000165253 001__ 165253
000165253 005__ 20251219174252.0
000165253 0247_ $$2doi$$a10.1016/j.fuel.2025.137642
000165253 0248_ $$2sideral$$a146721
000165253 037__ $$aART-2025-146721
000165253 041__ $$aeng
000165253 100__ $$0(orcid)0009-0000-5038-2252$$aGonzález-Pizarro, R.$$uUniversidad de Zaragoza
000165253 245__ $$aLow loading copper-based catalysts for effective CO2 hydrogenation to methanol
000165253 260__ $$c2025
000165253 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165253 5203_ $$aMethanol synthesis via CO2 hydrogenation is an emerging Power-to-Liquid (PtL) technology aimed to accelerate the energy transition and the defossilization of key sectors, particularly maritime transport. This study focuses on the study of low loading formulations, to minimize the catalyst cost. Key operational variables including temperature (T), Weight Hourly Space Velocity (WHSV), copper and zinc loadings, and aging state were systematically varied. An overall active phase loading of 10 %wt emerged as optimal. Within this total loading, a 5 %wtCu-5 %wtZn/ZrO2 catalysts delivered higher methanol productivity than 10 %wtCu/ZrO2; however, the bimetallic catalysts showed pronounced deactivation under water-rich atmospheres, establishing 10 %wtCu/ZrO2 as the most promising catalysts. Operating temperature and WHSV exerted a strong, synergistic influence on CH3OH formation; in particular, increasing WHSV shifted the reaction away from thermodynamic control and boosted methanol synthesis. Finally, the catalytic performance of these low-loading catalysts was benchmarked against high-copper-loading methanol catalysts reported in the literature by critically compare their activities as a function of the residence time (τ) calculated at reaction conditions. This assessment revealed that the proposed formulation is highly competitive when compared to most conventional formulation, with a maximum methanol space time yield (STYCH3OH) of 3.9 gCH3OH gCu-1 h-1. This comparison confirms that the catalysts proposed in this study could offer a remarkably more efficient use of the active phase than the conventional high-copper-loading catalysts.
000165253 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-139819OB-I00$$9info:eu-repo/grantAgreement/ES/DGA/T43-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133066-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PRE2023-UZ-26$$9info:eu-repo/grantAgreement/ES/MICIU/JDC2023-052947-I
000165253 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000165253 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165253 700__ $$0(orcid)0000-0002-5926-5252$$aRenda, S.$$uUniversidad de Zaragoza
000165253 700__ $$0(orcid)0000-0002-7488-6196$$aLasobras, J.$$uUniversidad de Zaragoza
000165253 700__ $$0(orcid)0000-0001-9022-2835$$aSoler, J.$$uUniversidad de Zaragoza
000165253 700__ $$0(orcid)0000-0002-2494-102X$$aMenéndez, M.$$uUniversidad de Zaragoza
000165253 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000165253 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000165253 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000165253 773__ $$g408 (2025), 137642 [15 pp.]$$pFuel$$tFuel$$x0016-2361
000165253 8564_ $$s6679022$$uhttps://zaguan.unizar.es/record/165253/files/texto_completo.pdf$$yVersión publicada
000165253 8564_ $$s2421881$$uhttps://zaguan.unizar.es/record/165253/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165253 909CO $$ooai:zaguan.unizar.es:165253$$particulos$$pdriver
000165253 951__ $$a2025-12-19-14:43:51
000165253 980__ $$aARTICLE