developing rapid
and scalable K-NNS algorithms.

Additionally, a number of challenges and problems arise when
working with high-dimensional data. To overcome the curse of dimen-
sionality in exact solutions for K-NNS (Yianilos, 1993), the concept of
Approximate K-Nearest Neighbors Search (K-ANNS) was proposed,

Forensic Science International: Digital Investigation 53 (2025) 301930

which seeks to find a set of K data points that are close to the query point
but not necessarily the absolute closest. This relaxation can be useful in
situations where finding the exact nearest neighbors is computationally
expensive or impractical, such as in high-dimensional data spaces. There
are several types of K-ANNS methods, such as probability-based (e.g.,
LSH (Leskovec et al., 2020)), tree-based (e.g., KD-Tree (Bentley, 1975)),
or graph-based (e.g., NN-Descent (Dong et al., 2011)).

In this work, we use Hierarchical Navigable Small World (HNSW)
(Malkov and Yashunin, 2020), a widely adopted graph-based K-ANNS
method. HNSW is based on the Navigable Small World (NSW) (Watts
and Strogatz, 1998), which constructs a proximity graph with short and
long links, enabling rapid navigation through local and distant regions
of the data space.

HNSW introduces a hierarchical structure by organizing data points
into multiple layers. The base layer (or ground layer) contains all the
elements (e.g., Layer 0 in Fig. 1), while higher layers house increasingly
smaller subsets. This multi-layered graph balances efficiency and accu-
racy, allowing searches to start from a sparse top layer and refine results
as they descend to the denser base layer.

To gain a broader perspective on how our approach compares to
existing methods, a detailed discussion of related work and alternative
approaches is provided in Section 6. Below we explain in a simple and
brief way how insertion and search work in HNSW.

Construction/insertion. When adding a new data point, the algorithm
determines the maximum level for the node based on a probabilistic
model. The new node connects to its K nearest neighbors in each layer up
to its maximum level, establishing both short- and long-range connec-
tions. This process maintains the small-world property of the graph,
ensuring efficient navigability. To enforce this property, it may prune
weaker connections and adjust levels in the graph structure. The con-
struction complexity scales as @ (Nlog N), while the insert complexity
scales as (log N), where N is the number of nodes (Malkov and
Yashunin, 2020).

Search. To find approximate nearest neighbors for a query point, the
search starts at the highest layer with the entry point node. The algo-
rithm traverses the graph exploring the neighboring nodes that are
closest to the query at that layer, moving progressively to lower layers.
At each step, it maintains a candidate list of possible nearest neighbors,
pruning nodes that are farther away. This hierarchical traversal allows
the algorithm to efficiently reduce the search space and find approxi-
mate nearest neighbors with a time complexity of #(log N) (Malkov and
Yashunin, 2020).

APOTHEOSIS

Layer 2

Layer 1

Image Similarity
Problem (remote)

7
%

Forensic analyst

Layer 0

HNSW model € - - - _ _ _

Radix tree

Binary Code Similarity

K== " Problem (local)

OIGOR I
A
U

-_——"—) I\!/‘\

Database Forensic analyst

Fig. 1. High-level overview of different use cases of APOTHEOSIS in digital forensics.

D. Huici et al.
3. APOTHEOSIS: system architecture

Efficient similarity detection in forensics requires a system capable of
handling both exact and approximate searches across diverse datasets.
APOTHEOSIS (APprOximaTe searcH systEm Of Similarity dIgeSts)
achieves this by integrating a radix tree for fast exact hash lookups and a
HNSW graph for scalable approximate nearest neighbor search. While
these data structures are well established, their standard implementa-
tions are primarily designed for continuous vector spaces, making them
unsuitable for hash-based data and the similarity scores generated by
SDAs. In this section, we describe how APOTHEOSIS adapts these
structures to forensic similarity detection, enabling efficient retrieval of
similar files across a variety of digital artifacts.

Fig. 1 shows a high-level overview of APOTHEOSIS and its potential
use cases in digital forensics. The system is designed to be flexible and
adaptable, allowing it to be used in various scenarios. By offering local
deployment as a software library and remote access via a REST API, our
system provides flexibility in how it can be integrated and used within
different forensic analysis workflows.

As described earlier, APOTHEOSIS leverages two data structures that
work together: a custom implementation of radix tree and HNSW. These
data structures are combined with similarity digests to enable efficient
approximate similarity searches. The APOTHEOSIS database stores all
hashes and associated extended information for each hash. By keeping
this information separate from the HNSW structure, we maintain a low
space complexity for the HNSW graph.

The radix tree is used to store similarity digests and efficiently
retrieve exact matches. Unlike hash tables, it allows for prefix-based
searches, making it well suited for detecting partial or hierarchical
similarities within structured forensic data. In parallel, HNSW is used for
approximate similarity searches, offering a trade-off between speed and
accuracy on large-scale datasets. However, existing HNSW imple-
mentations assume continuous vector spaces and rely on distance met-
rics such as Euclidean or cosine similarity. Since SDAs generate discrete
hash values with algorithm-specific scoring functions, APOTHEOSIS
adapts HNSW to use SDA-derived similarity scores instead of traditional
distance-based metrics.

