000165132 001__ 165132
000165132 005__ 20251212165958.0
000165132 0247_ $$2doi$$a10.1016/j.cej.2022.134850
000165132 0248_ $$2sideral$$a128153
000165132 037__ $$aART-2022-128153
000165132 041__ $$aeng
000165132 100__ $$aJojoa-Sierra, S.$$uUniversidad de Zaragoza
000165132 245__ $$aWüstite as a catalyst source for water remediation: Differentiated antimicrobial activity of by-products, action routes of the process, and transformation of fluoroquinolones
000165132 260__ $$c2022
000165132 5203_ $$aWüstite under simulated solar irradiation with addition of H2O2 was used to treat enrofloxacin and levofloxacin in water. Wüstite was characterized, showing 2.1 eV of bandgap and species of Fe3+ on the surface that favor its catalytic ability. The effect of light intensity, wüstite dose, concentration of H2O2, and pH on the removal of antimicrobial activity (AA, against S. aureus and E. coli), was tested, finding as suitable conditions: intensity]: 500 W m-2, wüstite]: 10 mg L-1, H2O2]: 1.0 mmol L-1, and pH 6.5. Under such conditions, up to 100% of AA elimination occurred at 180 min of treatment. The Light-Wüstite-H2O2 system involved, the action of light, O2•-, 1O2, and HO•, where wüstite acted as a semiconductor and a catalyst for heterogeneous photo-Fenton. Furthermore, this system mineralized 21% of ENR, and the wüstite catalyst promoted 100% of AA removal up to the fourth reuse cycle. Interestingly, the application of Light-Wüstite-H2O2 to an actual effluent led to complete AA removal after 180 min treatment. The process action on ENR generated six stable products, exhibiting the loss of the fluorine atom (induced by light directly) and modifications on the ethyl-piperazyl group (reactive region according to calculations of atomic charge) by radical attacks. The relationship between the AA and structural transformations showed that those products that retained quinolone and piperazyl moieties had AA. © 2022 Elsevier B.V.
000165132 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/B43-20R$$9info:eu-repo/grantAgreement/ES/MCINN/MAT2017-83468-R
000165132 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000165132 590__ $$a15.1$$b2022
000165132 591__ $$aENGINEERING, ENVIRONMENTAL$$b3 / 55 = 0.055$$c2022$$dQ1$$eT1
000165132 591__ $$aENGINEERING, CHEMICAL$$b5 / 141 = 0.035$$c2022$$dQ1$$eT1
000165132 592__ $$a2.803$$b2022
000165132 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000165132 593__ $$aIndustrial and Manufacturing Engineering$$c2022$$dQ1
000165132 593__ $$aEnvironmental Chemistry$$c2022$$dQ1
000165132 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000165132 594__ $$a21.5$$b2022
000165132 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165132 700__ $$0(orcid)0000-0002-0901-8341$$aHerrero-Albillos, J.$$uUniversidad de Zaragoza
000165132 700__ $$0(orcid)0000-0003-3014-0322$$aOrmad, M. P.$$uUniversidad de Zaragoza
000165132 700__ $$aSerna-Galvis, E.
000165132 700__ $$aTorres-Palma, R.
000165132 700__ $$0(orcid)0000-0002-7456-4912$$aMosteo, R.$$uUniversidad de Zaragoza
000165132 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000165132 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000165132 773__ $$g435, 1  (2022), 134850 [15 pp.]$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000165132 8564_ $$s951016$$uhttps://zaguan.unizar.es/record/165132/files/texto_completo.pdf$$yVersión publicada
000165132 8564_ $$s2289059$$uhttps://zaguan.unizar.es/record/165132/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165132 909CO $$ooai:zaguan.unizar.es:165132$$particulos$$pdriver
000165132 951__ $$a2025-12-12-14:43:20
000165132 980__ $$aARTICLE