000165103 001__ 165103
000165103 005__ 20251212165958.0
000165103 0247_ $$2doi$$a10.1016/j.watres.2020.115636
000165103 0248_ $$2sideral$$a117174
000165103 037__ $$aART-2020-117174
000165103 041__ $$aeng
000165103 100__ $$0(orcid)0000-0002-7456-4912$$aMosteo, Rosa$$uUniversidad de Zaragoza
000165103 245__ $$aVisible light plays a significant role during bacterial inactivation by the photo-fenton process, even at sub-critical light intensities
000165103 260__ $$c2020
000165103 5203_ $$aThe aim of this research is to clarify the contribution of sunlight wavelengths, irradiance and Fe2+/H2O2 during bacterial disinfection by the photo-Fenton process in clear surface waters. We considered different solar spectrum distributions (visible, UVA-Visible), sub-critical irradiances (0–400 W/m2), focusing on the action modes of E. coli inactivation by the constituents involved in the composite process, at low µM reactants concentration (Fe2+/H2O2) in in ultrapure (MQ) water. We report that solar disinfection improved with Fenton reagents (photo-Fenton process) is a reality from very low light irradiance values (200 W/m2), and made possible even without the presence of UVA radiation, even when using low quantities of the Fenton reagents (0.5 mg/L Fe2+, 5 mg/L H2O2). Under light exposure, H2O2 was found to augment the intracellular Fenton process and Fe2+ to initiate further, distinct oxidative actions. Finally, validation was performed in Lake Geneva water over a wider irradiance range, where the photo-Fenton process was found to be reagent-dependent in low irradiance, shifting to light-driven in the higher values.
000165103 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T51-17R$$9info:eu-repo/grantAgreement/ES/MCIU/RYC2018-024033-I$$9info:eu-repo/grantAgreement/ES/MICINN/PRX18/00107
000165103 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000165103 590__ $$a11.236$$b2020
000165103 591__ $$aENGINEERING, ENVIRONMENTAL$$b3 / 53 = 0.057$$c2020$$dQ1$$eT1
000165103 591__ $$aWATER RESOURCES$$b2 / 97 = 0.021$$c2020$$dQ1$$eT1
000165103 591__ $$aENVIRONMENTAL SCIENCES$$b6 / 273 = 0.022$$c2020$$dQ1$$eT1
000165103 592__ $$a3.099$$b2020
000165103 593__ $$aCivil and Structural Engineering$$c2020$$dQ1
000165103 593__ $$aEcological Modeling$$c2020$$dQ1
000165103 593__ $$aWater Science and Technology$$c2020$$dQ1
000165103 593__ $$aPollution$$c2020$$dQ1
000165103 593__ $$aWaste Management and Disposal$$c2020$$dQ1
000165103 593__ $$aEnvironmental Engineering$$c2020$$dQ1
000165103 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165103 700__ $$aVaron Lopez, A.
000165103 700__ $$aMuzard, D.
000165103 700__ $$aBenitez, N.
000165103 700__ $$aGiannakis, S.
000165103 700__ $$aPulgarin, C.
000165103 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000165103 773__ $$g174 (2020), 115636 [14 pp.]$$pWater res.$$tWATER RESEARCH$$x0043-1354
000165103 8564_ $$s1342448$$uhttps://zaguan.unizar.es/record/165103/files/texto_completo.pdf$$yVersión publicada
000165103 8564_ $$s2643720$$uhttps://zaguan.unizar.es/record/165103/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165103 909CO $$ooai:zaguan.unizar.es:165103$$particulos$$pdriver
000165103 951__ $$a2025-12-12-14:42:43
000165103 980__ $$aARTICLE