The system works in two phases: indexing and querying. During
indexing, similarity digests are extracted using a modular SDA interface
and stored in the radix tree for exact searches. At the same time, digests
are inserted into the HNSW graph, where edges to similar nodes are
created based on the calculated similarity scores. The query phase first
checks the radix tree for exact matches. If no exact match is found, an
approximate similarity search is performed using HNSW, retrieving the
K nearest neighbors based on the SDA similarity scores. This combined
approach ensures high-speed retrieval of similar files, improving
forensic efficiency in identifying duplicate or related artifacts in diverse
datasets, from textual documents to binary executables.

APOTHEOSIS supports two types of search methods for added flex-
ibility: (i) Nearest Neighbors-Based Search: To identify the K most similar
nodes to a given query node (where K € N.), the system performs an
approximate nearest neighbor search starting at the highest layer of the
HNSW graph from the entry point node. At each level, it evaluates
neighboring nodes to find approximate closest matches based on the
similarity score, refining the set of candidate nodes as it moves down
through the layers. A priority queue is used to manage candidates effi-
ciently, prioritizing nodes that are closer to the query. An improvement
in our system, compared to the original HNSW algorithm (Malkov and
Yashunin, 2020), is that it also considers the neighbors of the candidate
nodes during the traversal; this increases the probability of finding
nodes that are closer to the query, thus improving the quality of the
approximation. Upon reaching the ground layer (level 0), the algorithm
selects the final K approximate nearest neighbors; and (ii) Thresh-
old-Based Search. In threshold-based searches, the system retrieves nodes
whose similarity scores meet a specific condition relative to a threshold
value t > 0. The search parameters include the query node (the hash for

Forensic Science International: Digital Investigation 53 (2025) 301930

which similar nodes are searched), the threshold value t (a similarity
score threshold), and the comparison mode (which specifies whether to
retrieve nodes with similarity scores above or below the threshold t).
The search process is similar to nearest neighbor search, but with key
differences: at the base layer, only nodes that meet the threshold con-
dition are added to the candidate queue. As before, it also analyzes the
neighbors of the candidate nodes and selects those that are closest to the
query and meet the given threshold criteria.

To optimize performance, a sensitivity analysis is recommended for
key HNSW parameters since their settings play a crucial role in
balancing accuracy, memory consumption, and computational over-
head. The parameters M and Mpax, which control the graph connectiv-
ity, affect recall by increasing the number of connections per node,
thereby improving search accuracy at the expense of higher memory
usage and longer search times. The parameter ef, which regulates the
number of candidate nodes explored during queries and affects indexing
efficiency, improves recall but results in longer query times. Further-
more, Mpaxo, Which defines connectivity at the lowest layer, also in-
fluence the overall system performance. Since these parameters directly
affect search quality and resource constraints, a systematic sensitivity
analysis is necessary to achieve an optimal balance tailored to the re-
quirements of the forensic dataset.

Note that the combination of the radix tree and HNSW facilitates
efficient processing of large data sets, while the system’s ability to
support multiple SDAs ensures adaptability across diverse forensic ap-
plications. By integrating exact and approximate search mechanisms
within a modular framework, APOTHEOSIS offers a flexible and scalable
solution for forensic similarity detection. The only requirement is that an
intermediate representation (such as a similarity digests or hash) can be
generated for the data items, allowing the system to work across a va-
riety of digital artifacts.

APOTHEOSIS is open-source software released under the GNU/
GPLv3 license (Huici et al., 2025). The availability of the source code
promotes transparency and encourages collaboration within the
research community. The system’s REST API interface (Richardson and
Ruby, 2007) simplifies deployment and integration into existing forensic
analysis workflows, making it accessible to a broader audience.

4, Evaluation

To evaluate the effectiveness and applicability of APOTHEOSIS in
the field of digital forensics, we designed a comprehensive evaluation
considering document duplication detection and performance on large
digital forensic datasets. Our goal is to demonstrate how our system can
enhance forensic investigations by improving the speed of similarity
searches on different types of digital artifacts.

We focus on the following research questions to guide our
evaluation:

RQ1.—How effective is APOTHEOSIS in detecting duplicate content or
modified versions of original documents? (see § 4.1).

RQ2.— How does APOTHEOSIS perform in terms of performance and
scalability when handling large digital forensic datasets? (see § 4.2).

To answer these questions, we first present the datasets constructed
for the experiments, as well as the experimental setup and metrics used.
We then answer each question.

Datasets, Metrics, and Experimental Setup. To address RQ1, we used
the dataset provided in (Ljubovic and Pajic, 2020), which contains
student assignment submissions from two introductory programming
courses at the University of Sarajevo (Bosnia and Herzegovina). This
dataset includes a total of 43,792 source code files, making it well suited
for evaluating the effectiveness of APOTHEOSIS in detecting document
duplication or forgery in forensic contexts.

Since the provided ground truths do not specify exact similarity
scores or thresholds used to classify plagiarism, we generated a new

D. Huici et al.

ground-truth dataset. We computed similarity scores for each pair of
files using ssdeep and TLSH, following a cleaning process to exclude
files too small to generate valid similarity digests.

For each SDA, we built an APOTHEOSIS model using the new
ground-truth dataset and configured with M = ef = Mgy = Miaxo = 16.
Since APOTHEOSIS primarily operates as a hash lookup mechanism and
an approximate nearest neighbor search tool for hash-based compari-
soms, its effectiveness is closely tied to the performance of the underlying
SDA.

