000165181 001__ 165181
000165181 005__ 20251219174251.0
000165181 0247_ $$2doi$$a10.1038/emboj.2012.70
000165181 0248_ $$2sideral$$a77340
000165181 037__ $$aART-2012-77340
000165181 041__ $$aeng
000165181 100__ $$aQuirós,P. M.
000165181 245__ $$aLoss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice
000165181 260__ $$c2012
000165181 5203_ $$aMitochondria are dynamic subcellular organelles that convert nutrient intermediates into readily available energy equivalents. Optimal mitochondrial function is ensured by a highly evolved quality control system, coordinated by protein machinery that regulates a process of continual fusion and fission. In this work, we provide in vivo evidence that the ATP‐independent metalloprotease OMA1 plays an essential role in the proteolytic inactivation of the dynamin‐related GTPase OPA1 (optic atrophy 1). We also show that OMA1 deficiency causes a profound perturbation of the mitochondrial fusion–fission equilibrium that has important implications for metabolic homeostasis. Thus, ablation of OMA1 in mice results in marked transcriptional changes in genes of lipid and glucose metabolic pathways and substantial alterations in circulating blood parameters. Additionally, Oma1‐mutant mice exhibit an increase in body weight due to increased adipose mass, hepatic steatosis, decreased energy expenditure and impaired thermogenenesis. These alterations are especially significant under metabolic stress conditions, indicating that an intact OMA1‐OPA1 system is essential for developing the appropriate adaptive response to different metabolic stressors such as a high‐fat diet or cold‐shock. This study provides the first description of an unexpected role in energy metabolism for the metalloprotease OMA1 and reinforces the importance of mitochondrial quality control for normal metabolic function.
000165181 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000165181 590__ $$a9.822$$b2012
000165181 591__ $$aCELL BIOLOGY$$b19 / 183 = 0.104$$c2012$$dQ1$$eT1
000165181 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b17 / 288 = 0.059$$c2012$$dQ1$$eT1
000165181 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165181 700__ $$aRamsay,A. J.
000165181 700__ $$aSala,D.
000165181 700__ $$0(orcid)0000-0002-2469-142X$$aFernández-Vizarra,E.
000165181 700__ $$aRodríguez,F.
000165181 700__ $$aPeinado,J. R.
000165181 700__ $$aFernández-García,M. S.
000165181 700__ $$aVega,J. A.
000165181 700__ $$0(orcid)0000-0002-4931-6730$$aEnríquez,J. A.$$uUniversidad de Zaragoza
000165181 700__ $$aZorzano,A.
000165181 700__ $$aLópez-Otín,C.
000165181 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000165181 773__ $$g31, 9 (2012), 2117-2133$$pEMBO j.$$tEMBO JOURNAL$$x0261-4189
000165181 8564_ $$s1003031$$uhttps://zaguan.unizar.es/record/165181/files/texto_completo.pdf$$yVersión publicada
000165181 8564_ $$s3430295$$uhttps://zaguan.unizar.es/record/165181/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165181 909CO $$ooai:zaguan.unizar.es:165181$$particulos$$pdriver
000165181 951__ $$a2025-12-19-14:42:32
000165181 980__ $$aARTICLE