To provide a comprehensive evaluation of our tool, we perform a
comparative analysis with MinHash, a simply and widely recognized
technique for estimating the Jaccard index (Broder, 1997; Leskovec
et al., 2020), which quantifies the overlap between generated signa-
tures. When combined with LSH, MinHash facilitates efficient K-ANNS
by grouping similar items into the same hash buckets, significantly
reducing computational complexity for large-scale similarity detection
tasks. We refer to this combination as MinHashLSH. Following the same
experimental procedures used with SDA, we generate MinHash signa-
tures for each file using N = 72 permutations and compute the Jaccard
similarities between all file pairs to establish the ground truth.

We evaluate the performance of these models using standard metrics:

accuracy (Acc = ppret™), precision (Prec = zm), recall (Rec =

7o), and Fl-score (F1 = 2.fecRec) Here, TP represents the true
positives (correctly detected plagiarism cases), FP denotes the false
positives (incorrect plagiarism detections), TN refers to the true nega-
tives (correctly identified non-plagiarized files), and FN corresponds to
the false negatives (undetected plagiarism cases).

For RQ2, we used a dataset containing Windows system modules
(shared libraries, kernel drivers, and system executables) collected from
different versions of Microsoft Windows. Specifically, we considered
Windows 7, Windows 8.1, Windows Server 2012 R2, Windows Server
2016; Windows Server 2019 on 64 bit architectures. For each operating
system, we created a virtual machine and perform a fresh installation of
Windows to avoid the possible presence of malware or unwanted soft-
ware. We then ran a program that iterated through the Windows system
folder, loaded each system dynamic shared library into its process
address space, and dumped the memory regions associated with the li-
brary that contained binary code to disk at a page granularity, along
with its associated metadata. To accomplish this, we relied on the
Windows Memory Extractor tool (Fernandez-Alvarez and Rodriguez,
2022).

In Windows terminology, a module refers to the representation of the
process memory space of an executable file or a shared library
(Microsoft, 2021), while a page is a fixed-length block (typically 4096
bytes) into which the virtual memory of a Windows process is divided
(Microsoft Docs, 2018).

We stored the relationship of each module to its pages and computed
similarity hashes using ssdeep and TLSH via the SUM software library
(Martin-Pérez et al., 2021). Additionally, where possible, we applied the
best unrelocation method to normalize the raw bytes (Martin-Pérez
et al.,, 2021). As metadata, we retrieved the file version, original and
internal filenames, product and company names, legal copyright, byte
size, and base address. All of this information is stored in a SQL database
(MysQL). In total, we collected approximately 4.2 million pages
belonging to about 37,500 Windows system files.

We chose this dataset to evaluate the system’s performance and
scalability in handling large forensic datasets because it closely reflects
real-world scenarios. For instance, this dataset can be used to create a
list of allowed SDA hashes, allowing the system to function as a detec-
tion mechanism that quickly identifies known, non-malicious artifacts,
thereby improving the efficiency of forensic investigations (Pryde et al.,
2018). Unlike the source code dataset used in RQ1, which only contain
file names and similarity scores, here we retain more data for each node
(such as module metadata, the operating system it originates from, and
other binary file details). This dataset is more representative of actual

Forensic Science International: Digital Investigation 53 (2025) 301930

systems used during forensic investigation, where multiple pieces of
data can be associated with hashes. As metrics, we measured the average
time taken to insert a new node, perform hash lookups, and retrieve
K-NN of a given hash under different HNSW configurations. For this
experiment, we consider only TLSH.

Let us recall that the dataset used for RQ2 serves only to illustrate the
functionality of APOTHEOSIS, which is dataset independent and appli-
cable to various forensic investigations.

All experiments were conducted on a personal computer with an
Intel(R) Core(TM) i7-10700 processor @2.90 GHz. The system is
equipped with 64 GB of DDR4 RAM clocked at 3200 MHz and runs the
GNU/Linux Debian 11.7 operating system.

4.1. RQI: effectiveness in document duplication detection

4.1.1. Performance metrics across varying thresholds

Fig. 2 presents the performance metrics for the APOTHEOSIS models
with ssdeep and TLSH, as well as MinHashLSH, at different threshold
values 7. Each threshold 7 corresponds to a distinct ground-truth dataset,
constructed by applying the corresponding threshold to the similarity
scores on the new ground-truth dataset. In this way, each dataset con-
tains only those file pairs that meet the specified threshold criteria,
allowing us to evaluate how APOTHEOSIS performance metrics vary as
the definition of “similar” or “duplicate” files becomes more or less
strict. For the APOTHEOSIS models, we restrict the K-NN search oper-
ation to a maximum of K = 8 neighbors.

With the APOTHEOSIS models, the precision remains consistently
high at 1.00 for both SDA across all 7, indicating that it does not generate
false positives, in contrast to MinHashLSH.

Recall, on the other hand, shows gradual improvement as the
threshold increases, meaning that more true positives are detected with
stricter similarity requirements. This results in a similar upward trend
for the Fl-score. Accuracy also increases with higher thresholds,
reflecting better overall performance in correctly identifying plagiarized
and non-plagiarized files as more stringent ground-truth datasets are
used.

MinHashLSH shows an overall improvement in performance metrics
as similarity thresholds increase, but exhibits significant fluctuations,
especially a noticeable drop in recall at 7 = 80. This non-linear behavior
can be attributed to the probabilistic nature of these algorithms, where
random permutations may not always optimally capture the true simi-
larity between documents. Furthermore, we observe a key limitation in
detecting exact matches (i.e., 7 = 100). This limitation arises from how

1.00

0.98

o
o
=

Metric Value

o
o
i

0.92 b —e— Recall
Precision
—+*— F1-Score

—&— Accuracy

70 75 80 85 90 95 100 70 75 80 85 90 95 100 30 25 20 15 10 5 0O
TMinHashLSH Tssdeep TTLSH

Fig. 2. Performance metrics comparison of APOTHEOSIS using ssdeep and
TLSH, as well as MinHashLSH, at different thresholds 7.

D. Huici et al.

LSH splits MinHash signatures into bands, relying on partial overlaps to
identify candidates. At 7 = 100, all bands must match exactly, leaving no
tolerance for discrepancies in the signatures. As a result, the probabi-
listic nature of LSH makes it unsuitable for detecting exact matches.

These findings indicate that as thresholds increase, all the techniques
become more effective at detecting duplications. Specifically, with
APOTHEOSIS, while both SDA improve with higher thresholds, TLSH
consistently achieves higher recall and F1 scores in all 7 evaluated,
making it a more effective choice to detect duplications in text-based
documents.

4.1.2. Number of plagiarized cases in MinHash, ssdeep, and TLSH
datasets

Fig. 3 presents the cumulative distribution function of the detected
matches per file for the MinHash, ssdeep, and TLSH datasets,
considering 7 = 70. These datasets are the most inclusive in this
experiment, as they also include all file pairs considered similar by the
respective algorithms under stricter thresholds. Note that the number of
files in each dataset, denoted by N, differs slightly. In the previous
experiment, we imposed a maximum limit of K = 8 for the K-NN search
operation in the APOTHEOSIS models. As shown in the figure, this
limitation resulted in missed plagiarism cases, as the system does not
fully capture additional cases beyond this limit. Specifically, there are
cases where files have more than eight plagiarized matches, which are
not fully represented in the results.

4.2. RQ2: performance and scalability on large datasets

We focus our evaluation on two key HNSW configuration parame-
ters, M and ef, using N = 10000 and TLSH as SDA. The parameters Mgy
and M. were varied while holding the other settings constant to
evaluate their impact on insert, K-NN lookup, and approximate K-NN
(AKNN) search operations. Due to space limitations, we present a se-
lection of representative plots that capture key trends observed across all
experiments (the full set of results are available upon request).

4.2.1. Varying M with ef = 16

Increasing M from 4 to 32 shows a steady increase in insertion time
across all values of My and Myqx0, Where Mpqy €xerts a more signif-
icant influence on performance. Similar trends are observed for both K-
NN lookup and AKNN search operations. When M = 4, the insert oper-
ation time remains low, even at high values of Mo, and Mpqx. The
AKNN search times level off as M increases, indicating diminishing
returns at higher values. The K-NN search operation exhibits signifi-
cantly lower runtime compared to the other operations, which show
similar performance. This difference is primarily attributed to the
traversal of the radix tree, where the query hash is found directly,

N W
So08
=
Yt
=]
g
£ 0.6
=}
a
2
&
2 0.4
=
E 02 —e— TLSH dataset (N = 24949 total files)
=
o —=— ssdeep dataset (N = 25176 total files)
K= st —s+— MinHash dataset (N = 25085 total files)
0.0 T r ; :
10 20 30 40 50

Number of Detected Similar Matches per File

Fig. 3. Cumulative distribution of similar matches per file for ssdeep and
TLSH datasets considering 7y;nnasniss = Tssaeep = 70 and ey = 30.

Forensic Science International: Digital Investigation 53 (2025) 301930

eliminating the need for additional approximate search operations.
Fig. 4a, b, and 4c shows the insert, lookup, and AKNN operation results
for M = ef = 16, illustrating the general trend across all values of My,
and Mpaxo-

4.2.2. Varying ef with M = 16

As expected, increasing ef results in longer times for the insert, K-NN
lookup, and approximate K-NN search operations. Higher ef values
improve the accuracy of the approximate search by exploring more
candidate nodes, but they also increase the operation times due to the
additional computation. In contrast, low ef values reduce search time
but at the cost of accuracy. Fig. 5 shows the approximate K-NN search
operation results for M = 16 and ef = {2, 6, 14}.

4.2.3. Impact of N on time complexity

We perform a sensitivity analysis and employ a curve-fitting
approach to validate the time complexities explained in Section 2.2.2.
In this analysis, we considered three different system configurations
CFG: (ef, M, Mmax, Mimaxo) (specifically, CFGy: (4, 4, 16, 16), CFG3: (8, 8,
16, 16), and CFGs: (8, 16, 16, 32)) with varying HNSW parameters while
varying N from 100 to 50, 000, in increments of 100.

Fig. 6 shows, from left to right, the curve fitting plots for insert, hash
lookup, and approximate K-NN search operations. All observed trends
align with theoretical expectations. The insert and approximate K-NN
search operations exhibit similar behaviors (in particular, a natural
logarithmic growth trend as the dataset size increases), as they both
involve traversing and updating the HNSW graph-although the
approximate K-NN search requires some additional logic to complete.
Among the configurations, CFG3 consistently outperforms the others,
which can be attributed to its higher M and M, values. More con-
nections lead to a more connected structure and faster convergence
during these operations. The hash lookup operation, on the other hand,
shows a nearly linear growth with a very low slope, indicating that it
scales efficiently even with large datasets. In this case, CFG3 was the
worst-performing configuration. This is because it has more connections
per node, which requires traversing and accessing more nodes during
the lookup search, resulting in longer times.

5. Threat model and limitations

This section first introduces the threat model of APOTHEOSIS and
then describes its limitations.

5.1. Threat model

APOTHEOSTIS detects similarities between any digital artifacts using
SDA. An adversary who is aware of the SDAs in use could manipulate the
data to evade detection or cause false positives, for instance by altering
byte data to affect similarity scores or disrupting the digest generation
and comparison processes (Martin-Pérez et al., 2021). To counter this,
our system supports multiple SDA simultaneously, making it difficult for
adversaries to exploit vulnerabilities in different algorithms.

The system’s REST API could be susceptible to denial of service at-
tacks if an adversary overloads it with excessive requests or crafted in-
puts that exhaust resources, leading to unavailability. Mitigation
strategies include rate limiting, deploying content delivery networks,
load balancing, and continuous monitoring of network and server
performance.

An adversary could also attempt to extract sensitive data by querying
approximate hashes through the REST API. However, APOTHEOSIS
operates on hashes (intermediate representations of artifacts) and does
not store original data. Users can control what metadata is returned in
search results, minimizing the risk of unwanted data exposure.

D. Huici et al.

INSERT results for M=16, ef=16, N=10000

KNN LOOKUP results for M=16, ef=16, N=10000

Forensic Science International: Digital Investigation 53 (2025) 301930

AKNN SEARCH results for M=16, ef=16, N=10000

(a) Insert operation

(b) K-NN lookup operation

(c) Approximate K-NN search operation

Fig. 4. Runtime (in milliseconds) of the insert, K-NN lookup, and approximate K-NN (AKNN) search operations, with M = ef = 16 and N = 10000.

AKNN SEARCH results for M=16, ef=2, N=10000

AKNN SEARCH results for M=16, ef=6, N=10000

AKNN SEARCH results for M=16, ef=14, N=10000

(a) With ef = 2

(b) With ef = 6

(c) With ef = 14

Fig. 5. Runtime (in milliseconds) of the approximate K-NN search operation varying ef € {2, 6, 14}, with N = 10000 and M = 16.

5.2. Threats to validity

We discuss the validity of our work according to construct, internal,
and external validity (Cruzes and ben Othmane, 2017).

5.2.1. Construct validity

We conducted controlled experiments using standard evaluation
metrics to fine-tune and assess our system. This approach ensures that
our experiments measure what is intended, reducing the likelihood of
construct validity issues.

5.2.2. Internal validity

APOTHEOSIS relies on third-party libraries to calculate similarity
digests and related comparison operations. Any vulnerabilities or bugs
in these libraries could affect the effectiveness of the system or be
exploited by adversaries.

APOTHEOSIS uses HNSW, which is a graph-based K-ANNS method.
While HNSW is a popular choice, there are other K-ANNS methods.
Wang et al. (2021) provide a recent survey of graph-based K-ANNS. A
more profound and comprehensive evaluation of other K-ANNS methods
can help determine which approach is best suited to each problem in the
digital forensics domain.

Furthermore, while HNSW is effective, it may not always find the
most accurate nearest neighbors due to its approximate nature. Post-
processing techniques (such as re-ranking or re-scoring) can improve
search precision and be effective to address this limitation.

HNSW can be very memory-intensive, which is a limitation for very
large datasets. While compression techniques can reduce its memory
usage, they introduce decompression overhead that can degrade

performance.

Likewise, constructing the initial HNSW index can be computation-
ally expensive and time-consuming, particularly for large datasets. In
this sense, parallel indexing can speed up the construction of the initial
HNSW index.

Finally, our experimental results show that the performance of
HNSW can be sensitive to parameter settings. Fine-tuning these pa-
rameters can be challenging and may require domain-specific knowl-
edge. Therefore, systematic experimentation is necessary to fine-tune
HNSW parameters for the specific dataset and query workload. In this
sense, automated parameter optimization techniques can also be
helpful.

5.2.3. External validity

APOTHEOSIS is specifically designed to work with similarity digests.
Therefore, our system cannot be used if the similarity digests of the
artifacts cannot be computed. For instance, ssdeep or TLSH cannot
generate a digest under certain circumstances (Martin-Pérez et al.,
2021).

Our experiments were performed on well-structured datasets with
known real-world data. In contrast, real-world forensic data often con-
tains noise, adverse modifications, or missing artifacts, which can affect
the performance of similarity search. Therefore, the generalizability of
our findings to other datasets, SDA, or contexts may be limited. Future
work should include a broader range of datasets and real-world cases to
validate the applicability of APOTHEOSIS in diverse situations,
including data from real-world forensic cases assess system robustness.
Additionally, adversarial testing could help assess resilience against
obfuscation techniques used to evade similarity detection.

D. Huici et al.

INSERT operation
o °
10+
8 4
2
) 61
E
= — 1.7-In(N) —10.51
41 ® Execution time CFG,
1.2-In(N) —6.24
21 ® Execution time CFG,
— 1.1-In(N) —5.54
® Execution time CFG3
0 10000 20000 30000 40000 S0000
Number of pages (V)
- KNN LOOKUP operation
) —— 3.1¢—07-N+0.05
0.181 @ Execution time CFG; s
9.4¢—08-N+0.09 °
0.16{ @ Execution time CFG, N
—— 52¢—07-N+0.12
~0.147 o
)
o 0.121
£
&0.101
0.08 -
0.06 -
0.04 T T : ; .
0 10000 20000 30000 40000 50000
Number of pages (N)
AKNN SEARCH operation
— 1.9-In(N)—12.54 o
121 ® Execution time CFG
1.3-1n(N) —7.80
104 @ Execution time CFG,
— 1-In(N)—5.90
/g g{ ® Execution time CEG3 '...
o
E 6]
H
4 .
2 4
0 ! T T T T T
0 10000 20000 30000 40000 50000
Number of pages (V)

Fig. 6. Curve fitting for the insert, K-NN lookup, and approximate K-NN
operation for dataset sizes N € [100, 50000] for three different APOTHEOSIS
configurations (CFG;: (ef, M, Mmax, Mmaxo); specifically, CFG;: (4, 4, 16, 16),
CFG>: (8, 8, 16, 16), and CFG3: (8, 16, 16, 32).

Forensic Science International: Digital Investigation 53 (2025) 301930

6. Related work

In this section, we review tools related to HNSW and previous
research on the hash lookup problem and similarity search in digital
forensics.

6.1. Tools related to HNSW

HNSW has gained much attention due to its efficiency in approxi-
mate nearest neighbor searches. However, existing implementations of
HNSW primarily support continuous metrics that rely on continuous
vector components, they are not designed to handle deterministic and
discrete hashes. As a result, these implementations are not well suited
for our use case, requiring custom adaptation to effectively process
discrete hash-based representations. The most prominent implementa-
tion is HNSW1ib (Malkov, 2018), a C++ library with Python3 bindings.
While it allows customization of the distance function, it is limited to
continuous metrics such as Euclidean distance, inner product, and
cosine similarity. These metrics require continuous vector components,
which are not suitable for hashes that are deterministic and discrete.

Similarly, Facebook Al Similarity Search (Johnson et al., 2019) is a
C++ library with GPU acceleration support, but it also uses vector-based
search similarity functions, making it incompatible with hash compar-
isons. Other HNSW implementations in languages such as Java, Go, and
Rust share the same focus on vector search. A recent Python imple-
mentation (Bartholomy, 2023) also lacks support for hash-based data. In
contrast, APOTHEOSIS is specifically designed for hash-based data. By
accommodating hash similarity metrics, our system offers practitioners
a specialized and flexible solution to efficiently identify and analyze any
digital artifacts.

6.2. Hash lookup and similarity search

Several methods have been developed to improve the efficiency of
hash lookup and similarity search, such as n-gram indexing, dynamic
programming, and locality-sensitive hashing. Navarro et al. (2001) and
Boytsov (2011) provide comprehensive reviews of these techniques,
highlighting their applications in approximate string matching and DNA
sequence analysis.

In digital forensics, the F2s52 (Winter et al., 2013) approach im-
proves forensic similarity searches by indexing piecewise hash signa-
tures, optimizing SDA such as ssdeep, and significantly reducing search
times compared to brute-force approaches. Breitinger et al. (2014b)
proposed a divide-and-conquer approach using hierarchical Bloom fil-
ters to reduce the search complexity to ¢(log N) on large datasets. Our
system uses radix tree for hash lookup, achieving a search time
complexity of @'(k), where k is the hash length in bytes. This means that
the search time complexity is independent of the number of elements
stored, providing efficient performance even with large data sets.
Furthermore, unlike our system, Bloom filters, while effective for
large-scale set operations, can lead to false positives. In contrast, our
approach does not produce false positives but may miss some true
matches due to threshold-based filtering. Finally, Liebler et al. (2019)
evaluated three hash lookup strategies, measuring runtime and memory
consumption, and offering insights for optimizing such systems.

Our work extends these approaches by providing a flexible platform
capable of handling multiple SDA and supporting threshold-based
searches and AKNNs. For instance, integrating F2S2 with our radix
tree could enable fast localization of similar hashes when the SDA
generates piecewise hashes, improving approximate K-NN search re-
sults. This integration would require some engineering efforts in the
insertion and search operations. Similarly, the hash search strategies
evaluated by Liebler et al. (2019) could be incorporated as alternatives
to our HNSW model.

Also worth mentioning is FRASHER (Gobel et al., 2022), an auto-
mated framework for evaluating SDA performance through structured

D. Huici et al.

test cases such as fragment detection and efficiency, among others.
While this framework focuses on SDA benchmarking, APOTHEOSIS
primarily focuses on providing methods for scalable, real-time approx-
imate similarity search on large forensic datasets, with evaluation of
SDA and its approximate similarity search on particular forensic prob-
lems being a secondary benefit of our system. Thus, our system com-
plements the benchmarking capabilities provided by FRASHER.

7. Conclusions and future work

In this paper, we presented APOTHEOSIS, a flexible and efficient
system designed for hash lookup and approximate similarity searches on
large forensic datasets using SDA. By combining a radix tree structure
with a graph-based HNSW algorithm, APOTHEOSIS offers fast lookups
and approximate nearest neighbor searches, optimized for hash-based
data. Through two case studies (document duplication detection in a
source code plagiarism dataset and system module analysis in memory
forensics), we demonstrated its ability to efficiently identify similar ar-
tifacts while achieving robust performance in terms of runtime and
scalability. Furthermore, our system can also help evaluate the perfor-
mance of different SDA and approximate similarity searches in partic-
ular forensic tasks.

As future work, we plan to investigate and evaluate the accuracy and
performance of alternative K-ANNS methods to potentially enhance our
system. Furthermore, our ongoing efforts include to further optimize
HNSW configuration parameters to improve overall performance.
Similarly, we also plan to explore additional use cases and expand the
scope of our system to other types of digital artifacts, such as image or
video artifacts. Finally, we welcome collaboration with the digital fo-
rensics community to gather feedback and insights and enhance the
utility and relevance of our system.

Declaration of generative AI and Al-assisted technologies in the
writing process

During the preparation of this work, the authors used ChatGPT-4 to
improve readability and language. After using this tool/service, the
authors reviewed and edited the content as needed and assume full re-
sponsibility for the content of the publication.

Acknowledgments

This research was supported in part by grants PID2020-113903RB-
100 (KIT-IA) and PID2023-1514670A-100 (CRAPER), funded by MICIU/
AFEI/10.13039/501100011033 and by ERDF/EU, by grant TED2021-
131115A-100 (MIMFA), funded by MICIU/AEI/10.13039/
501100011033 and by the European Union NextGenerationEU/PRTR,
by grant Proyecto Estratégico Ciberseguridad EINA UNIZAR, funded by the
Spanish National Cybersecurity Institute (INCIBE) and the European
Union NextGenerationEU/PRTR, by grant Programa de Proyectos
Estratégicos de Grupos de Investigacion (DisCo and SID research groups,
refs. T21-23R and T42-23R, respectively), funded by the University,
Industry and Innovation Department of the Aragonese Government.

References

Bartholomy, 2023. Hierarchical Navigable Small World: a Scalable Nearest Neighbor
Search [Online. https://github.com/brtholomy/hnsw. (Accessed 5 June 2023).
Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching.

Commun. ACM 18, 509-517.
Boytsov, L., 2011. Indexing methods for approximate dictionary searching: comparative
analysis. ACM J. Exp. Algorithmics 16.

Forensic Science International: Digital Investigation 53 (2025) 301930

Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., White, D., 2014a. Approximate
Matching: Definition and Terminology. Techreport NIST Special Publication 800-
168. National Institute of Standards and Technology.

Breitinger, F., Rathgeb, C., Baier, H., 2014b. An efficient similarity digests database
lookup — a logarithmic divide & conquer approach. J. Dig. Foren. Secur. Law 9,
155-166.

Broder, A., 1997. On the resemblance and containment of documents. In: Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171),
pp. 21-29.

Cruzes, D.S., ben Othmane, L., 2017. Empirical Research for Software Security. CRC
Press, p. 26 chapter Threats to Validity in Empirical Software Security Research.

Dong, W., Moses, C., Li, K., 2011. Efficient K-nearest neighbor graph construction for
generic similarity measures. In: Proceedings of the 20th International Conference on
World Wide Web. Association for Computing Machinery, New York, NY, USA,
pp. 577-586.

Fernzindez-/\lvarez, P., Rodriguez, R.J., 2022. Extraction and analysis of retrievable
memory artifacts from Windows telegram desktop application. Forensic Sci. Int.:
Digit. Invest. 40, 301342. Selected Papers of the Ninth Annual DFRWS Europe
Conference.

Gobel, T., Uhlig, F., Baier, H., Breitinger, F., 2022. FRASHER - a framework for
automated evaluation of similarity hashing. Forensic Sci. Int.: Digit. Invest. 42,
301407. Proceedings of the Twenty-Second Annual DFRWS USA.

Huici, D., Rodriguez, R.J., Mena, E., 2025. Apotheosis: an efficient approximate
similarity search system. SoftwareX 29, 102016. https://doi.org/10.1016/j.
softx.2024.102016. https://www.sciencedirect.com/science/article/pii/S2352711
024003868.

Johansen, G., 2022. Digital Forensics and Incident Response: Incident Response Tools
and Techniques for Effective Cyber Threat Response, third ed. Packt Publishing.

Johnson, J., Douze, M., Jégou, H., 2019. Billion-scale similarity search with GPUs. IEEE
Transact. Big Data 7, 535-547.

Katz, J., Lindell, Y., 2015. Introduction to Modern Cryptography. CRC Press.

Kornblum, J., 2006. Identifying almost identical files using context triggered piecewise
hashing. Digit. Invest. 3, 91-97. The Proceedings of the 6th Annual Digital Forensic
Research Workshop (DFRWS °06).

Leskovec, J., Rajaraman, A., Ullman, J., 2020. Mining of Massive Datasets. Cambridge
University Press.

Liebler, L., Schmitt, P., Baier, H., Breitinger, F., 2019. On efficiency of artifact lookup
strategies in digital forensics. Digit. Invest. 28, S116-S125.

Ljubovic, V., Pajic, E., 2020. Plagiarism detection in computer programming using
feature extraction from ultra-fine-grained repositories. IEEE Access 8, 96505-96514.
https://doi.org/10.1109/ACCESS.2020.2996146.

Malkov, Y., 2018. HNSWIib [Online. https://github.com/nmslib/hnswlib. (Accessed 5
June 2023).

Malkov, Y.A., Yashunin, D.A., 2020. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal.
Mach. Intell. 42, 824-836.

Martin-Pérez, M., 2022. Effectiveness of Similarity Digest Algorithms for Binary Code
Similarity in Memory Forensic Analysis. Phdthesis. University of Zaragoza (Spain).

Martin-Pérez, M., Rodriguez, R.J., Breitinger, F., 2021. Bringing order to approximate
matching: classification and attacks on similarity digest algorithms. Forensic Sci.
Int.: Digit. Invest. 36, 301120.

Microsoft, 2021. Modules [Online. https://learn.microsoft.com/en-us/windows-hard
ware/drivers/debugger/modules. (Accessed 7 October 2022).

Microsoft Docs, 2018. Memory Management [Online. https://docs.microsoft.com/en-us
/windows/win32/memory/memory-management. (Accessed 15 February 2020).

Morrison, D.R., 1968. PATRICIA-Practical algorithm to retrieve information coded in
alphanumeric. J. ACM 15, 514-534.

Navarro, G., Baeza-Yates, R., Sutineny, E., Tarhioz, J., 2001. Indexing methods for
approximate string matching. IEEE Data Eng. Bull. 24, 19-27.

Oliver, J., Cheng, C., Chen, Y., 2013. TLSH - a locality sensitive hash. In: 2013 Fourth
Cybercrime and Trustworthy Computing Workshop. IEEE, pp. 7-13.

Pryde, J., Angeles, N., Carinan, S.K., 2018. Dynamic whitelisting using locality sensitive
hashing. In: Ganji, M., Rashidi, L., Fung, B.C.M., Wang, C. (Eds.), Trends and
Applications in Knowledge Discovery and Data Mining. Springer International
Publishing, Cham, pp. 181-185.

Richardson, L., Ruby, S., 2007. RESTful Web Services, first ed. O’Reilly Media, Inc.

Wang, M., Xu, X., Yue, Q., Wang, Y., 2021. A comprehensive survey and experimental
comparison of graph-based approximate nearest neighbor search. Proc. VLDB
Endow. 14, 1964-1978.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature
393, 440-442.

Webster, A.F., Tavares, S.E., 1986. On the design of S-boxes. In: Advances in Cryptology

CRYPTO 85 Proceedings. Springer Berlin Heidelberg, pp. 523-534.

Winter, C., Schneider, M., Yannikos, Y., 2013. F2S2: fast forensic similarity search
through indexing piecewise hash signatures. Digit. Invest. 10, 361-371.

Yianilos, P.N., 1993. Data structures and algorithms for nearest neighbor search in
general metric spaces. In: Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms. Society for Industrial and Applied Mathematics, USA,
pp. 311-321.

https://github.com/brtholomy/hnsw
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref2
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref2
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref3
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref3
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref4
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref4
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref4
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref5
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref5
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref5
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref6
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref6
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref6
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref7
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref7
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref8
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref8
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref8
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref8
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref9
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref9
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref9
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref9
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref10
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref10
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref10
https://doi.org/10.1016/j.softx.2024.102016
https://doi.org/10.1016/j.softx.2024.102016
https://www.sciencedirect.com/science/article/pii/S2352711024003868
https://www.sciencedirect.com/science/article/pii/S2352711024003868
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref12
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref12
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref13
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref13
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref14
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref15
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref15
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref15
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref16
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref16
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref17
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref17
https://doi.org/10.1109/ACCESS.2020.2996146
https://github.com/nmslib/hnswlib
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref20
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref20
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref20
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref21
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref21
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref22
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref22
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref22
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/modules
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/modules
https://docs.microsoft.com/en-us/windows/win32/memory/memory-management
https://docs.microsoft.com/en-us/windows/win32/memory/memory-management
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref25
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref25
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref26
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref26
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref27
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref27
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref28
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref28
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref28
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref28
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref29
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref30
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref30
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref30
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref31
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref31
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref32
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref32
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref33
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref33
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref34
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref34
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref34
http://refhub.elsevier.com/S2666-2817(25)00069-1/sref34

	An extensible and scalable system for hash lookup and approximate similarity search with similarity digest algorithms
	1 Introduction
	2 Background
	2.1 Similarity digest algorithms
	2.2 Efficient search methods
	2.2.1 Radix tree
	2.2.2 Hierarchical navigable small world (HNSW)
	Construction/insertion
	Search

	3 APOTHEOSIS: system architecture
	4 Evaluation
	4.1 RQ1: effectiveness in document duplication detection
	4.1.1 Performance metrics across varying thresholds
	4.1.2 Number of plagiarized cases in MinHash, ssdeep, and TLSH datasets

	4.2 RQ2: performance and scalability on large datasets
	4.2.1 Varying M with ef ​= ​16
	4.2.2 Varying ef with M ​= ​16
	4.2.3 Impact of N on time complexity

	5 Threat model and limitations
	5.1 Threat model
	5.2 Threats to validity
	5.2.1 Construct validity
	5.2.2 Internal validity
	5.2.3 External validity

	6 Related work
	6.1 Tools related to HNSW
	6.2 Hash lookup and similarity search

	7 Conclusions and future work
	Declaration of generative AI and AI-assisted technologies in the writing process
	Acknowledgments
	References

